2020 in paleontology

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2020.

List of years in paleontology (table)
In paleobotany
2017
2018
2019
2020
2021
2022
2023
In arthropod paleontology
2017
2018
2019
2020
2021
2022
2023
In paleoentomology
2017
2018
2019
2020
2021
2022
2023
In paleomalacology
2017
2018
2019
2020
2021
2022
2023
In paleoichthyology
2017
2018
2019
2020
2021
2022
2023
In reptile paleontology
2017
2018
2019
2020
2021
2022
2023
In archosaur paleontology
2017
2018
2019
2020
2021
2022
2023
In paleomammalogy
2017
2018
2019
2020
2021
2022
2023

PlantsEdit

SpongesEdit

Name Novelty Status Authors Age Type locality Country Notes Images
Endostoma stellata[2] Sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation   Iran A calcareous sponge belonging the family Endostomatidae.

Eoghanospongia[3]

Gen. et sp. nov

Valid

Botting et al.

Silurian (Telychian)

  United Kingdom

A hexactinellid sponge. Genus includes new species E. carlinslowpensis. Announced in 2019; the final version of the article naming it was published in 2020.

Eudea maxima[2] Sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation   Iran A calcareous sponge belonging the family Endostomatidae.
Iniquispongia[2] Gen. et sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation   Iran A calcareous sponge belonging the family Endostomatidae. The type species is I. iranica.
Polyendostoma? irregularis[2] Sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation   Iran A calcareous sponge belonging the family Endostomatidae.
Polyendostoma? regularis[2] Sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation   Iran A calcareous sponge belonging the family Endostomatidae.
Preperonidella tabasensis[2] Sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation   Iran A calcareous sponge belonging the family Endostomatidae.
Seriespongia[2] Gen. et sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Middle Jurassic (Callovian) Esfandiar Limestone Formation   Iran A calcareous sponge belonging the family Endostomatidae. The type species is S. iranica.

Shouzhispongia[4]

Gen. et 2 sp. nov

In press

Botting et al.

Ordovician (Hirnantian)

  China

A rossellid sponge. Genus includes S. coronata and S. prodigia.

Spongia mantelli[5]

Nom. nov

Valid

Van Soest, Hooper & Butler

Cretaceous

  United Kingdom

A replacement name for Spongia ramosa Mantell (1822).

CnidariansEdit

New taxaEdit

Name Novelty Status Authors Age Type locality Country Notes Images
Actinoseris riyadhensis[6] Sp. nov Valid Gameil, El-Sorogy & Al-Kahtany Late Cretaceous (Campanian) Aruma   Saudi Arabia A solitary coral. Announced in 2018; the final version of the article naming it was published in 2020.
Alichurastrea[7] Gen. et sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian)   Tajikistan A coral. Genus includes new species A. major. Announced in 2020; the final version of the article naming it was published in 2021.
Alveopora kumadai[8] Sp. nov Valid Niko & Suzuki Miocene (Langhian) Katsuta Group   Japan A species of Alveopora.
Amplexus gennarenensis[9] Sp. nov Valid Liao, Liang & Luo Carboniferous (Tournaisian)   China A rugose coral.
Anthracomedusa? hoferhauseri[10] Sp. nov Valid Szente Early Triassic Werfen Formation   Austria A box jellyfish.
Asteroseris arabica[6] Sp. nov Valid Gameil, El-Sorogy & Al-Kahtany Late Cretaceous (Campanian) Aruma   Saudi Arabia A solitary coral. Announced in 2018; the final version of the article naming it was published in 2020.
Bowanophyllum ramosum[11] Sp. nov Valid Wang, Percival & Zhen Ordovician (Katian) Malachis Hill   Australia A rugose coral.
Carinthiaphyllum ramovsi[12] Sp. nov Valid Kossovaya, Novak & Weyer Permian (Asselian)   Slovenia A rugose coral belonging to the family Geyerophyllidae.
Colligophyllum[13] Gen. et comb. nov Valid Fedorowski Carboniferous (Bashkirian)   Ukraine A rugose coral. The type species is "Lytvophyllum" dobroljubovae Vassilyuk (1960). Announced in 2020; the final version of the article naming it was published in 2021.
Cunnolites (Plesiocunnolites) riyadhensis[6] Sp. nov Valid Gameil, El-Sorogy & Al-Kahtany Late Cretaceous (Campanian) Aruma   Saudi Arabia A solitary coral. Announced in 2018; the final version of the article naming it was published in 2020.
Eohydnophora baingoinensis[14] Sp. nov Valid Wang et al. Early Cretaceous   China A stony coral.
Eomicrophyllia[7] Gen. et sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian)   Tajikistan A coral. Genus includes new species E. nalivkini. Announced in 2020; the final version of the article naming it was published in 2021.
Galliconularia[15] Gen. et comb. nov Valid Van Iten & Lefebvre Ordovician (Tremadocian) Saint-Chinian   France A member of Conulariida. The type species is "Conularia" azaisi Thoral (1935).
Guembelastreomorpha[7] Gen. et sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian)   Tajikistan A coral. Genus includes new species G. vinogradovi. Announced in 2020; the final version of the article naming it was published in 2021.
Gurumdynia[7] Gen. et sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian)   Tajikistan A coral. Genus includes new species G. gracilis. Announced in 2020; the final version of the article naming it was published in 2021.
Hanagyroia[16] Gen. et sp. nov Valid Wang et al. Early Cambrian Kuanchuanpu   China A medusozoan of uncertain phylogenetic placement, possibly representing an intermediate morphological type between scyphozoans and cubozoans. Genus includes new species H. orientalis.
Hemiagetiolites longiseptatus[11] Sp. nov Valid Wang, Percival & Zhen Ordovician (Katian) Malachis Hill   Australia A tabulate coral.
Heteroamphiastrea[17] Gen. et sp. nov Valid Kołodziej Early Cretaceous (Aptian)   Tanzania A stony coral belonging to the superfamily Heterocoenioidea and the family Carolastraeidae. Genus includes new species H. loeseri.
Heterostrotion huaqiaoense[18] Sp. nov Valid Denayer et al. Early Carboniferous   China A rugose coral
Krynkaphyllum[13] Gen. et 2 sp. nov Valid Fedorowski Carboniferous (Bashkirian)   Ukraine A rugose coral. The type species is K. multiplexum; genus also includes K. validum. Announced in 2020; the final version of the article naming it was published in 2021.
Martsaphyton[19] Gen. et sp. nov Valid Tinn, Vinn & Ainsaar Ordovician (Darriwilian)   Estonia A member of Medusozoa of uncertain phylogenetic placement. The type species is M. moxi.
Michelinia flugeli[20] Sp. nov Valid Niko & Badpa Carboniferous (Bashkirian) Sardar Formation   Iran A tabulate coral belonging to the order Favositida and the family Micheliniidae.
Nancygyra[21] Gen. et sp. nov In press Bosellini & Stolarski in Bosellini et al. Eocene (Ypresian)   Italy A member of the family Euphylliidae. The type species is N. dissepimentata.
Neosyringaxon michelini[22] Sp. nov Valid Weyer & Rohart Devonian (Frasnian)   France A rugose coral belonging to the family Petraiidae
Paramixogonaria wangyouensis[23] Sp. nov Valid Liao & Liang Devonian (Givetian) Wenglai   China A rugose coral.
Pinacomorpha[7] Gen. et sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian)   Tajikistan A coral. Genus includes new species P. apimelos. Announced in 2020; the final version of the article naming it was published in 2021.
Placophyllia baingoinensis[14] Sp. nov Valid Wang et al. Early Cretaceous   China A stony coral. Originally described as a species of Placophyllia, but subsequently transferred to the genus Sonoraphyllia.[24]
Placophyllia amnica[7] Sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian)   Tajikistan A placophylliid coral. Announced in 2020; the final version of the article naming it was published in 2021.
Protokionophyllum feninoense[13] Sp. nov Valid Fedorowski Carboniferous (Bashkirian)   Ukraine A rugose coral. Announced in 2020; the final version of the article naming it was published in 2021.
Protostephanastrea[7] Gen. et sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian)   Tajikistan An actinastraeid coral. Genus includes new species P. leveni. Announced in 2020; the final version of the article naming it was published in 2021.
Psenophyllia[7] Gen. et comb. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian)   Tajikistan A coral. The type species is "Cylindrosmilia" longa Melnikova (1989). Announced in 2020; the final version of the article naming it was published in 2021.
Rotiphyllum xinjiangense[9] Sp. nov Valid Liao, Liang & Luo Carboniferous (Tournaisian)   China A rugose coral.
Sanidophyllum dubium[25] Sp. nov Valid Yu et al. Devonian (Emsian) Mia Le   Vietnam A rugose coral belonging to the family Breviphyllidae. Announced in 2020; the final version of the article naming was published in 2021.
Sedekastrea[7] Gen. et sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian)   Tajikistan A coral. Genus includes new species S. djalilovi. Announced in 2020; the final version of the article naming it was published in 2021.
Siphonophyllia khenifrense[26] Sp. nov Rodríguez, Said & Somerville in Rodríguez et al. Carboniferous (Viséan) Azrou-Khenifra   Morocco A rugose coral belonging to the family Cyathopsidae
Stylimorpha[7] Gen. et sp. nov Valid Melnikova & Roniewicz Early Jurassic (probably Pliensbachian)   Tajikistan A placophylliid coral. Genus includes new species S. kardjilgensis. Announced in 2020; the final version of the article naming it was published in 2021.
Stylina namcoensis[14] Sp. nov Valid Wang et al. Early Cretaceous   China A stony coral.
Stylostrotion houi[18] Sp. nov Valid Denayer et al. Carboniferous (Viséan)   China A rugose coral
Syringopora iranica[20] Sp. nov Valid Niko & Badpa Carboniferous (Serpukhovian) Sardar Formation   Iran A tabulate coral belonging to the order Auloporida and the family Syringoporidae.

ResearchEdit

  • Revision of tabulate-like fossils from before the latest Middle Ordovician is published by Elias, Lee & Pratt (2020), who reject the interpretation of these fossils as true tabulate corals.[27]
  • Drake, Whitelegge & Jacobs (2020) report the first recovery, sequencing, and identification of fossil biomineral proteins from a Pleistocene fossil invertebrate (the stony coral Orbicella annularis).[28]

ArthropodsEdit

BryozoansEdit

Name Novelty Status Authors Age Type locality Country Notes Images
Anastomopora blankenheimensis[29] Sp. nov Valid Ernst Devonian   Germany
Anastomopora minor[29] Sp. nov Valid Ernst Devonian   Germany
Anomalotoechus parvus[30] Sp. nov Valid Ernst, Bahrami & Parast Devonian (Famennian) Bahram   Iran A member of Trepostomata belonging to the group Amplexoporina and to the family Atactotoechidae.
Asperopora sinensis[31] Sp. nov Valid Ernst et al. Silurian (Telychian) Hanchiatien   China A trepostome bryozoan.

Biforicula collinsi[32]

Sp. nov

Valid

Taylor

Early Cretaceous (Albian)

Gault

  United Kingdom

Cheethamia volgaensis[33] Sp. nov Valid Koromyslova & Seltser Late Cretaceous (Maastrichtian)   Russia
(  Saratov Oblast)
A member of Cheilostomata
Cribrilaria profunda[34] Sp. nov Valid Rosso, Di Martino & Ostrovsky Pleistocene   Italy A member of the family Cribrilinidae.
Dianulites altaicus[35] Sp. nov Valid Koromyslova & Sennikov Ordovician (Sandbian)   Russia
(  Altai Republic)
A member of Esthonioporata.
Dyscritella kalmardensis[36] Sp. nov Valid Ernst & Gorgij Carboniferous (Pennsylvanian) Siliciclastic Imagh   Iran A member of Trepostomata belonging to the group Amplexoporina and to the family Dyscritellidae. Announced in 2019; the final version of the article naming it was published in 2020.
Dyscritella multiporata[36] Sp. nov Valid Ernst & Gorgij Carboniferous (Pennsylvanian) Siliciclastic Imagh   Iran A member of Trepostomata belonging to the group Amplexoporina and to the family Dyscritellidae. Announced in 2019; the final version of the article naming it was published in 2020.
Figularia spectabilis[34] Sp. nov Valid Rosso, Di Martino & Ostrovsky Pleistocene   Italy A member of the family Cribrilinidae.
Filites bakharevi[37] Sp. nov Valid Mesentseva in Mesentseva & Udodov Devonian (Emsian)   Russia
Filites fragilis[37] Sp. nov Valid Udodov in Mesentseva & Udodov Devonian (Emsian)   Russia
Filites regularis[37] Sp. nov Valid Mesentseva in Mesentseva & Udodov Devonian (Emsian)   Russia
Filites vulgaris[37] Sp. nov Valid Udodov in Mesentseva & Udodov Devonian (Emsian)   Russia
Glabrilaria transversocarinata[34] Sp. nov Valid Rosso, Di Martino & Ostrovsky Pleistocene   Italy A member of the family Cribrilinidae.
Hemiphragma insolitum[38] Sp. nov Valid Koromyslova & Fedorov Ordovician (Dapingian)   Russia A trepostome bryozoan.
Microporella tanyae[39] Sp. nov Valid Di Martino, Taylor & Gordon Pliocene Yorktown   United States
(  Virginia)
A member of the family Microporellidae.
Moorephylloporina parvula[31] Sp. nov Valid Ernst et al. Silurian (Telychian) Hanchiatien   China A fenestrate bryozoan.
Parastenodiscus sinaiensis[40] Sp. nov In press Ernst et al. Carboniferous (Mississippian)   Egypt A member of Trepostomata
Planopora[38] Gen. et sp. nov Valid Koromyslova & Fedorov Ordovician (Dapingian)   Russia A bifoliate cystoporate. Genus includes new species P. volkhovensis.
Rhombopora aryani[36] Sp. nov Valid Ernst & Gorgij Carboniferous (Pennsylvanian) Siliciclastic Imagh   Iran A member of Cryptostomata belonging to the group Rhabdomesina and to the family Rhomboporidae. Announced in 2019; the final version of the article naming it was published in 2020.
Taylorus patagonicus[41] Sp. nov Valid Pérez et al. Early Miocene   Argentina A member of the family Escharinidae. Announced in 2020; the final version of the article naming it was published in 2021.
Trematopora jiebeiensis[31] Sp. nov Valid Ernst et al. Silurian (Telychian) Hanchiatien   China A trepostome bryozoan.
Trematopora tenuis[31] Sp. nov Valid Ernst et al. Silurian (Telychian) Hanchiatien   China A trepostome bryozoan.
Zefrehopora[30] Gen. et sp. nov Valid Ernst, Bahrami & Parast Devonian (Famennian) Bahram   Iran A member of Trepostomata belonging to the group Amplexoporina and to the family Eridotrypellidae. The type species is Z. asynithis.

BrachiopodsEdit

New taxaEdit

Name Novelty Status Authors Age Type locality Country Notes Images
Altiplanotoechia[42] Gen. et sp. nov Valid Colmenar in Colmenar & Hodgin Ordovician Umachiri   Peru A polytoechioid brachiopod. Genus includes new species A. hodgini.
Beaussetithyris[43] Gen. et sp. nov Gaspard & Charbonnier Late Cretaceous (Santonian)   France A member of Rhynchonellida belonging to the family Cyclothyrididae. The type species is B. asymmetrica.
Biconvexiella saopauloensis[44] Sp. nov In press Simões et al. Late Paleozoic Taciba   Brazil
Bockeliena[45] Gen. et comb. nov Valid Baarli Silurian (Rhuddanian)   United Kingdom A member of the family Atrypinidae; a new genus for "Atrypa" flexuosa Marr & Nicholson (1888).
Brevilamnulella minuta[46] Sp. nov Valid Jin & Blodgett Late Ordovician   United States
(  Alaska)
Chilcatreta lariojana[47] Sp. nov Valid Lavié & Benedetto Ordovician Suri   Argentina A siphonotretid brachiopod. Announced in 2019; the final version of the article naming it was published in 2020.
Chinellirostra[48] Gen. et sp. nov Valid Baranov, Qiao & Blodgett Devonian (Givetian)   China A member of the family Stringocephalidae. Genus includes new species C. rara. Announced in 2020; the final version of the article naming was published in 2021.
Contortithyris[43] Gen. et sp. nov Gaspard & Charbonnier Late Cretaceous (Santonian) Micraster   France A member of Rhynchonellida belonging to the family Cyclothyrididae. The type species is C. thermae.
Cyclothyris cardiatelia[49] Sp. nov In press Berrocal-Casero, Barroso-Barcenilla & Joral Late Cretaceous (Coniacian)   Spain A member of Rhynchonellida
Cyclothyris grimargina[43] Sp. nov Gaspard & Charbonnier Late Cretaceous (Campanian) Micraster   France A member of Rhynchonellida belonging to the family Cyclothyrididae
Cyclothyris nekvasilovae[50] Sp. nov Valid Berrocal-Casero, Joral & Barroso-Barcenilla Late Cretaceous (Cenomanian)   Czech Republic A member of Rhynchonellida belonging to the family Cyclothyrididae. Announced in 2020; the final version of the article naming it was published in 2021.
Cyclothyris segurai[49] Sp. nov In press Berrocal-Casero, Barroso-Barcenilla & Joral Late Cretaceous (Coniacian)   Spain A member of Rhynchonellida
Dihelictera engerensis[45] Sp. nov Valid Baarli Ordovician/Silurian boundary Solvik   Norway A member of the family Atrypidae.
Dogdoa talyndzhensis[51] Sp. nov Valid Baranov Early Devonian   Russia A member of Rhynchonellida.
Elliptoglossa kononovae[52] Sp. nov Valid Smirnova & Zhegallo Devonian (Famennian)   Russia A member of Lingulida.
Enriquetoechia[42] Gen. et sp. nov Valid Colmenar & Hodgin Ordovician Umachiri   Peru A polytoechioid brachiopod. Genus includes new species E. umachiriensis.
Eoobolus incipiens[53] Sp. nov In press Zhang, Popov, Holmer & Zhang in Zhang et al. Cambrian Ajax Limestone
Dengying Formation
Mernmerna Formation
Wilkawillina Limestone
  Australia
  China
A member of Linguloidea.
Euroatrypa? sigridi[45] Sp. nov Valid Baarli Ordovician/Silurian boundary Solvik   Norway A member of the family Atrypinidae.
Famatinobolus[47] Gen. et sp. nov Valid Lavié & Benedetto Ordovician Suri   Argentina An obolid brachiopod. Genus includes new species F. cancellatum. Announced in 2019; the final version of the article naming it was published in 2020.
Germanoplatidia[54] Gen. et comb. nov Valid Dulai & Von der Hocht Oligocene (Chattian)   Germany A member of Terebratulida belonging to the family Platidiidae; a new genus for "Terebratula" pusilla Philippi (1843).
Gotatrypa vettrensis[45] Sp. nov Valid Baarli Ordovician/Silurian boundary Solvik   Norway A member of the family Atrypidae.
Hassanispirifer[55] Gen. et sp. nov Valid Garcia-Alcalde & El Hassani Devonian (Givetian) Taboumakhlouf   Morocco A member of Spiriferida belonging to the family Xenomartiniidae. The type species is H. africanus.
Holynetes? mzerrebiensis[55] Sp. nov Valid Garcia-Alcalde & El Hassani Devonian (Givetian) Ahrerouch   Morocco A member of Chonetidina belonging to the family Anopliidae.
Imbriea[56] Nom. nov Valid Reily Devonian   United States A member of Orthotetida belonging to the family Areostrophiidae; a replacement name for Orthopleura Imbrie (1959).
Kafirnigania jorali[57] Sp. nov In press Berrocal-Casero Late Cretaceous (Coniacian)   Spain A member of Terebratulida.
Kafirnigania massiliensis[57] Sp. nov In press Berrocal-Casero Late Cretaceous (Coniacian)   France
  Spain
A member of Terebratulida.
Kirkidium canberrense[58] Sp. nov Valid Strusz Silurian (Wenlock) Canberra   Australia A member of Pentamerida belonging to the family Pentameridae.
Lambdarina winklerprinsi[59] Sp. nov Valid Voldman et al. Carboniferous (Pennsylvanian) San Emiliano   Spain
Levitusia elongata[60] Sp. nov Valid Tazawa Carboniferous (Viséan)   Japan A member of Productidina belonging to the family Leioproductidae.
Lingulellotreta yuanshanensis[61] Sp. nov Valid Zhang et al. Cambrian   China
Linnaeocaninella[62] Nom. nov Valid Hernández Middle Permian Lengwu   China A replacement name for Caninella Liang (1990)
Linnarssonia sapushanensis[63] Sp. nov Valid Duan et al. Cambrian Stage 4 Wulongqing   China An acrotretoid brachiopod.
Lithobolus limbatum[47] Sp. nov Valid Lavié & Benedetto Ordovician Suri   Argentina An obolid brachiopod. Announced in 2019; the final version of the article naming it was published in 2020.
Mishninia[51] Gen. et sp. nov Valid Baranov Early Devonian   Russia The type species is M. nodosa
Neobolus wulongqingensis[64] Sp. nov Valid Zhang, Strotz, Topper & Brock in Zhang et al. Cambrian Stage 4 Wulongqing   China A member of Lingulida belonging to the family Neobolidae. Many specimens had tubeworm-like kleptoparasites attached to their shells.
Neochonetes (Sommeriella) longa[65] Sp. nov Valid Wu et al. Permian (Changhsingian) Luokeng   China
Neochonetes (Sommeriella) transversa [65] Sp. nov Valid Wu et al. Permian (Changhsingian) Luokeng   China
Nucleatina anotia[57] Sp. nov In press Berrocal-Casero Late Cretaceous (Coniacian)   Spain
  France?
A member of Terebratulida.
Nucleatina arcana[57] Sp. nov In press Berrocal-Casero Late Cretaceous (Coniacian)   Spain A member of Terebratulida.
Nucleatina barrosoi[57] Sp. nov In press Berrocal-Casero Late Cretaceous (Coniacian)   Spain A member of Terebratulida.
Orbiculoidea katzeri[66] Sp. nov In press Corrêa & Ramos Devonian (Lochkovian) Manacapuru   Brazil
Orbiculoidea xinguensis[66] Sp. nov In press Corrêa & Ramos Devonian (Lochkovian) Manacapuru   Brazil
Palaeotreta[67] Gen. et sp. et comb. nov Valid Zhang et al. Cambrian Series 2 Shuijingtuo   China A member of the family Acrotretidae. The type species is P. shannanensis; genus also includes "Eohadrotreta" zhujiahensis Li & Holmer (2004).
Paragilledia[68] Gen. et sp. nov Valid Shi, Waterhouse & Lee Early Permian Pebbley Beach   Australia A member of Terebratulida belonging to the family Gillediidae. Genus includes new species P. kioloaensis.
Paramickwitzia[69] Gen. et sp. nov Valid Pan et al. Cambrian Series 2 Xinji   China A stem-brachiopod belonging to the group Mickwitziidae. Genus includes new species P. boreussinaensis. Announced in 2019; the final version of the article naming it was published in 2020.
Plectatrypa rindi[45] Sp. nov Valid Baarli Ordovician/Silurian boundary Solvik   Norway A member of the family Atrypinidae.
Plicarmus[70] Gen. et sp. nov Valid Claybourn et al. Cambrian Stage 4 Byrd Group Antarctica A member of Lingulata. Genus includes new species P. wildi.
Pomatotrema laubacheri[42] Sp. nov Valid Colmenar & Hodgin Ordovician Umachiri   Peru
Rhinatrypa[45] Gen. et comb. nov Valid Baarli Ordovician/Silurian boundary Solvik   Norway A member of the family Atrypidae. The type species is "Plectatrypa" henningsmoeni Boucot & Johnson (1967).
Rhipidium oepiki[58] Sp. nov Valid Strusz Silurian (Wenlock) Canberra   Australia A member of Pentamerida belonging to the family Pentameridae.
Spinocarinifera qilinzhaiensis[71] Sp. nov Valid Nie et al. Carboniferous (Tournaisian) Tangbagou Formation   China
Stringocephalus sinensis[48] Sp. nov Valid Baranov, Qiao & Blodgett Devonian (Givetian)   China A member of the family Stringocephalidae. Announced in 2020; the final version of the article naming was published in 2021.
Tabellina laseroni[68] Sp. nov Valid Shi, Waterhouse & Lee Early Permian Pebbley Beach   Australia An ingelarelloidean brachiopod belonging to the family Notospiriferidae.
Tapuritreta gribovensis[72] Sp. nov Valid Holmer et al. Cambrian (Guzhangian) Karpinsk Formation   Russia
(  Arkhangelsk Oblast)
A member of the family Acrotretidae.
Tcherskidium tenuicostatus[46] Sp. nov Valid Jin & Blodgett Late Ordovician   United States
(  Alaska)
Thomasaria bultyncki[55] Sp. nov Valid Garcia-Alcalde & El Hassani Devonian (Givetian) Ahrerouch   Morocco A member of Spiriferida belonging to the family Thomasariidae.
Vagrania naanchanensis[51] Sp. nov Valid Baranov Early Devonian   Russia A member of Atrypida.
Verchojania abramovi[73] Sp. nov Valid Makoshin Late Carboniferous   Russia A member of Productida
Wahwahlingula? pankovensis[72] Sp. nov Valid Holmer et al. Cambrian (Guzhangian) Karpinsk Formation   Russia
(  Arkhangelsk Oblast)
A member of Linguloidea belonging to the family Zhanatellidae.
Woodwardirhynchia pontemdiaboli[49] Sp. nov In press Berrocal Casero, Barroso Barcenilla & Joral Late Cretaceous (Coniacian)   Spain A member of Rhynchonellida
Yangirostra[48] Gen. et sp. nov Valid Baranov, Qiao & Blodgett Devonian (Givetian)   China A member of the family Stringocephalidae. Genus includes new species Y. asiatica. Announced in 2020; the final version of the article naming was published in 2021.

ResearchEdit

  • A study on the mode of life of Paleozoic strophomenatans is published by Stanley (2020), who argues that nearly all strophomenatans lived infaunally.[74]
  • A study on the paleobiogeography of Early−Middle Devonian (Pragian−Eifelian) brachiopods from West Gondwana, aiming to determine any potential controls that may have driven bioregionalization, is published by Penn-Clarke & Harper (2020).[75]
  • A study on the phylogenetic relationships and ecomorphologic diversification of Mesozoic spiriferinids is published by Guo, Chen & Harper (2020).[76]

MolluscsEdit

EchinodermsEdit

New taxaEdit

Name Novelty Status Authors Age Type locality Country Notes Images
Abertella carlsoni[77] Sp. nov Valid Osborn, Portell & Mooi Miocene   United States
(  Florida)
A sea urchin.
Abludoglyptocrinus steinheimerae[78] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
  Canada
(  Ontario)
A monobathrid crinoid.
Aenigmaticumcrinus[79] Gen. et sp. nov Valid Scheffler Devonian Belén   Bolivia A crinoid belonging to the group Dimerocrinitacea. Genus includes new species A. rochacamposi.
Aerliceaster[80] Gen. et sp. nov Valid Blake, Gahn & Guensburg Ordovician (Floian) Garden City   United States
(  Idaho)
A starfish. Genus includes new species A. nexosus.
Alkaidia megaungula[81] Sp. nov Valid Ewin & Gale Early Cretaceous (Barremian) Taba   Morocco A starfish belonging to the family Terminasteridae.
Arceoaster[82] Gen. et sp. nov Valid Blake & Sprinkle Silurian Hunton Group   United States
(  Oklahoma)
A starfish belonging to the family Hudsonasteridae. Genus includes new species A. hintei.
Aszulcicrinus[83] Gen. et sp. nov Valid Hagdorn Middle Triassic (Anisian) Gogolin   Poland A crinoid belonging to the group Articulata and the family Dadocrinidae. The type species is A. pentebrachiatus.
Brissopsis hoffmani[77] Sp. nov Valid Osborn, Portell & Mooi Miocene   United States
(  Florida)
A sea urchin.
Bronthaster[84] Gen. et sp. nov In press Jell & Cook Carboniferous (Namurian) Yagon Siltstone   Australia A brittle star belonging to the family Protasteridae. Genus includes new species B. retus.
Calclyra bifida[85] Sp. nov Valid Pabst & Herbig Carboniferous (Serpukhovian) Genicera   Spain A brittle star belonging to the group Oegophiurida and the family Calclyridae.
Clypeaster petersonorum[77] Sp. nov Valid Osborn, Portell & Mooi Miocene   United States
(  Florida)
A species of Clypeaster.
Comptonia bretoni[86] Sp. nov Valid Gale Early Cretaceous (Aptian) Atherfield   United Kingdom A starfish
Coulonia caseyi[86] Sp. nov Valid Gale Early Cretaceous (Aptian) Atherfield   United Kingdom An astropectinid starfish
Cyclogrupera[87] Gen. et sp. nov Torres-Martínez, Villanueva-Olea & Sour-Tovar Permian (AsselianSakmarian) Grupera   Mexico A crinoid belonging to the family Cyclomischidae. The type species is C. minor.
Discocrinus africanus[88] Sp. nov Valid Gale Late Cretaceous (Cenomanian) Aït Lamine   Morocco A crinoid belonging to the group Articulata and the family Roveacrinidae.
Discometra luberonensis[89] Sp. nov Valid Eléaume, Roux & Philippe Miocene (Burdigalian)   France A feather star belonging to the family Himerometridae.
Drepanocrinus wardorum[88] Sp. nov Valid Gale Late Cretaceous (Cenomanian)

  Morocco
  Tunisia

A crinoid belonging to the group Articulata and the family Roveacrinidae
Durhamicystis[90] Gen. et sp. nov Valid Zamora, Sprinkle & Sumrall Ordovician (Sandbian) Chambersburg   United States
(  Maryland)
A member of Eocrinoidea belonging to the family Rhipidocystidae. The type species is D. americana.
Encrinaster alsbachensis[91] Sp. nov Valid Müller & Hahn Early Devonian   Germany A brittle star.
Enodicalix[92] Gen. et comb. nov Valid Paul & Gutiérrez-Marco Ordovician   Spain A member of Diploporita belonging to the family Aristocystitidae. The type species is "Calix" inornatus Meléndez (1958).
Eoastropecten[93] Gen. et sp. nov Valid Gale Late Triassic (Carnian)   China A starfish belonging to the family Astropectinidae. Genus includes new species E. sechuanensis.
Euglyphocrinus cristagalli[88] Sp. nov Valid Gale Early Cretaceous (Albian)

  Morocco
  United States
(  Texas)

A crinoid belonging to the group Articulata and the family Roveacrinidae
Euglyphocrinus jacobsae[88] Sp. nov Valid Gale Late Cretaceous (Cenomanian)

  Morocco
  Tunisia

A crinoid belonging to the group Articulata and the family Roveacrinidae
Euglyphocrinus truncatus[88] Sp. nov Valid Gale Late Cretaceous (Cenomanian)

  Morocco
  Tunisia

A crinoid belonging to the group Articulata and the family Roveacrinidae
Euglyphocrinus worthensis[88] Sp. nov Valid Gale Early Cretaceous (Albian)

  Morocco
  United States
(  Texas)

A crinoid belonging to the group Articulata and the family Roveacrinidae
Euptychocrinus longipinnulus[94] Sp. nov Valid Fearnhead et al. Silurian (Telychian) Pysgotwr Grits   United Kingdom A camerate crinoid
Eutaxocrinus ariunai[95] Sp. nov Valid Waters et al. Devonian (Famennian) Samnuuruul Formation   Mongolia A crinoid. Announced in 2020; the final version of the article naming was published in 2021.
Eutaxocrinus sersmaai[95] Sp. nov Valid Waters et al. Devonian (Famennian) Samnuuruul Formation   Mongolia A crinoid. Announced in 2020; the final version of the article naming was published in 2021.
Fenestracrinus[88] Gen. et sp. nov Valid Gale Late Cretaceous (Cenomanian) Aït Lamine   Morocco A crinoid belonging to the group Articulata and the family Roveacrinidae. The type species is F. oculifer.
Fernandezaster whisleri[77] Sp. nov Valid Osborn, Portell & Mooi Pliocene   United States
(  Florida)
A sea urchin.
Floricyclocion[87] Gen. et sp. nov Torres-Martínez, Villanueva-Olea & Sour-Tovar Permian (Asselian‒Sakmarian) Grupera   Mexico A crinoid belonging to the family Floricyclidae. The type species is F. heteromorpha.
Gagaria hunterae[77] Sp. nov Valid Osborn, Portell & Mooi Miocene   United States
(  Florida)
A sea urchin.
Genocidaris oyeni[77] Sp. nov Valid Osborn, Portell & Mooi Pliocene   United States
(  Florida)
A sea urchin.
Heterobrissus lubellii[96] Sp. nov Valid Borghi & Stara Late Oligocene-early Miocene   Italy A heart urchin.
Holocrinus qingyanensis[97] Sp. nov Valid Stiller Middle Triassic (Anisian)   China A crinoid belonging to the family Holocrinidae. Announced in 2019; the final version of the article naming it was published in 2020.
Isocrinus (Chladocrinus) covuncoensis[98] Sp. nov Valid Lazo et al. Early Cretaceous (Valanginian) Agrio   Argentina A crinoid.
Isocrinus (Chladocrinus) pehuenchensis[98] Sp. nov Valid Lazo et al. Early Cretaceous (Hauterivian) Agrio   Argentina A crinoid.
Kolataster[80] Gen. et sp. nov Valid Blake, Gahn & Guensburg Ordovician (Sandian) Mifflin   United States
(  Illinois)
A starfish. Genus includes new species K. perplexus.
Lebenharticrinus quinvigintensis[88] Sp. nov Valid Gale Late Cretaceous (Cenomanian) Aït Lamine   Morocco A crinoid belonging to the group Articulata and the family Roveacrinidae
Lebenharticrinus zitti[88] Sp. nov Valid Gale Late Cretaceous (Cenomanian) Aït Lamine   Morocco A crinoid belonging to the group Articulata and the family Roveacrinidae
Linguaserra heidii[85] Sp. nov Valid Pabst & Herbig Carboniferous (Tournaisian to Serpukhovian) Genicera
Heiligenhaus
  Germany
  Spain
A member of Ophiocistioidea belonging to the family Linguaserridae.
Lovenia kerneri[77] Sp. nov Valid Osborn, Portell & Mooi Pliocene   United States
(  Florida)
A species of Lovenia.
Maestratina[99] Gen. et comb. nov Valid Forner i Valls & Saura Vilar Early Cretaceous (Aptian) Forcall Formation   Spain A sea urchin belonging to the group Arbacioida and the family Arbaciidae. The type species is "Cotteaudia" royoi Lambert (1928).
Magnasterella[100] Gen. et comb. nov In press Fraga & Vega Devonian (Frasnian) Ponta Grossa   Brazil A starfish belonging to the group Euaxosida; a new genus for "Echinasterella" darwini Clarke (1913).
Marginix notatus[100] Sp. nov In press Fraga & Vega Devonian (Frasnian) Ponta Grossa   Brazil A brittle star
Meperocrinus[79] Gen. et sp. nov Valid Scheffler Devonian Icla   Bolivia A crinoid belonging to the family Emperocrinidae. Genus includes new species M. angelina.
Mongoliacrinus[95] Gen. et sp. nov Valid Waters et al. Devonian (Famennian) Samnuuruul Formation   Mongolia A crinoid belonging to the family Acrocrinidae. Genus includes new species M. minjini. Announced in 2020; the final version of the article naming was published in 2021.
Odontaster tabaensis[81] Sp. nov Valid Ewin & Gale Early Cretaceous (Barremian) Taba   Morocco A starfish, a species of Odontaster.
Ophiacantha oceani[101] Sp. nov Valid Numberger-Thuy & Thuy Pliocene to Pleistocene (Piacenzian to Gelasian)   Italy A brittle star belonging to the family Ophiacanthidae.
Ophiomitrella floorae[102] Sp. nov Valid Thuy, Numberger-Thuy & Gale Late Cretaceous (Maastrichtian) Maastricht   Netherlands An ophiacanthid brittle star.
Paragonaster felli[103] Sp. nov Valid Stevens Early Cretaceous   New Zealand A starfish.
Paranaster[100] Gen. et comb. nov In press Fraga & Vega Devonian (Emsian) Ponta Grossa   Brazil A starfish belonging to the group Euaxosida. Genus includes new species P. crucis.
Pararchaeocrinus kiddi[78] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
  Canada
(  Ontario)
A diplobathrid crinoid.
Peckicrinus[104] Gen. et comb. nov Valid Gale in Gale et al. Early Cretaceous (Albian) Duck Creek   United States
(  Oklahoma
  Texas)
A crinoid belonging to the family Roveacrinidae. The type species is "Poecilocrinus" porcatus Peck (1943). Announced in 2020; the final version of the article naming it was published in 2021.
Pegoasterella[105] Gen. et sp. nov Valid Blake & Koniecki Late Ordovician Bromide
Guttenberg
  United States
(  Illinois
  Oklahoma)
A starfish belonging to the family Urasterellidae. Genus includes new species P. pompom.
Periglyptocrinus astricus[78] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
  Canada
(  Ontario)
A monobathrid crinoid.
Periglyptocrinus kevinbretti[78] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
  Canada
(  Ontario)
A monobathrid crinoid.
Periglyptocrinus mcdonaldi[78] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
  Canada
(  Ontario)
A monobathrid crinoid.
Periglyptocrinus silvosus[78] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
  Canada
(  Ontario)
A monobathrid crinoid.
Plotocrinus molineuxae[104] Sp. nov Valid Gale in Gale et al. Early Cretaceous (Albian) Goodland   United States
(  Texas)
A crinoid belonging to the family Roveacrinidae. Announced in 2020; the final version of the article naming it was published in 2021.
Plotocrinus rashallae[104] Sp. nov Valid Gale in Gale et al. Early Cretaceous (Albian) Goodland   France
  United States
(  Texas)
A crinoid belonging to the family Roveacrinidae. Announced in 2020; the final version of the article naming it was published in 2021.
Plotocrinus reidi[104] Sp. nov Valid Gale in Gale et al. Early Cretaceous (Albian) Kiamichi   United States
(  Texas)
A crinoid belonging to the family Roveacrinidae. Announced in 2020; the final version of the article naming it was published in 2021.
Psammaster[106] Gen. et comb. nov Valid Fau et al. Late Jurassic (Tithonian) Grès des Oies   France A starfish belonging to the group Forcipulatida. The type species is "Ophidiaster" davidsoni de Loriol & Pellat (1874).
Rhyncholampas meansi[77] Sp. nov Valid Osborn, Portell & Mooi Pleistocene   United States
(  Florida)
A sea urchin.
Roveacrinus gladius[88] Sp. nov Valid Gale Late Cretaceous (Cenomanian)

  Morocco
  Tunisia

A crinoid belonging to the group Articulata and the family Roveacrinidae
Roveacrinus morganae[104] Sp. nov Valid Gale in Gale et al. Early Cretaceous (Albian) Pawpaw   United States
(  Texas)
A crinoid belonging to the family Roveacrinidae. Announced in 2020; the final version of the article naming it was published in 2021.
Roveacrinus proteus[104] Sp. nov Valid Gale in Gale et al. Early Cretaceous (Albian) Pawpaw   United States
(  Texas)
A crinoid belonging to the family Roveacrinidae. Announced in 2020; the final version of the article naming it was published in 2021.
Roveacrinus solisoccasum[88] Sp. nov Valid Gale Early Cretaceous (Albian)

  Morocco
  United States
(  Texas)

A crinoid belonging to the group Articulata and the family Roveacrinidae
Schoenaster carterensis[107] Sp. nov Valid Harris, Ettensohn & Carnahan-Jarvis Carboniferous (Chesterian) Slade   United States
(  Kentucky)
A brittle star
Seifenia[108] Gen. et sp. nov Valid Müller & Hahn Early Devonian Seifen   Germany A member of Edrioasteroidea. The type species is S. ostara.
Spiracarneyella[109] Gen. et sp. nov Valid Sumrall & Phelps Ordovician (Katian) Point Pleasant   United States
(  Kentucky
  Ohio)
A carneyellid edrioasteroid. Genus includes new species S. florencei.
Streptoiocrinus[110] Gen. nov Valid Rozhnov Ordovician   Estonia
  Russia
(  Leningrad Oblast)
A crinoid belonging to the group Disparida.
Styracocrinus rimafera[88] Sp. nov Valid Gale Late Cretaceous (Cenomanian)

  Morocco
  Tunisia

A crinoid belonging to the group Articulata and the family Roveacrinidae
Styracocrinus thomasae[104] Sp. nov Valid Gale in Gale et al. Early Cretaceous (Albian) Goodland   United States
(  Texas)
A crinoid belonging to the family Roveacrinidae. Announced in 2020; the final version of the article naming it was published in 2021.
Tallinnicrinus[111] Gen. et sp. nov Valid Cole, Ausich & Wilson Ordovician (Hirnantian)   Estonia An anthracocrinid diplobathrid crinoid. Genus includes new species T. toomae.
Tollmannicrinus leidapoensis[97] Sp. nov Valid Stiller Middle Triassic (Anisian)   China A crinoid. Announced in 2019; the final version of the article naming it was published in 2020.
Tuberocrinus[79] Gen. et sp. nov Valid Scheffler Devonian Belén   Bolivia A crinoid belonging to the group Dimerocrinitacea. Genus includes new species T. lapazensis.
Vaquerosella perrillatae[112] Sp. nov Valid Martínez Melo & Alvarado Ortega Miocene San Ignacio   Mexico A sand dollar belonging to the family Echinarachniidae

ResearchEdit

  • A study on morphological diversification of echinoderms and evolutionary mechanisms underlying the establishment of echinoderm body plans during the early Paleozoic is published by Deline et al. (2020).[113]
  • A study on the locomotion of cornute stylophorans, based on data from a specimen of Phyllocystis crassimarginata from the Ordovician (Tremadocian) Saint-Chinian Formation (France), is published by Clark et al. (2020).[114]
  • A study on the speciation and dispersal of the diploporan blastozoans through the Ordovician period is published by Lam, Sheffield & Matzke (2020).[115]
  • A study on the evolutionary history of eublastoid blastozoans is published by Bauer (2020).[116]
  • A study on the anatomy and phylogenetic relationships of Eumorphocystis is published by Guensburg et al. (2020), who consider this taxon to be a blastozoan far removed from crinoids, contrary to the results of the study of Sheffield & Sumrall (2019).[117][118]
  • A study on the phylogeny of the crown group of Echinoidea, based on both phylogenomic and paleontological data, is published by Koch & Thompson (2020).[119]
  • A study on the structure of the arms and on probable locomotion strategies of Devonian brittle stars from the Hunsrück Slate (Germany) is published by Clark, Hutchinson & Briggs (2020).[120]

ConodontsEdit

New taxaEdit

Name Novelty Status Authors Age Type locality Country Notes Images
Ancyrognathus minjini[121] Sp. nov Valid Suttner et al. Late Devonian Baruunhuurai   Mongolia Announced in 2019; the final version of the article naming it was published in 2020.
Baltoniodus norrlandicus denticulatus[122] Subsp. nov Valid Dzik Ordovician (Darriwilian)   Poland Announced in 2019; the final version of the article naming it was published in 2020.
Belodina watsoni[123] Sp. nov Valid Zhen Ordovician (Darriwilian)   Australia
Bipennatus hemilevigatus[124] Sp. nov Valid Lu & Königshof Devonian (Eifelian) Beiliu   China Announced in 2019; the final version of the article naming it was published in 2020.
Bipennatus planus[124] Sp. nov Valid Lu & Königshof Devonian (Eifelian) Beiliu   China Announced in 2019; the final version of the article naming it was published in 2020.
Diplognathodus benderi[125] Sp. nov Valid Hu et al. Carboniferous (BashkirianMoscovian boundary)   China
Erraticodon neopatu[126] Sp. nov Valid Zhen in Zhen et al. Ordovician Willara   Australia Announced in 2020; the final version of the article naming it was published in 2021.
Gladigondolella laii[127] Sp. nov In press Chen in Chen et al. Early Triassic   Oman
Idiognathodus fengtingensis[128] Sp. nov Valid Qi et al. Carboniferous (KasimovianGzhelian boundary)   China
Idiognathodus luodianensis[128] Sp. nov Valid Qi et al. Carboniferous (Kasimovian–Gzhelian boundary)   China
Idiognathodus naqingensis[128] Sp. nov Valid Qi et al. Carboniferous (Kasimovian–Gzhelian boundary)   China
Idiognathodus naraoensis[128] Sp. nov Valid Qi et al. Carboniferous (Kasimovian–Gzhelian boundary)   China
Latericriodus guangnanensis[129] Sp. nov In press Lu & Valenzuela-Ríos in Lu et al. Devonian (Emsian) Daliantang   China A member of Prioniodontida belonging to the family Icriodontidae.
Misikella kolarae[130] Sp. nov Valid Karádi et al. Late Triassic   Hungary Announced in 2019; the final version of the article naming it was published in 2020.
Pachycladina rendona[131] Sp. nov In press Wu & Ji in Wu et al. Early Triassic   China An ellisonid conodont.
Paullella omanensis[127] Sp. nov In press Chen in Chen et al. Early Triassic   Croatia
  Oman
Polygnathus nalaiensis[124] Sp. nov Valid Lu & Königshof Devonian (Eifelian) Beiliu   China Announced in 2019; the final version of the article naming it was published in 2020.
Rossodus? boothiaensis[132] Sp. nov Valid Zhang Turner Cliffs   Canada
(  Nunavut)
Scalpellodus percivali[123] Sp. nov Valid Zhen Ordovician (Darriwilian)   Australia
Scythogondolella dolosa[133] Sp. nov Valid Bondarenko & Popov Early Triassic   Russia
(  Primorsky Krai)
Siphonodella leiosa[134] Sp. nov In press Souquet, Corradini & Girard Carboniferous (Tournaisian)   France
Streptognathodus nemyrovskae[128] Sp. nov Valid Qi et al. Carboniferous (Gzhelian)   China
Streptognathodus zhihaoi[128] Sp. nov Valid Qi et al. Carboniferous (Gzhelian)   China
Tortodus dodoensis[135] Sp. nov Valid Gouwy, Uyeno & McCracken Devonian (Givetian)   Canada Announced in 2019; the final version of the article naming it was published in 2020.
Trapezognathus pectinatus[122] Sp. nov Valid Dzik Ordovician (Darriwilian)   Poland Announced in 2019; the final version of the article naming it was published in 2020.
Zieglerodina petrea[136] Sp. nov Valid Hušková & Slavík Silurian/Devonian boundary Prague Synform   Czech Republic Announced in 2019; the final version of the article naming it was published in 2020.

ResearchEdit

FishesEdit

AmphibiansEdit

ReptilesEdit

SynapsidsEdit

Non-mammalian synapsidsEdit

New taxaEdit

Name Novelty Status Authors Age Type locality Country Notes Images
Agudotherium[139] Gen. et sp. nov Valid Stefanello et al. Late Triassic Candelária   Brazil A non-mammaliaform prozostrodontian cynodont. Genus includes new species A. gassenae.
Bohemiclavulus[140] Gen. et comb. nov Valid Spindler, Voigt & Fischer Carboniferous (Gzhelian) Slaný   Czech Republic A member of the family Edaphosauridae; a new genus for "Naosaurus" mirabilis Fritsch (1895). Announced in 2019; the final version of the article naming it was published in 2020.

 

Caodeyao[141] Gen. et sp. nov Valid Liu & Abdala Late Permian Naobaogou   China A therocephalian. Genus includes new species C. liuyufengi.  
Chiniquodon omaruruensis[142] Sp. nov Valid Mocke, Gaetano & Abdala Triassic Omingonde   Namibia
Dendromaia[143] Gen. et sp. nov Valid Maddin, Mann & Hebert Carboniferous   Canada
(  Nova Scotia)
A member of Varanopidae. Genus includes new species D. unamakiensis. Announced in 2019; the final version of the article naming it was published in 2020.
Etjoia[144] Gen. et sp. nov Valid Hendrickx et al. Triassic (Ladinian/Carnian) Omingonde   Namibia A traversodontid cynodont. Genus includes new species E. dentitransitus.  
Hypselohaptodus[145] Gen. et comb. nov Valid Spindler Permian (Cisuralian) Kenilworth   United Kingdom An early member of Sphenacodontia; a new genus for "Haptodus" grandis. Announced in 2019; the final version of the article naming it was published in 2020.
Inditherium[146] Gen. et sp. nov Valid Bhat, Ray & Datta Late Triassic Tiki   India A dromatheriid cynodont. Genus includes new species I. floris.
Kalaallitkigun[147] Gen. et sp. nov Valid Sulej et al. Late Triassic (Norian) Fleming Fjord   Greenland An early member of Mammaliaformes, possibly a member of Haramiyida. Genus includes new species K. jenkinsi.
Kataigidodon[148] Gen. et sp. nov Valid Kligman et al. Late Triassic Chinle   United States
(  Arizona)
A non-mammalian eucynodont. Genus includes new species K. venetus.
Kenomagnathus[149] Gen. et sp. nov Valid Spindler Carboniferous (late Pennsylvanian) Rock Lake Shale Mb, Stanton   United States
(  Kansas)
An early member of Sphenacodontia. The type species is K. scottae.

 

Martensius[150] Gen. et sp. nov Valid Berman et al. Permian (Artinskian) Tambach   Germany A member of Caseidae. The type species is M. bromackerensis.
Nshimbodon[151] Gen. et sp. nov Valid Huttenlocker & Sidor Late Permian Madumabisa Mudstone   Zambia A basal cynodont, probably a member of the family Charassognathidae. Genus includes new species N. muchingaensis.
Polonodon[152] Gen. et sp. nov Valid Sulej et al. Late Triassic (Carnian)   Poland A non-mammaliaform eucynodont. Genus includes new species P. woznikiensis. Announced in 2018; the final version of the article naming it was published in 2020.
Remigiomontanus[140] Gen. et sp. nov Valid Spindler, Voigt & Fischer CarboniferousPermian transition Saar–Nahe   Germany A member of the family Edaphosauridae. Genus includes new species R. robustus. Announced in 2019; the final version of the article naming it was published in 2020.
Rewaconodon indicus[146] Sp. nov Valid Bhat, Ray & Datta Late Triassic Tiki   India A dromatheriid cynodont.
Taoheodon[153] Gen. et sp. nov Valid Liu Late Permian Sunjiagou Formation   China A dicynodontoid dicynodont. Genus includes new species T. baizhijuni.
Theroteinus jenkinsi[154] Sp. nov Valid Whiteside & Duffin Late Triassic (Rhaetian)   United Kingdom A haramiyidan mammaliaform. Announced in 2020; the final version of the article naming it was published in 2021.
Tikiodon[146] Gen. et sp. nov Valid Bhat, Ray & Datta Late Triassic Tiki   India A mammaliamorph cynodont. Genus includes new species T. cromptoni.

ResearchEdit

  • A study on the evolution of the well-defined morphological regions of the vertebral column and of vertebral functional diversity in synapsids is published by Jones et al. (2020).[155]
  • A study aiming to determine the resting metabolic rates and the thermometabolic regimes (endothermy or ectothermy) in eight non-mammalian synapsids is published by Faure-Brac & Cubo (2020).[156]
  • A study on the shoulder musculature in extant Argentine black and white tegu and Virginia opossum, evaluating its implications for reconstructions of the shoulder musculature in non-mammalian synapsids, is published by Fahn-Lai, Biewener & Pierce (2020).[157]
  • A study aiming to determine whether a vicariance pattern can explain early synapsid evolution is published by Brikiatis (2020).[158]
  • Mann et al. (2020) reinterpret Carboniferous taxon Asaphestera platyris Steen (1934) from the Joggins locality (Nova Scotia, Canada) as the earliest unambiguous synapsid in the fossil record reported so far.[159]
  • A study on the long bone histology of varanopids from the lower Permian Richards Spur locality (Oklahoma, United States), evaluating its implications for the knowledge of the paleobiology of early synapsids, is published by Huttenlocker & Shelton (2020).[160]
  • Mann & Reisz (2020) report a new hyper-elongated neural spine of Echinerpeton intermedium from the Pennsylvanian-aged Sydney Mines Formation (Nova Scotia, Canada), indicating a wider distribution of hyper-elongation of vertebral neural spines in early synapsids than previously known.[161]
  • A study on the histology of vertebral centra of Edaphosaurus and Dimetrodon is published by Agliano, Sander & Wintrich (2020).[162]
  • A study on the anatomy of the holotype skull of Tetraceratops insignis and on the phylogenetic relationships of this taxon is published by Spindler (2020).[163]
  • A study comparing the oxygen and carbon stable isotope compositions of tooth and bone apatite of Endothiodon and Tropidostoma, and aiming to determine the ecology and diet of Endothiodon, is published by Rey et al. (2020).[164]
  • Whitney & Sidor (2020) compare the frequency and patterns of growth marks in tusks of Lystrosaurus from polar Antarctica and from the non-polar Karoo Basin of South Africa living ~250 Mya, and report evidence of prolonged stress interpreted as indicative of torpor in polar specimens. This could be the oldest evidence of a hibernation-like state in a vertebrate animal and indicates that torpor arose in vertebrates before mammals and dinosaurs evolved.[165][166][167]
  • A study on the skull length and growth patterns of the four South African Lystrosaurus species (L. maccaigi, L. curvatus, L. murrayi and L. declivis), aiming to determine whether the end-Permian mass extinction caused the Lilliput effect in Lystrosaurus species from the Karoo Basin and to infer their lifestyle, is published by Botha (2020).[168]
  • A study aiming to examine the basis for claims that the genus Lystrosaurus is a disaster taxon is published by Modesto (2020).[169]
  • A study on tooth serrations in a Permian gorgonopsian from Zambia, identifying the occurrence of denticles and interdental folds forming the cutting edges in the teeth which were previously thought to be unique to theropod dinosaurs and some other archosaurs, is published by Whitney et al. (2020).[170]
  • Redescription of the skull of Lycosuchus vanderrieti, providing new information on the endocranial anatomy of this taxon, is published by Pusch et al. (2020).[171]
  • A review of the fossil record of Triassic non-mammaliaform cynodonts from western Gondwana and its importance for the knowledge of the origin of mammals, focusing on taxa known from Argentina, is published by Abdala et al. (2020).[172]
  • A study on the tooth replacement in Galesaurus planiceps is published by Norton et al. (2020).[173]
  • The third specimen of Prozostrodon brasiliensis, providing novel information on the anatomy of this taxon, is described by Kerber et al. (2020).[174]

MammalsEdit

Other animalsEdit

New taxaEdit

Name Novelty Status Authors Age Type locality Country Notes Images
Aladraco kirchhainensis[175] Sp. nov Valid Geyer & Malinky Cambrian (Miaolingian) Delitzsch–Torgau–Doberlug   Germany A member of Hyolitha. Announced in 2019; the final version of the article naming it was published in 2020.
Armilimax[176] Gen. et sp. nov Valid Kimmig & Selden Cambrian (Wuliuan) Spence Shale   United States
(  Utah)
A shell-bearing animal of uncertain phylogenetic placement. Genus includes new species A. pauljamisoni. Announced in 2020; the final version of the article naming it was published in 2021.
Avitograptus akidomorphus[177] Sp. nov Valid Muir et al. Ordovician (Hirnantian) Wenchang   China A graptolite.
Bizeticyathus[178] Gen. et comb. nov Valid Kruse & Debrenne Cambrian   Australia A member of Archaeocyatha. Genus includes B. carmen (Carmen & Carmen, 1937).
Canadiella[179] Gen. et comb. nov Valid Skovsted et al. Cambrian Mural
Rosella
  Canada A tommotiid belonging to the family Kennardiidae. The type species is "Lapworthella" filigrana Conway Morris & Fritz (1984).
Collinsovermis[180] Gen. et sp. nov Valid Caron & Aria Cambrian (Wuliuan) Burgess Shale   Canada
(  British Columbia)
A luolishaniid lobopodian. Genus includes new species C. monstruosus.  
Cordaticaris[181] Gen. et sp. nov In press Sun, Zeng & Zhao Cambrian (Drumian) Zhangxia   China A member of Radiodonta belonging to the family Hurdiidae. Genus includes new species C. striatus.  
Cornulites baranovi[182] Sp. nov Valid Vinn & Toom Silurian (Přidoli) Ohesaare   Estonia A member of Cornulitida.
Dahescolex[183] Gen. et sp. nov Valid Shao et al. Cambrian (Fortunian) Kuanchuanpu   China An animal which might be a stem-lineage derivative of Scalidophora. Genus includes new species D. kuanchuanpuensis. Announced in 2019; the final version of the article naming it was published in 2020.
Dakorhachis[184] Gen. et sp. nov Valid Conway Morris et al. Cambrian (Guzhangian) Weeks   United States
(  Utah)
An animal of uncertain phylogenetic placement, possibly a stem-group member of the Gnathifera. Genus includes new species D. thambus.
Dannychaeta[185] Gen. et sp. nov Valid Chen et al. Early Cambrian Canglangpu   China A crown annelid, probably a relative of the families Magelonidae and Oweniidae. Genus includes new species D. tucolus.
Degeletticyathus dailyi[178] Sp. nov Valid Kruse & Debrenne Cambrian   Australia A member of Archaeocyatha.
"Dictyonema" khadijae[186] Sp. nov In press Gutiérrez Marco, Muir & Mitchell Late Ordovician   Morocco A graptolite
"Dictyonema" villasi[186] Sp. nov In press Gutiérrez Marco, Muir & Mitchell Late Ordovician   Morocco A graptolite
Gyaltsenglossus[187] Gen. et sp. nov Valid Nanglu, Caron & Cameron Cambrian Stephen   Canada
(  British Columbia)
A member of the stem group of Hemichordata. The type species is G. senis.
Herpetogaster haiyanensis[188] Sp. nov Yang et al. Cambrian Stage 3 Chiungchussu   China
Hillaecyathus[178] Gen. et comb. nov Valid Kruse & Debrenne Cambrian   Australia A member of Archaeocyatha. Genus includes H. contractus (Hill, 1965).
Ikaria[189] Gen. et sp. nov Valid Evans et al. Ediacaran   Australia An early bilaterian. Genus includes new species I. wariootia.  
Korenograptus selectus[190] Sp. nov In press Chen in Chen et al. Late Ordovician   Myanmar A graptolite
Kylinxia[191] Gen. et sp. nov Valid Zeng, Zhao & Huang in Zeng et al. Early Cambrian   China A transitional euarthropod that bridges radiodonts and true arthropods. Genus includes new species K. zhangi.  
Lenzograptus[192] Nom. nov In press Loydell Silurian (Ludlow)   Canada
(  Yukon)
A graptolite; a replacement name for Lenzia Rickards & Wright (1999).
Longxiantheca[193] Gen. et sp. nov Valid Li in Li et al. Cambrian Stages 34 Xinji   China A member of Hyolitha belonging to the group Orthothecida. The type species is L. mira.
Maxdebrennius[178] Gen. et sp. nov Valid Kruse & Debrenne Cambrian   Australia A member of Archaeocyatha. Genus includes new species M. mimus.
Microconchus cravenensis[194] Sp. nov Valid Zatoń & Mundy Carboniferous (Mississippian) Cracoe Limestone
Malham
  United Kingdom A member of Microconchida.
Microconchus maya[195] Sp. nov Valid Heredia-Jiménez et al. Permian (Roadian) Paso Hondo   Mexico A member of Microconchida.
Monograptus hamulus[196] Sp. nov Valid Saparin et al. Silurian (Llandovery) Co To   Vietnam A graptolite
Neodiplograptus mandalayensis[190] Sp. nov In press Chen in Chen et al. Late Ordovician   Myanmar A graptolite
Nochoroicyathus ordinarius[178] Sp. nov Valid Kruse & Debrenne Cambrian   Australia A member of Archaeocyatha.
Nochoroicyathus sublimus[178] Sp. nov Valid Kruse & Debrenne Cambrian   Australia A member of Archaeocyatha.
Paranacyathus arboreus[178] Sp. nov Valid Kruse & Debrenne Cambrian   Australia A member of Archaeocyatha.
Pontagrossia[197] Gen. et sp. nov Valid Chahud & Fairchild Devonian (Emsian) Ponta Grossa   Brazil An invertebrate of uncertain phylogenetic placement. The type species is P. reticulata.
Porocoscinus eurys[178] Sp. nov Valid Kruse & Debrenne Cambrian   Australia A member of Archaeocyatha.
Pristiograptus paradoxus[198] Sp. nov In press Loydell & Walasek Silurian (Telychian)   Sweden A graptolite
Stictocyathus[178] Gen. et sp. nov Valid Kruse & Debrenne Cambrian   Australia A member of Archaeocyatha. Genus includes new species S. cavus.
Subtumulocyathellus satus[178] Sp. nov Valid Kruse & Debrenne Cambrian   Australia A member of Archaeocyatha.
Torquigraptus loveridgei[198] Sp. nov In press Loydell & Walasek Silurian (Telychian)   Sweden A graptolite
Torquigraptus wilsoni[199] Sp. nov Valid Loydell Silurian (Telychian)   United Kingdom A graptolite
Toscanisoma[200] Gen. et 2 sp. nov Valid Wendt Late Triassic (Carnian) San Cassiano   Italy A member of Ascidiacea. The type species is T. multipartitum; genus also includes T. triplicatum.
Utahscolex[201] Gen. et comb. nov Valid Whitaker et al. Cambrian (Wuliuan) Spence   United States
(  Utah)
A palaeoscolecid; a new genus for "Palaeoscolex" ratcliffei Robison (1969)

Vermilituus[202]

Gen. et sp. nov

Valid

Li et al.

Cambrian Stage 3

Chiungchussu

  China

A small, encrusting tubular protostomian, preserved attached to a mobile host (Vetulicola). The type species is V. gregarius.

Wronacyathus[178] Gen. et sp. nov Valid Kruse & Debrenne Cambrian   Australia A member of Archaeocyatha. Genus includes new species W. ayuzhui.
Zhongpingscolex[203] Gen. et sp. nov Valid Shao et al. Cambrian (Fortunian) Kuanchuanpu   China A scalidophoran, probably a stem-group kinorhynch. Genus includes new species Z. qinensis.
Zuunia[204] Gen. et sp. nov Yang et al. Late Ediacaran Zuun-Arts   Mongolia A cloudinid. The type species is Z. chimidtsereni.

ResearchEdit

  • A study on the taphonomy of three-dimensionally preserved specimens of Charnia from the White Sea, and on their implications for the knowledge of rangeomorph feeding and physiology, is published by Butterfield (2020).[205]
  • A study on the morphology and likely mode of life of Beothukis mistakensis is published by McIlroy et al. (2020).[206]
  • Evidence of preservation of internal anatomical structures in cloudinomorph fossils from the Ediacaran Wood Canyon Formation (Nevada, United States) is reported by Schiffbauer et al. (2020), who interpret these structures as probable digestive tracts, and evaluate their implications for the knowledge of the phylogenetic relationships of cloudinomorphs.[207]
  • Fossils of Dickinsonia identical with D. tenuis from the Ediacara Member of the Rawnsley Quartzite in South Australia are reported from the late Ediacaran Maihar Sandstone of the Bhander Group (India; found in the roof of Auditorium Cave at Bhimbetka rock shelters) by Retallack et al. (2020), who interpret this finding as confirming the assembly of Gondwana by 550 Ma.[208]
  • New specimens of Mafangscolex, providing the first detailed information on the anatomy of a proboscis in palaeoscolecids, are described from the Cambrian Xiaoshiba Lagerstätte (Kunming, China) by Yang et al. (2020).[209]
  • A study on the type material of a putative Ordovician annelid Haileyia adhaerens is published by Muir & Botting (2020) who find no evidence indicating that H. adhaerens is an annelid, or even a recognizable fossil.[210]
  • New hyolithid specimens preserving helens and interior soft tissues, including muscle scars and digestive tracts, are described from the Guanshan Biota (Cambrian Stage 4; Yunnan, China) by Liu et al. (2020).[211]
  • Redescription of Acosmia maotiania based on data from new and historic fossil material is published by Howard et al. (2020), who interpret this animal as a stem group ecdysozoan.[212]
  • Two types of microscopic reticulate cuticular patterns are described in Cambrian stem-group scalidophorans from the Kuanchuanpu Formation (China) by Wang et al. (2020), who argue that these cuticular networks replicate the cell boundaries of the epidermis.[213]
  • A study on the anatomy and phylogenetic relationships of Facivermis yunnanicus, based on data from the holotype and new specimens, is published by Howard et al. (2020), who consider this species to be a luolishaniid lobopodian.[214]
  • New type of a compound eye is identified in specimens of "Anomalocaris" briggsi from the Cambrian Emu Bay Shale (Australia) by Paterson, Edgecombe & García-Bellido (2020), who interpret the eye morphology of "A." briggsi as suggestive of this animal being a mesopelagic species, capable of inhabiting depths of several hundred meters, and likely using its acute, light-sensitive eyes to detect plankton in dim down-welling light.[215]
  • An isolated frontal appendage of a miniature hurdiid radiodont (less than half the size of the next smallest radiodont frontal appendage discovered so far) is described from the Ordovician (Tremadocian) Dol-cyn-Afon Formation (Wales, United Kingdom) by Pates et al. (2020), representing the first radiodont reported from the UK, the first record of this group from the palaeocontinent Avalonia, and the first from an environment dominated by sponges rather than euarthropods.[216]
  • Barrios-de Pedro, Osuna & Buscalioni (2020) report the discovery of trematode and nematode eggs in coprolites from the Barremian Las Hoyas fossil site (Spain).[217]

ForaminiferaEdit

Name Novelty Status Authors Age Type locality Country Notes Images

Carseyella[218]

Gen. et sp. nov

Valid

Schlagintweit

Early Cretaceous (Aptian and Albian)

  Algeria
  Mexico
  United States
  Venezuela

A new genus for "Orbitolina" walnutensis Carsey (1926) and "Dictyoconus" algerianus Cherchi & Schroeder (1982). Announced in 2020; the final version of the article naming it was published in 2021.

Other organismsEdit

New taxaEdit

Name Novelty Status Authors Age Type locality Country Notes Images
Annularidens[219] Gen. et sp. nov In press Ouyang et al. Ediacaran Doushantuo   China An acritarch. Genus includes new species A. inconditus.
Anqiutrichoides[220] Gen. et sp. nov Valid Li et al. Tonian Shiwangzhuang   China A multicellular organism of uncertain phylogenetic placement, possibly an eukaryotic alga. Genus includes new species A. constrictus.
Aphralysia anfracta[221] Sp. nov Valid Kopaska-Merkel, Haywick & Keyes Carboniferous (Serpukhovian)   United States
(  Alabama)
A tubular calcitic microfossil of uncertain affinities
Arborea denticulata[222] Sp. nov Valid Wang et al. Ediacaran Dengying   China A frondose fossil of uncertain affinities.
Archaeosporites[223] Gen. et sp. nov Valid Harper et al. Early Devonian Rhynie chert   United Kingdom A fungus belonging to the group Archaeosporaceae. Genus includes new species A. rhyniensis.
Asteridium tubulus[224] Sp. nov Valid Yin et al. Cambrian Stage 4   China An organic-walled microfossil. Announced in 2020; the final version of the article naming it was published in 2021.
Attenborites[225] Gen. et sp. nov Valid Droser et al. Ediacaran Rawnsley   Australia An organism of uncertain phylogenetic placement, described on the basis of a well-defined irregular oval to circular fossil. Genus includes new species A. janeae. Announced in 2018; the final version of the article naming it was published in 2020.
Bispinosphaera vacua[219] Sp. nov In press Ouyang et al. Ediacaran Doushantuo   China An acritarch.
Brijax[226] Gen. et sp. nov In press Krings & Harper Devonian Rhynie chert   United Kingdom A probable chytrid fungus. Genus includes new species B. amictus.
Convolutubus[227] Gen. et sp. nov Valid Vaziri et al. Ediacaran   Iran An organic-walled tubular organism. Genus includes new species C. dargazinensis.
Corrugasphaera perfecta[224] Sp. nov Valid Yin et al. Cambrian Stage 4   China An organic-walled microfossil. Announced in 2020; the final version of the article naming it was published in 2021.
Crassimembrana[219] Gen. et 2 sp. nov In press Ouyang et al. Ediacaran Doushantuo   China An acritarch. Genus includes new species C. crispans and C. multitunica.
Cyanosarcinopsis[228] Gen. et sp. nov Valid Calça & Fairchild Permian Assistência   Brazil A chroococcacean. Genus includes new species C. hachiroi.
Cyathochitina brussai[229] Sp. nov In press De la Puente, Paris & Vaccari Ordovician (Hirnantian) and Silurian (Rhuddanian) Brutia
Clemville
Salar del Rincón
Soom Shale
  Argentina
  Belgium
  Canada
  Chad
  Mauritania
  South Africa
  Iran?
  Jordan?
  Libya?
A chitinozoan.
Cyathochitina lariensis[229] Sp. nov In press De la Puente, Paris & Vaccari Latest Ordovician–earliest Silurian Salar del Rincón   Argentina A chitinozoan.
Cyathochitina punaensis[229] Sp. nov In press De la Puente, Paris & Vaccari Latest Ordovician–earliest Silurian Salar del Rincón   Argentina A chitinozoan.
Cymatiosphaera spina[224] Sp. nov Valid Yin et al. Cambrian Stage 4   China An organic-walled microfossil. Announced in 2020; the final version of the article naming it was published in 2021.
Dichothallus[230] Gen. et sp. nov In press Naugolnykh Permian (early Kungurian) Philippovian   Russia A brown alga of uncertain phylogenetic placement. Genus includes new species D. divaricatus.
Dictyocyrillium[231] Gen. et sp. nov In press Martí Mus, Moczydłowska & Knoll Tonian Elbobreen   Norway An vase-shaped microfossil. Genus includes new species D. erythron.
Distosphaera jinguadunensis[219] Sp. nov In press Ouyang et al. Ediacaran Doushantuo   China An acritarch.
Dongyesphaera[232] Gen. et sp. nov In press Yin et al. Paleoproterozoic Tianpengnao   China An acritarch. Genus includes new species D. tenuispina.
Eoentophysalis hutuoensis[232] Sp. nov In press Yin et al. Paleoproterozoic Hebiancun   China A cyanobacterium belonging to the family Entophysalidaceae
Eosolena magna[220] Sp. nov Valid Li et al. Tonian Shiwangzhuang   China A multicellular, eukaryotic alga.
Flabellophyton obesum[233] Sp. nov Valid Wan et al. Ediacaran   China An organism of uncertain phylogenetic placement, possibly an alga.
Flabellophyton stupendum[234] Sp. nov In press Xiao et al. Ediacaran Rawnsley Quartzite   Australia Probably a benthic macroalga.
Flabellophyton typicum[233] Sp. nov Valid Wan et al. Ediacaran   China An organism of uncertain phylogenetic placement, possibly an alga.
Liulingjitaenia irregularis[234] Sp. nov In press Xiao et al. Ediacaran Rawnsley Quartzite   Australia Probably a benthic macroalga.
Mengeosphaera matryoshkaformis[219] Sp. nov In press Ouyang et al. Ediacaran Doushantuo   China An acritarch.
Nepia[235] Gen. et sp. nov Valid Golubkova in Golubkova & Kochnev Ediacaran   Russia An oscillatorian cyanobacteria. Genus includes new species N. calicina.
Noffkarkys[236] Gen. et sp. nov Valid Retallack & Broz Ediacaran and Cambrian Arumbera
Flathead
Grant Bluff
Jodhpur
Synalds
  Australia
  India
  United Kingdom
  United States
(  Montana)
An organism of uncertain phylogenetic placement, a member of the family Charniidae. Genus includes new species N. storaaslii. Announced in 2020; the final version of the article naming it was published in 2021.  
Obamus[237] Gen. et sp. nov Valid Dzaugis et al. Ediacaran Rawnsley   Australia A torus-shaped organism, similar in gross morphology to some poriferans and benthic cnidarians. Genus includes new species O. coronatus. Announced in 2018; the final version of the article naming it was published in 2020.  
Ophiocordyceps dominicanus[238] Sp. nov Valid Poinar & Vega Eocene or Miocene Dominican amber   Dominican Republic A fungus, a species of Ophiocordyceps. Announced in 2019; the final version of the article naming it was published in 2020.
Palaeomycus[239] Gen. et sp. nov Valid Poinar Late Cretaceous (Cenomanian) Burmese amber   Myanmar A fungus described on the basis of pycnidia. Genus includes new species P. epallelus. Announced in 2018; the final version of the article naming it was published in 2020.
Pararenicola gejiazhuangensis[220] Sp. nov Valid Li et al. Tonian Shiwangzhuang   China A coenocytic alga.
Patagonifilum[240] Gen. et sp. nov In press Massini et al. Late Jurassic La Matilde   Argentina A cyanobacterium. Genus includes new species P. jurassicum.
Plagasphaera[224] Gen. et sp. nov Valid Yin et al. Cambrian Stage 4   China An organic-walled microfossil. Genus includes new species P. balangensis. Announced in 2020; the final version of the article naming it was published in 2021.
Polycephalomyces baltica[238] Sp. nov Valid Poinar & Vega Eocene Baltic amber   Russia
(  Kaliningrad Oblast)
A fungus belonging to the family Ophiocordycipitaceae. Announced in 2019; the final version of the article naming it was published in 2020.
Proaulopora ordosia[241] Sp. nov In press Liu et al. Ordovician Ordos Basin   China A member of Nostocales.
Protoarenicola baishicunensis[220] Sp. nov Valid Li et al. Tonian Shiwangzhuang   China A coenocytic alga.
Protoarenicola shijiacunensis[220] Sp. nov Valid Li et al. Tonian Shiwangzhuang   China A coenocytic alga.
Protographum[242] Gen. et sp. nov Valid Le Renard et al. Early Cretaceous Potomac   United States
(  Virginia)
A fungus belonging or related to the family Aulographaceae. Genus includes new species P. luttrellii.
Pterospermella vinctusa[224] Sp. nov Valid Yin et al. Cambrian Stage 4   China An organic-walled microfossil. Announced in 2020; the final version of the article naming it was published in 2021.
Ramochitina deynouxi[229] Sp. nov In press De la Puente, Paris & Vaccari Latest Ordovician–earliest Silurian Salar del Rincón   Argentina
  Mauritania
A chitinozoan.
Sinosabellidites huangshanensis[220] Sp. nov Valid Li et al. Tonian Shiwangzhuang   China A coenocytic alga.
Spinachitina titae[229] Sp. nov In press De la Puente, Paris & Vaccari Latest Ordovician–earliest Silurian Salar del Rincón   Argentina A chitinozoan.
Spiroplasma burmanica[243] Gen. et sp. nov Valid Poinar Cretaceous (Albian-Cenomanian) Burmese amber   Myanmar A bacterium belonging to the group Mollicutes, a species of Spiroplasma.
Stomiopeltites shangcunicus[244] Sp. nov Valid Maslova & Tobias in Maslova et al. Oligocene Shangcun   China A fungus belonging to the family Micropeltidaceae. Announced in 2020; the final version of the article naming it was published in 2021.
Triskelia[245] Gen. et sp. nov Valid Strullu-Derrien et al. Devonian Rhynie Chert   United Kingdom An organism of uncertain phylogenetic placement, possibly a green alga[245] or a fungus.[246] Genus includes new species T. scotlandica. Announced in 2020; the final version of the article naming it was published in 2021.
Windipila wimmervoecksii[247] Sp. nov Valid Krings & Harper Early Devonian Windyfield   United Kingdom A fungal reproductive unit. Announced in 2019; the final version of the article naming it was published in 2020.

ResearchEdit

  • A study on fossilized biopolymers in 3.5–3.3 Ga microbial mats from the Barberton Greenstone Belt (South Africa) is published by Hickman-Lewis, Westall & Cavalazzi (2020), who interpret their findings as indicating that Bacteria and Archaea flourished together in Earth's earliest ecosystems.[248]
  • Putative ciliate fossils from the Cryogenian Taishir Formation (Tsagaan Olom Group, Zavkhan Terrane, Mongolia) are reinterpreted as more likely to be algal reproductive structures by Cohen, Vizcaíno & Anderson (2020), who also report the first occurrence of these fossils in the earliest Ediacaran Ol Formation.[249]
  • The discovery of fungal fossils in a 810 to 715 million year old dolomitic shale from the Mbuji-Mayi Supergroup (Democratic Republic of the Congo) is reported by Bonneville et al. (2020), representing the oldest, molecularly identified remains of Fungi reported so far.[250]
  • Specimens of Palaeopascichnus linearis living before the Gaskiers glaciation are described from marine strata within the Rocky Harbour Formation by Liu & Tindal (2020), representing the oldest documented macrofossils from the Ediacaran successions of Newfoundland reported so far.[251]
  • A study on the developmental biology and phylogenetic relationships of Helicoforamina wenganica is published by Yin et al. (2020).[252]
  • A study on the morphology and affinities of a putative early sponge Namapoikia rietoogensis is published by Mehra et al. (2020), who argue that Namapoikia lacked the physical characteristics expected of an animal.[253]
  • A study on the morphology and inner ultrastructure of exceptionally preserved chitinozoan specimens from the Ordovician of Estonia, the United States and Russia is published by Liang et al. (2020), who interpret their findings as evidence of a protist affinity of chitinozoans.[254]

Trace fossilsEdit

  • A study on patterns of ecosystem engineering behaviors across the Permian-Triassic boundary, as indicated by data from trace fossils, and on their possible impact on ecosystem recovery in the benthic environment in the aftermath of the Permian–Triassic extinction event is published by Cribb & Bottjer (2020).[255]
  • New fossil tracks, probably produced by a pterygote insect, are described from the Upper Jurassic-Lower Cretaceous Botucatu Formation (Brazil) by Peixoto et al. (2020), who name a new ichnotaxon Paleohelcura araraquarensis, and evaluate the implications of this finding for the knowledge of ecological relationships within the Botucatu paleodesert.[256]
  • A new assemblage of nests produced by social insects is described from the Brushy Basin Member of the Upper Jurassic Morrison Formation (Utah, United States) by Smith, Loewen & Kirkland (2020), who name a new ichnotaxon Eopolis ekdalei.[257]
  • New tetrapod trackways are described from the Tapinocephalus Assemblage Zone of the South African Karoo Basin by Cisneros et al. (2020), who interpret these tracks as produced by small amphibians, and consider them to be evidence that the diversity of Guadalupian amphibians of the Karoo Basin was greater than indicated by body fossils alone.[258]
  • Mujal & Schoch (2020) describe amphibian tracks from the Middle Triassic Erfurt Formation (Germany, probably produced by capitosaurid temnospondyls, and evaluate the implications of this finding for the knowledge of the locomotion and habitats of temnospondyls.[259]
  • Fossil tracks likely produced by early amniotes are described from the Carboniferous (Pennsylvanian) Manakacha Formation (Arizona, United States) by Rowland, Caputo & Jensen (2020), who interpret these tracks as evidence of early adaptation of amniotes to eolian dunefield deserts, as well as the first documented occurrence of a lateral-sequence gait in the pre-Miocene tetrapod fossil record.[260]
  • Revision of Pachypes-like footprints from the CisuralianGuadalupian of Europe and North America is published by Marchetti et al. (2020), who date the earliest known occurrence of Pachypes to the Artinskian, interpret the footprints belonging to the ichnospecies Pachypes ollieri as produced by nycteroleter pareiasauromorphs, and argue that the earliest occurrences of pareiasauromorph footprints precede the earliest occurrence of this group in the skeletal record by at least 10 million years.[261]
  • The first known fossil example of an iguana nesting burrow is reported from the Pleistocene Grotto Beach Formation (The Bahamas) by Martin et al. (2020).[262]
  • Fossil tracks possibly produced by a monjurosuchid-like choristoderan are described from the Albian Daegu Formation (South Korea) by Lee, Kong & Jung (2020), who attempt to determine the trackmaker's locomotory posture on land, and name a new ichnotaxon Novapes ulsanensis.[263]
  • New Early Triassic archosauriform track assemblage is described from the Gardetta Plateau (Western Alps, Italy) by Petti et al. (2020), who interpret this finding as evidence of the presence of archosauriforms at low latitudes soon after the Permian–Triassic extinction event, and name a new ichnotaxon Isochirotherium gardettensis.[264]
  • Fossil tracks produced by large crocodylomorphs, possibly moving bipedally, are described from the Lower Cretaceous Jinju Formation (South Korea) by Kim et al. (2020), who name a new ichnotaxon Batrachopus grandis.[265]
  • The first probable deinonychosaur (likely troodontid) tracks from Canada are described from the Campanian Wapiti Formation (Alberta) by Enriquez et al. (2020).[266]
  • Three sauropod trackways, probably produced by members of Titanosauriformes, are described from the Middle Jurassic (Bathonian) of the Castelbouc cave (France) by Moreau et al. (2020), who name a new ichnotaxon Occitanopodus gandi.[267]
  • New dinosaur tracks, including tracks representing the ichnogenus Deltapodus (probably produced by stegosaurians), are described from the Middle Jurassic of the Isle of Skye (Scotland, United Kingdom) by dePolo et al. (2020), expanding known diversity of dinosaur tracks from this locality.[268]
  • A review of the Late Cretaceous dinosaur tracksites of Bolivia is published by Meyer et al. (2020), who describe new dinosaur tracksites from the Chuquisaca and Potosi departments, and report parallel trackways of subadult ankylosaurs interpreted as evidence of social behavior amongst these dinosaurs.[269]
  • A study on Pleistocene bird tracks from the Cape south coast of South Africa is published by Helm et al. (2020), who report six tracksites with tracks produced by large birds, possibly indicating the existence of large Pleistocene forms of extant bird taxa.[270]
  • Mazin & Pouech (2020) describe non-pterodactyloid pterosaur tracks from the ichnological site known as "the Pterosaur Beach of Crayssac" (Tithonian; south-western France), evaluate the implications of these tracks for the knowledge of the terrestrial capabilities of non-pterodactyloid pterosaurs, and name a new ichnogenus Rhamphichnus.[271]
  • Dinosaur and synapsid tracks are described from the Pliensbachian-Toarcian of the northern main Karoo Basin (South Africa) by Bordy et al. (2020), who interpret these tracks as evidence that dinosaurs and synapsids were among the last inhabitants of the main Karoo Basin some 183 million years ago, and name a new ichnotaxon Afrodelatorrichnus ellenbergeri (likely of ornithischian affinity).[272]
  • New complex burrow system produced by geomyid rodents is described from the Oligocene Chilapa Formation (Mexico) by Guerrero-Arenas, Jiménez-Hidalgo & Genise (2020), who name a new ichnotaxon Yaviichnus iniyooensis, and interpret the complexity of these burrows as probable evidence of some degree of gregariousness of their producers.[273]

History of life in generalEdit

  • Bobrovskiy et al. (2020) and van Maldegem et al. (2020) argue that putative sponge biomarkers can be generated from algal sterols, and interpret their findings as undermining the interpretation of biomarkers found in Precambrian rocks posited as evidence of existence of animals before the latest Ediacaran.[274][275]
  • Liu & Dunn (2020), describe filamentous organic structures preserved among frond-dominated fossil assemblages from the Ediacaran of Newfoundland (Canada), including filaments that appear to directly connect individual specimens of one rangeomorph taxon, and interpret this finding as possible evidence that Ediacaran frondose taxa were clonal.[276]
  • A study on the age of the Ediacaran biota from the Conception and St. John's Groups at Mistaken Point Ecological Reserve (Newfoundland, Canada) is published by Matthews et al. (2020).[277]
  • Approximately 563-million-year-old Ediacaran biota is reported from the Itajaí Basin (Brazil) by Becker-Kerber et al. (2020), representing the first record of Ediacaran macrofossils from Gondwana in deposits of similar age to the Avalon biota.[278]
  • An Ediacaran Lagerstätte with phosphatized animal-like eggs, embryos, acritarchs and cyanobacteria is reported from the Portfjeld Formation (Peary Land, Greenland) by Willman et al. (2020), representing the first record of a Doushantuo type preservation of fossils (with diagenetic phosphate replacement of originally organic material) from Laurentia reported so far.[279]
  • A study on biomarkers from Ediacaran sediments in the White Sea area is published by Bobrovskiy et al. (2020), who interpret their findings as indicating that eukaryotic algae were abundant among the food sources available for the Ediacaran biota.[280]
  • A study aiming to quantify changes of regional-scale diversity in marine fossils across time and space throughout the Phanerozoic is published by Close et al. (2020).[281]
  • A study on the structure of the Phanerozoic fossil record, aiming to determine relative impacts of extinctions and evolutionary radiations on the co-occurrence of species throughout the Phanerozoic, is published by Hoyal Cuthill, Guttenberg & Budd (2020), who argue that their findings refute any direct causal relationship between the proportionally most comparable mass radiations and extinctions.[282]
  • A study on the timing of known diversification and extinction events from Cambrian to Triassic, based on data from 11,000 marine fossil species, is published by Fan et al. (2020).[283]
  • The discovery of a new, exceptionally-preserved Cambrian biota, with fossils belonging to multiple phyla, is reported from the Guzhangian Longha Formation (Yunnan, China) by Peng et al. (2020).[284]
  • A study on changes in body size in skeletal animals from the Siberian Platform through the early Cambrian is published by Zhuravlev & Wood (2020).[285]
  • A study on the relationship between body size and extinction risk in the marine fossil record across the past 485 million years is published by Payne & Heim (2020).[286]
  • A study on the diversification rates of Ordovician animals living on hard substrates, aiming to determine when they experienced their greatest origination rates, is published by Franeck & Liow (2020).[287]
  • New information on the biotic composition of the Silurian Waukesha Lagerstätte (Wisconsin, United States) is presented by Wendruff et al. (2020), who report a biodiversity far richer than previously reported, and explore the taphonomic history of the fossils of this biota.[288]
  • A study on the diversity dynamics of the marine brachiopods, bivalves and gastropods throughout the Late Palaeozoic Ice Age is published by Seuss, Roden & Kocsis (2020).[289]
  • A study comparing the chemistry of fossil soft tissues of invertebrates and vertebrates from the Carboniferous Mazon Creek fossil beds (Illinois, United States) is published by McCoy et al. (2020), who report Tullimonstrum gregarium as grouping with vertebrates in their analysis.[290]
  • A study on the ages of known early–middle Permian tetrapod-bearing geological formations, as indicated by Bayesian tip dating methods, is published by Brocklehurst (2020), who interprets his findings as supporting the occurrence of the Olson's Extinction.[291]
  • A study on global infaunal response to the Permian–Triassic extinction event, as indicated by data from trace fossils, is published by Luo et al. (2020).[292]
  • A study on changes of marine latitudinal diversity gradient caused by the Permian–Triassic mass extinction is published by Song et al. (2020).[293]
  • A study on the latitudinal variation in Late Triassic tetrapod diversity, aiming to determine the relationship between latitudinal species richness and palaeoclimatic conditions, is published by Dunne et al. (2020).[294]
  • Description of new fossil material of Late Triassic tetrapods from the Hoyada del Cerro Las Lajas site (Ischigualasto Formation, Argentina), and a study on the age of tetrapod fossils from this site (including fossils of Pisanosaurus mertii) and their implications for the knowledge of the Late Triassic tetrapod evolution, is published by Desojo et al. (2020).[295]
  • A review of the evidence of a major change in ecological community structure during the Carnian, focusing on the temporal links of these biological changes with the Carnian Pluvial Event and on the role of volcanic eruptions and associated climate change as a possible trigger, is published by Dal Corso et al. (2020).[296]
  • An assemblage of fossilized vomits and coprolites is described from the Upper Triassic (Carnian) Reingraben Shales in Polzberg (Austria) by Lukeneder et al. (2020), who evaluate the implications of these bromalites for the knowledge of pelagic invertebrates-vertebrates trophic chain of the Late Triassic Polzberg biota, and interpret their finding as evidence indicating that the Mesozoic marine revolution has already started in the early Mesozoic.[297]
  • A study on the dynamics of the Adamanian/Revueltian faunal turnover, based on fossil data from the Petrified Forest National Park (Arizona, United States), is published by Hayes et al. (2020).[298]
  • A study on the palynological record from the Carnian–Norian transition in the western Barents Sea region is published by Klausen, Paterson & Benton (2020), who interpret their findings as indicating that major sea-level changes across the vast delta plains situated in the northern Pangaea might have triggered terrestrial turnovers during the Carnian–Norian transition and facilitated the gradual rise of the dinosaurs to ecosystem dominance.[299]
  • Wignall & Atkinson (2020) argue that the Triassic–Jurassic extinction event can be resolved into two distinct, short-lived extinction pulses separated by a several hundred-thousand-year interlude phase.[300]
  • A study on changes in shell size of marine bivalves and brachiopods from the Iberian Basin (Spain) across the Early Toarcian Oceanic Anoxic Event, aiming to determine the role of temperature for changes in body size of bivalves and brachiopods, is published by Piazza, Ullmann & Aberhan (2020).[301]
  • A study on the impact of warming and disturbance of the carbon cycle during the Toarcian Oceanic Anoxic Event on marine benthic macroinvertebrate assemblages from the Iberian Basin is published by Piazza, Ullmann & Aberhan (2020).[302]
  • A study on the persistence and abundance of an association of serpulids and hydroids during the Middle and Late Jurassic is published by Słowiński et al. (2020).[303]
  • Foster, Pagnac & Hunt-Foster (2020) describe the Late Jurassic biota from the Little Houston Quarry in the Black Hills of Wyoming, including the vertebrate fauna which is the second-most diverse in the entire Morrison Formation and the most diverse north of Como Bluff.[304]
  • A study on the age of the Huajiying Formation (China) and its implications for the knowledge of the timing of appearance and duration of the Jehol Biota is published by Yang et al. (2020).[305]
  • A study on the age of the biota from the Cretaceous Burmese amber from Hkamti is published by Xing & Qiu (2020).[306]
  • A study on extinction patterns of marine vertebrates during the last 20 million years of the Late Cretaceous, as indicated by fossils from northern Gulf of Mexico, is published by Ikejiri, Lu & Zhang (2020), who report evidence of two separate extinction events: one in the Campanian, and one at the end of the Maastrichtian.[307]
  • Rodríguez-Tovar et al. (2020) present evidence from trace fossils from the Chicxulub crater indicating that full recovery of the macrobenthic biota from this area was rapid, with the establishment of a well-developed tiered community within ~700 thousand years.[308]
  • A study on the impact of the early Cenozoic hyperthermal events on shallow marine benthic communities, based on data from fossils from the Gulf Coastal Plain, is published by Foster et al. (2020).[309]
  • A study on the geology and fauna (including hominins) of the new Mille-Logya site (Afar, Ethiopia) dated to between 2.914 and 2.443 Ma is published by Zeresenay Alemseged et al. (2020), who evaluate the implications of this site for the knowledge of how hominins and other fauna responded to environmental changes during this period.[310]
  • Studies on the magnitude and likely causes of megafaunal extinctions in the Indian subcontinent during the late Pleistocene and early Holocene are published by Jukar et al. (2020)[311] and Turvey et al. (2020).[312]
  • A new, diverse megafauna assemblage that suffered extinction sometime after 40,100 (±1700) years ago is reported from the South Walker Creek fossil deposits (Queensland, Australia) by Hocknull et al. (2020), who evaluate the implications of this assemblage for prevailing megafauna extinction hypotheses for Sahul.[313]
  • A study on ancient DNA of vertebrates and plants recovered from fossils and sediment from Hall's Cave (Edwards Plateau, Texas, United States), evaluating its implications for the knowledge of the climatic fluctuations from the Pleistocene to the Holocene on the local ecosystem, is published by Seersholm et al. (2020).[314]
  • A study on the phylogenetic relationships of early amniotes, recovering Parareptilia and Varanopidae as nested within Diapsida, will be published by Ford & Benson (2020), who name a new clade Neoreptilia.[315]
  • Regional-scale diversity patterns for terrestrial tetrapods throughout their entire Phanerozoic evolutionary history are presented by Close et al. (2020), who attempt to determine how informative the fossil record is about true global paleodiversity.[316]
  • A study on the impact of the appearance and evolution of herbivorous tetrapods on the evolution of land plants from the Carboniferous to the Early Triassic is published by Brocklehurst, Kammerer & Benson (2020).[317]
  • A study the terrestrial and marine fossil record of Late Permian to Late Triassic tetrapods, comparing species-level tetrapod biodiversity across latitudinal bins, is published by Allen et al. (2020).[318]
  • In a study published by Chiarenza et al. (2020)[319][320] the two main hypotheses for the mass extinction (the Daccan Traps and the Chicxulub impact) were evaluated using Earth System and Ecologial modelling, confirming that the asteroid impact was the main driver of this extinction while the volcanism might have boosted the recovery instead.
  • Bishop, Cuff & Hutchinson (2020) outline a workflow for integrating paleontological data with biomechanical principles and modeling techniques in order to create musculoskeletal models and study locomotor biomechanics of extinct animals, using Coelophysis as a case study.[321]
  • Saitta et al. (2020) propose a framework for studying sexual dimorphism in non-avian dinosaurs and other extinct taxa, focusing on likely secondary sexual traits and testing against all alternate hypotheses for variation in the fossil record.[322]
  • A study evaluating the utility of rare earth element profiles as proxies for biomolecular preservation in fossil bones, based on data from a specimen of Edmontosaurus annectens from the Standing Rock Hadrosaur Site (Hell Creek Formation; South Dakota, United States), is published by Ullmann et al. (2020).[323]
  • A study on the diversity and evolution of skull and jaw functions in sabre-toothed carnivores during the last 265 million years is published by Lautenschlager et al. (2020).[324]

Other researchEdit

  • Evidence indicating that the Great Oxidation Event predated Paleoproterozoic glaciation in Russia and snowball Earth deposits in South Africa is presented by Warke et al. (2020), who argue that their findings preclude hypotheses of Earth's oxygenation in which global glaciation preceded or caused the evolution of oxygenic photosynthesis.[325]
  • A study on the timing of the onset and termination of the Shuram carbon isotope excursion is published by Rooney et al. (2020), who argue that this excursion was divorced from the rise of the earliest preserved animal ecosystems.[326]
  • A study on the causes of the Late Ordovician mass extinction, based on data from the Ordovician-Silurian boundary stratotype (Dob's Linn, Scotland), is published by Bond & Grasby (2020), who interpret their findings as evidence that this extinction event was caused by volcanism, warming and anoxia.[327]
  • Evidence of wildfires at the FrasnianFamennian boundary is reported from Upper Devonian sections from western New York (United States) by Liu et al. (2020), who also provide an estimate of atmospheric O2 levels at this interval, and evaluate their implications for the knowledge of causes of the Late Devonian extinction.[328]
  • A study on the timing of the environmental changes associated with the Kellwasser events is published by Da Silva et al. (2020).[329]
  • Evidence of anomalously high mercury concentration in marine deposits encompassing the Hangenberg event from Carnic Alps (Italy and Austria) is presented by Rakociński et al. (2020), who argue that methylmercury poisoning in otherwise anoxic seas, caused by extensive volcanic activity, could be a direct kill mechanism of the end-Devonian Hangenberg extinction.[330]
  • A study on fossil plant spores with malformed sculpture and pigmented walls, recovered from terrestrial Devonian-Carboniferous boundary sections from East Greenland, is published by Marshall et al. (2020), who interpret their findings as evidence that the terrestrial mass extinction at the Devonian-Carboniferous boundary coincided with elevated UV-B radiation, indicative of ozone layer reduction.[331]
  • Fields et al. (2020) attempt to determine whether the dramatic drop in stratospheric ozone coinciding with the end-Devonian extinction events was caused by a nearby supernova explosion.[332]
  • A series of articles on the biostratigraphy of the Karoo Supergroup, providing a formal biozonation scheme for the Stormberg Group and dividing the Beaufort and Stormberg groups into nine tetrapod assemblage zones, is published in the June 2020 issue of the South African Journal of Geology.[333][334][335][336][337][338][339][340][341][342]
  • A study on the age of a pristine ash-fall deposit in the Karoo Lystrosaurus Assemblage Zone (South Africa) is published by Gastaldo et al. (2020), who report that turnover from the Daptocephalus Assemblage Zone to Lystrosaurus AZ in this basin occurred over 300 ka before the end-Permian marine event, and interpret their findings as refuting the concurrentness of turnovers in terrestrial and marine ecosystems at the end of the Permian.[343]
  • A study evaluating the contribution of loss of ecosystems on land and consequent massive terrestrial biomass oxidation to atmosphere–ocean biogeochemistry at the Permian–Triassic boundary is published by Dal Corso et al. (2020).[344]
  • A study aiming to determine the mechanism that drove vast stretches of the ocean to an anoxic state during the Permian–Triassic extinction event is published by Schobben et al. (2020).[345]
  • Evidence indicating that the Permian–Triassic extinction event was linked with ocean acidification due to carbon degassing from the Siberian sill intrusions is presented by Jurikova et al. (2020).[346]
  • Evidence from paired coronene and mercury spikes in stratigraphic sections in south China and Italy, indicative of the occurrence of two pulsed volcanic eruption events coinciding with the initiation of the end-Permian terrestrial ecological disturbance and marine extinction, is presented by Kaiho et al. (2020).[347]
  • A study on variations of ~10-Myr scale monsoon dynamics during the early Mesozoic, and on their impact on climate and ecosystem dynamics (including the dispersal of early dinosaurs), is published by Ikeda, Ozaki & Legrand (2020).[348]
  • New geochronologic and paleoclimatic data from Carnian-aged strata in the Ischigualasto-Villa Unión Basin (Argentina) is presented by Mancuso et al. (2020), who interpret their findings as indicating that the Carnian Pluvial Event interval in western Gondwana was warmer and more humid than periods before or after this interval, confirming that the CPE was a global event.[349]
  • A study on the age of the top of the Moenkopi Formation, the lower Blue Mesa Member, and the lower and upper Sonsela Member of the Chinle Formation is published by Rasmussen et al. (2020), who argue that the biotic turnover preserved in the mid-Sonsela Member at the Petrified Forest National Park was a mid-Norian event.[350]
  • A study on ocean temperatures during the Triassic–Jurassic extinction event is published by Petryshyn et al. (2020), who report no evidence for short-term cooling or initial warming across the 1-80,000 years of the extinction event.[351]
  • Evidence of low ocean sulfate levels at the end-Triassic mass extinction, linked to rapid development of marine anoxia, is presented by He et al. (2020).[352]
  • A study on the causes of the negative organic carbon isotope excursion associated with the end-Triassic mass extinction, based on data from its type locality in the Bristol Channel Basin (United Kingdom), is published by Fox et al. (2020), who interpret this isotopic excursion as caused by an abrupt relative sea level drop rather than by massive inputs of exogenous light carbon into the atmosphere, and argue that the disappearance of marine biota at the type locality is the result of local environmental changes and does not mark the global extinction event, while the main extinction phase occurred slightly later in marine strata.[353]
  • Evidence of increasing atmospheric CO2 concentration at the onset of the end-Triassic extinction event, based on data from fossil leaves of the seed fern Lepidopteris ottonis from southern Sweden, is presented by Slodownik, Vajda & Steinthorsdottir (2020).[354]
  • A review of the geology, paleoecology and taxonomic status of the fauna from the Cretaceous Kem Kem Beds of Morocco is published by Ibrahim et al. (2020).[355]
  • Klages et al. (2020) report evidence from the West Antarctic shelf indicating the occurrence of a temperate lowland rainforest environment at a palaeolatitude of about 82° S during the Late Cretaceous (TuronianSantonian).[356]
  • A review and revision of the stratigraphy of the Hell Creek Formation is published by Fowler (2020).[357]
  • A study on the timing of a volcanic outgassing at the end of the Cretaceous, and on its implications for the knowledge of causes of the Cretaceous-Paleogene mass extinction, is published by Hull et al. (2020).[358]
  • A study on paleosols from the eastern edge of the Deccan Volcanic Province (central India), evaluating their implications for reconstructions of climate and terrestrial environments of India before and after the Cretaceous–Paleogene extinction event and for the knowledge of causes of this extinction event, is published by Dzombak et al. (2020).[359]
  • A detailed record of molecular burn markers from the Chicxulub crater and in ocean sediments distant from the impact site is presented by Lyons et al. (2020), who interpret their findings as indicating rapid heating after the impact and a fossil carbon source, and argue that soot from the target rock immediately contributed to global cooling and darkening after the impact at the end of the Cretaceous.[360]
  • A study on the origin, recovery, and development of microbial life in the Chicxulub crater after the impact at the end of the Cretaceous, and on the environmental conditions in the crater up to ~4 million years after the Cretaceous–Paleogene extinction event, is published by Schaefer et al. (2020).[361]
  • A study on Earth's climate throughout the Cenozoic era, based on a highly resolved and well-dated record of benthic carbon and oxygen isotopes from deep-sea foraminifera, is published by Westerhold et al. (2020).[362]
  • Van Couvering & Delson (2020) define 17 African land mammal ages covering the Cenozoic record of the Afro-Arabian continent.[363]
  • A study on the amount and makeup of the carbon added to the ocean during the Paleocene–Eocene Thermal Maximum, based on geochemical data from planktic foraminifera, is published by Haynes & Hönisch (2020), who interpret their findings as indicating that volcanic emissions were the main carbon source responsible for PETM warming.[364]
  • Evidence from Eocene plant fossils from the Bangong-Nujiang suture indicating that the Tibetan Plateau area hosted a diverse subtropical ecosystem approximately 47 million years ago and that this area was both low and humid at the time is presented by Su et al. (2020).[365]
  • A study on the climate evolution across the Oligocene, examining the relationship between global temperatures and continental-scale polar ice sheets following the establishment of ice sheets on Antarctica, is published by O'Brien et al. (2020).[366]
  • A study aiming to test the hypothesis that the emergence of the Southeast Asian islands played a significant role in driving the cooling of Earth's climate since the Miocene Climatic Optimum is published by Park et al. (2020).[367]
  • A study on the environment at Olduvai Gorge at the emergence of the Acheulean technology 1.7 million years ago, based on data from fossil lipid biomarkers, is published by Sistiaga et al. (2020).[368]
  • A study on freshwater fauna and flora found in a sediment sample from the Yuka mammoth carcass, evaluating its implications for reconstructions of the waterbody type where the mammoth was preserved and for the knowledge of the nature of the waterbodies that existed in Beringia during the MIS3 climatic optimum, is published by Neretina et al. (2020).[369]
  • A study on the Neogene paleobotanical record and climate in the northernmost part of the Central Andean Plateau, based on data from the Descanso Formation (Peru), is published by Martínez et al. (2020), who report the earliest evidence of a puna-like ecosystem in the Pliocene and a montane ecosystem without modern analogs in the Miocene, as well as evidence of wetter paleoclimatic conditions than previously estimated by regional climate model simulations.[370]
  • A study on environmental changes in Southeast Asia from the Early Pleistocene to the Holocene, based on stable isotope data from Southeast Asian mammals, and on their impact on the evolution of mammals (including hominins), is published by Louys & Roberts (2020).[371]
  • A study on the climate variability in the southwest Indian Ocean area throughout the past ~8000 years, evaluating its implications for the knowledge of possible causes of extinction of megafauna from Madagascar and Mascarene Islands, is published by Li et al. (2020).[372]
  • Van Neer et al. (2020) report faunal remains from the Takarkori rock shelter in the Acacus Mountains region (Libya), and evaluate their implications for the knowledge of the climate and hydrography of the Sahara throughout the Holocene.[373]
  • New Mesozoic and Paleogene amber occurrences, preserving diverse inclusions of arthropods, plants and fungi, are reported from Australia and New Zealand by Stilwell et al. (2020).[374]

ReferencesEdit

  1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. ^ a b c d e f g Baba Senowbari-Daryan; Franz T. Fürsich; Koorosch Rashidi (2020). "Sponges from the Jurassic of the Shotori Mountains Part III. Endostoma Roemer, Eudea Lamouroux, Pareudea Étallon, Preperonidella Finks & Rigby, Polyendostoma Roemer, Seriespongia n. gen., and Iniquispongia n. gen". Revue de Paléobiologie, Genève. 39 (1): 265–301. doi:10.5281/zenodo.3936171. S2CID 244993112.
  3. ^ Joseph P. Botting; Yves Candela; Vicen Carrió; William R. B. Crighton (2020). "A new hexactinellid sponge from the Silurian of the Pentland Hills (Scotland) with similarities to extant rossellids". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 111 (1): 17–25. doi:10.1017/S1755691019000045. S2CID 135302203.
  4. ^ Joseph P. Botting; Dorte Janussen; Yuandong Zhang; Lucy A. Muir (2020). "Exceptional preservation of two new early rossellid sponges: the dominant species in the Hirnantian (Late Ordovician) Anji Biota of China". Journal of the Geological Society. 177 (5): jgs2020-002. Bibcode:2020JGSoc.177.1025B. doi:10.1144/jgs2020-002. S2CID 218931548.
  5. ^ Rob W.M. Van Soest; John N.A. Hooper; Peter J. Butler (2020). "Every sponge its own name: removing Porifera homonyms". Zootaxa. 4745 (1): zootaxa.4745.1.1. doi:10.11646/zootaxa.4745.1.1. PMID 32230307. S2CID 214748168.
  6. ^ a b c Mohamed Gameil; Abdelbaset S. El-Sorogy; Khaled Al-Kahtany (2020). "Solitary corals of the Campanian Hajajah Limestone Member, Aruma Formation, Central Saudi Arabia". Historical Biology: An International Journal of Paleobiology. 32 (1): 1–17. doi:10.1080/08912963.2018.1461217. S2CID 90300789.
  7. ^ a b c d e f g h i j Galina K. Melnikova; Ewa Roniewicz (2020). "Lower Jurassic corals from the Pamir Mountains, Central Asia". Palaeoworld. 30 (3): 461–494. doi:10.1016/j.palwor.2020.11.001. ISSN 1871-174X.
  8. ^ Shuji Niko; Shigeyuki Suzuki (2020). "Alveopora kumadai, a new Miocene species of scleractinian coral from the Katsuta Group in the Tsuyama area, Okayama Prefecture, Southwest Japan". Bulletin of the Akiyoshi-dai Museum of Natural History. 55: 7–11.
  9. ^ a b Wei-hua Liao; Kun Liang; Zheng-jiang Luo (2020). "Early Mississippian non-dissepimented solitary rugose corals from northern Xinjiang". Acta Palaeontologica Sinica. 59 (3): 318–328. doi:10.19800/j.cnki.aps.2020.015.
  10. ^ István Szente (2020). "A remarkable invertebrate fossil assemblage from the Lower Triassic Werfen Formation of the Totes Gebirge (Styria, Austria)" (PDF). Jahrbuch der Geologischen Bundesanstalt. 160 (1–4): 227–239.
  11. ^ a b Guangxu Wang; Ian G. Percival; Yong Yi Zhen (2020). "The youngest Ordovician (latest Katian) coral fauna from eastern Australia, in the uppermost Malachis Hill Formation of central New South Wales". Alcheringa: An Australasian Journal of Palaeontology. 44 (3): 356–378. doi:10.1080/03115518.2020.1747540. S2CID 225729356.
  12. ^ Olga Kossovaya; Matevž Novak; Dieter Weyer (2020). "New data on lower Permian rugose corals from the Southern Karavanke Mountains (Slovenia)". Bollettino della Società Paleontologica Italiana. 59 (3): 261–280. doi:10.4435/BSPI.2020.24.
  13. ^ a b c Jerzy Fedorowski (2020). "Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 10. The Family Krynkaphyllidae fam. nov". Acta Geologica Polonica. 71 (1): 53–101. doi:10.24425/agp.2020.132258.
  14. ^ a b c Yong-sheng Wang; Ji-bin Sun; Yan Wang; Chun-zi Zheng; Zong-yuan Yue; Wei-hua Liao (2020). "Early Cretaceous scleractinian corals from Xenkyer, Baingoin, Xizang (Tibet)". Acta Palaeontologica Sinica. 59 (4): 452–466. doi:10.19800/j.cnki.aps.2020.038.
  15. ^ Heyo Van Iten; Bertrand Lefebvre (2020). "Conulariids from the Lower Ordovician of the southern Montagne Noire, France". Acta Palaeontologica Polonica. 65 (3): 629–639. doi:10.4202/app.00728.2020. S2CID 219939139.
  16. ^ Xing Wang; Jean Vannier; Xiaoguang Yang; Shin Kubota; Qiang Ou; Xiaoyong Yao; Kentaro Uesugi; Osamu Sasaki; Tsuyoshi Komiya; Jian Han (2020). "An intermediate type of medusa from the early Cambrian Kuanchuanpu Formation, South China". Palaeontology. 63 (5): 775–789. doi:10.1111/pala.12483. S2CID 219448072.
  17. ^ Bogusław Kołodziej (2020). "A new coral genus with prominent, ramified main septum (Aptian, Tanzania)". Ameghiniana. 57 (6): 555–565. doi:10.5710/AMGH.26.06.2020.3341. S2CID 226660660.
  18. ^ a b Julien Denayer; Shaochun Xu; Eddy Poty; Markus Aretz (2020). "Taxonomy and evolution of late Tournaisian and Viséan (early Carboniferous) Heterostrotioninae (Rugosa, Anthozoa) from SE China". Journal of Systematic Palaeontology. 18 (10): 843–872. doi:10.1080/14772019.2019.1689191. S2CID 212808268.
  19. ^ Oive Tinn; Olev Vinn; Leho Ainsaar (2020). "The enigmatic cnidarian Martsaphyton moxi gen. et sp. nov. from the Darriwilian (Middle Ordovician) of Estonia". Estonian Journal of Earth Sciences. 69 (4): 223–232. doi:10.3176/earth.2020.12. S2CID 229210626.
  20. ^ a b Shuji Niko; Mahdi Badpa (2020). "Carboniferous tabulate corals from the Sardar Formation in the Ozbak-kuh Mountains, East-Central Iran" (PDF). Bulletin of the National Museum of Nature and Science, Series C. 46: 47–59.
  21. ^ Francesca R. Bosellini; Jarosław Stolarski; Cesare Andrea Papazzoni; Alessandro Vescogni (2020). "Exceptional development of dissepimental coenosteum in the new Eocene scleractinian coral genus Nancygyra (Ypresian, Monte Postale, NE Italy)". Bollettino della Società Paleontologica Italiana. in press (3). doi:10.4435/BSPI.2020.11.
  22. ^ Dieter Weyer; Jean-Claude Rohart (2020). "Neosyringaxon Jia in Jia et al., 1977 (Anthozoa, Rugosa) in the Middle and Late Devonian of Europe and North America". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 295 (3): 283–296. doi:10.1127/njgpa/2020/0887. S2CID 216170244.
  23. ^ Wei-hua Liao; Kun Liang (2020). "Givetian (Devonian) rugose corals from Wangyou, Huishui, Guizhou (2)". Acta Palaeontologica Sinica. 59 (2): 179–191. doi:10.19800/j.cnki.aps.2020.02.05.
  24. ^ Hannes Löser (2022). "A new coral family and three new genera from the Lower Cretaceous of Puebla and Sonora (Scleractinia; Mexico)". Revista Mexicana de Ciencias Geológicas. 39 (3): 220–229. doi:10.22201/cgeo.20072902e.2022.3.1698.
  25. ^ Chang-Min Yu; Huu Hung Nguyen; Wen-Kun Qie; Wen Guo; Ba Hung Nguyen (2020). "Lower Emsian biostratigraphy and event stratigraphy of Ha Giang Province, northern Vietnam". Palaeoworld. 30 (1): 29–43. doi:10.1016/j.palwor.2020.04.001. S2CID 219404735.
  26. ^ Sergio Rodríguez; Ian D. Somerville; Pedro Cózar; Javier Sanz-López; Ismael Coronado; Felipe González; Ismail Said; Mohamed El Houicha (2020). "A new early Visean coral assemblage from Azrou-Khenifra Basin, central Morocco and palaeobiogeographic implications". Journal of Palaeogeography. 9 (1): Article number 5. Bibcode:2020JPalg...9....5R. doi:10.1186/s42501-019-0051-5. S2CID 211074219.
  27. ^ Robert J. Elias; Dong-Jin Lee; Brian R. Pratt (2020). "The "earliest tabulate corals" are not tabulates". Geology. 49 (3): 304–308. doi:10.1130/G48235.1. S2CID 228913747.
  28. ^ Jeana L. Drake; Julian P. Whitelegge; David K. Jacobs (2020). "First sequencing of ancient coral skeletal proteins". Scientific Reports. 10 (1): Article number 19407. Bibcode:2020NatSR..1019407D. doi:10.1038/s41598-020-75846-4. PMC 7655939. PMID 33173075.
  29. ^ a b Andrej Ernst (2020). "Anastomopora (Fenestrata, Bryozoa) from the Middle Devonian of the Rhenish Massif, Germany". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 297 (1): 11–26. doi:10.1127/njgpa/2020/0911. S2CID 225627729.
  30. ^ a b Andrej Ernst; Ali Bahrami; Ayesheh Parast (2020). "Early Famennian bryozoan fauna from the Baqer-abad section, northeast Isfahan, central Iran". Palaeobiodiversity and Palaeoenvironments. 100 (3): 705–718. doi:10.1007/s12549-020-00417-4. S2CID 214784512.
  31. ^ a b c d Andrej Ernst; Qi-Jian Li; Min Zhang; Axel Munnecke (2020). "Bryozoans from the lower Silurian (Telychian) Hanchiatien Formation from southern Chongqing, South China". Journal of Paleontology. 95 (2): 252–267. doi:10.1017/jpa.2020.86. S2CID 228861834.
  32. ^ Paul D. Taylor (2020). "Rare bryozoans from the Gault Clay Formation (Lower Cretaceous, upper Albian) of Kent, England". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 296 (1–2): 201–209. doi:10.1127/njgpa/2020/0903. S2CID 242473811.
  33. ^ Anna V. Koromyslova; Vladimir B. Seltser (2020). "Early Maastrichtian cheilostome bryozoans from the middle Volga River region". PalZ. 94 (4): 697–714. doi:10.1007/s12542-019-00509-3. S2CID 210938694.
  34. ^ a b c Antonietta Rosso; Emanuela Di Martino; Andrew N. Ostrovsky (2020). "Cribrilinid bryozoans from Pleistocene Mediterranean deep-waters, with the description of new species". Journal of Paleontology. 95 (2): 268–290. doi:10.1017/jpa.2020.93. S2CID 229470445.
  35. ^ A. V. Koromyslova; N. V. Sennikov (2020). "A new bryozoan of the genus Dianulites Eichwald from the Ordovician of Gorny Altai and the Russian Arctic". Paleontological Journal. 54 (5): 514–523. doi:10.1134/S0031030120050081. S2CID 222180410.
  36. ^ a b c Andrej Ernst; Mohammad N. Gorgij (2020). "Carboniferous bryozoans from the Kalmard area, central Iran". PalZ. 94 (3): 533–543. doi:10.1007/s12542-019-00502-w. S2CID 209371568.
  37. ^ a b c d O. P. Mesentseva; Yu. V. Udodov (2020). "New species of the genus Filites Počta in Barrande (Bryozoa) from the Emsian (Lower Devonian) of Salair". Paleontological Journal. 54 (3): 255–262. doi:10.1134/S0031030120030090. S2CID 219959116.
  38. ^ a b Anna V. Koromyslova; Petr V. Fedorov (2020). "The oldest bifoliate cystoporate and two other bryozoan taxa from the Dapingian (Middle Ordovician) of north-western Russia". Journal of Paleontology. 95 (1): 24–39. doi:10.1017/jpa.2020.73. S2CID 224947635.
  39. ^ Emanuela Di Martino; Paul D. Taylor; Dennis P. Gordon (2020). "Erect bifoliate species of Microporella (Bryozoa, Cheilostomata), fossil and modern". European Journal of Taxonomy (678): 1–31. doi:10.5852/ejt.2020.678. S2CID 225612803.
  40. ^ Andrej Ernst; Mahmoud Kora; Heba El-Desouky; Hans-Georg Herbig; Patrick N. Wyse Jackson (2020). "Stenolaemate bryozoans from the Carboniferous of Egypt". Journal of African Earth Sciences. 165: Article 103811. Bibcode:2020JAfES.16503811E. doi:10.1016/j.jafrearsci.2020.103811. S2CID 216437254.
  41. ^ Leandro M. Pérez; Juan López-Gappa; Leandro M. Vieira; Dennis P. Gordon (2020). "New species of the austral bryozoan genus Taylorus nom. nov. (Escharinidae): phylogenetic and palaeobiogeographical implications". New Zealand Journal of Geology and Geophysics. 64 (1): 72–82. doi:10.1080/00288306.2020.1794913. S2CID 225203849.
  42. ^ a b c Jorge Colmenar; Eben Blake Hodgin (2020). "First evidence of Lower–?Middle Ordovician (Floian–?Dapingian) brachiopods from the Peruvian Altiplano and their paleogeographical significance". Journal of Paleontology. 95 (1): 56–74. doi:10.1017/jpa.2020.72. S2CID 224983331.
  43. ^ a b c Danièle Gaspard; Sylvain Charbonnier (2020). "The debated question of asymmetrical rhynchonellids (Brachiopoda, Rhynchonellida): examples from the Late Cretaceous of Western Europe". BSGF - Earth Sciences Bulletin. 191: Article number 1. doi:10.1051/bsgf/2019016. S2CID 213746630.
  44. ^ Marcello Guimarães Simões; Jacqueline Peixoto Neves; Arturo César Taboada; Maria Alejandra Pagani; Filipe Giovanini Varejão; Mário Luis Assine (2020). "Macroinvertebrates of the Capivari marine bed, late Paleozoic glacial Itararé Group, northeast Paraná Basin, Brazil: Paleoenvironmental and paleogeographic implications". Journal of South American Earth Sciences. 98: Article 102433. Bibcode:2020JSAES..9802433S. doi:10.1016/j.jsames.2019.102433. S2CID 213220168.
  45. ^ a b c d e f B. Gudveig Baarli (2020). "Plectatrypinae and other ribbed atrypides succeeding the end Ordovician extinction event, Central Oslo Region, Norway". Journal of Paleontology. 95 (1): 75–105. doi:10.1017/jpa.2020.69. S2CID 224938208.
  46. ^ a b Jisuo Jin; Robert B. Blodgett (2020). "Late Ordovician brachiopods from east-central Alaska, northwestern margin of Laurentia". Journal of Paleontology. 94 (4): 637–652. doi:10.1017/jpa.2020.10. S2CID 218776655.
  47. ^ a b c Fernando J. Lavié; Juan L. Benedetto (2020). "First lingulate brachiopods from the Ordovician volcano-sedimentary rocks of the Famatina Range, western Argentina". PalZ. 94 (2): 295–309. doi:10.1007/s12542-019-00496-5. S2CID 209311910.
  48. ^ a b c Valeryi V. Baranov; Li Qiao; Robert B. Blodgett (2020). "Givetian stringocephalid brachiopods from eastern Yunnan of Southwest China with notes on global distribution of the family Stringocephalidae". Palaeoworld. 30 (1): 44–61. doi:10.1016/j.palwor.2020.03.005. S2CID 216320068.
  49. ^ a b c Mélani Berrocal-Casero; Fernando Barroso-Barcenilla; Fernando García Joral (2020). "Coniacian (Upper Cretaceous) rhynchonellides from northern Spain: taxonomy and palaeobiogeography". Cretaceous Research. 106: Article 104216. doi:10.1016/j.cretres.2019.104216. S2CID 202194246.
  50. ^ Mélani Berrocal-Casero; Fernando García Joral; Fernando Barroso-Barcenilla (2020). "The evolution of asymmetry in Upper Cretaceous Cyclothyris (Brachiopoda, Rhynchonellida)". Historical Biology: An International Journal of Paleobiology. 33 (9): 1489–1503. doi:10.1080/08912963.2020.1715390. S2CID 216254390.
  51. ^ a b c V. V. Baranov (2020). "New rhynchonellids and atrypids (Brachiopoda) from the Lower Devonian deposits of Northeast Eurasia". Paleontological Journal. 54 (3): 263–272. doi:10.1134/S003103012003003X. S2CID 219958612.
  52. ^ T. N. Smirnova; E. A. Zhegallo (2020). "First finds of Elliptoglossa Cooper (Brachiopoda, Lingulida) in the Upper Devonian of the Volga–Ural region; microstructure of the protegular and adult shell regions". Paleontological Journal. 54 (4): 347–353. doi:10.1134/S0031030120040127. S2CID 221167581.
  53. ^ Zhiliang Zhang; Mansoureh Ghobadi Pour; Leonid E. Popov; Lars E. Holmer; Feiyang Chen; Yanlong Chen; Glenn A. Brock; Zhifei Zhang (2020). "The oldest Cambrian trilobite – brachiopod association in South China". Gondwana Research. 89: 147–167. doi:10.1016/j.gr.2020.08.009. S2CID 225020572.
  54. ^ Alfréd Dulai; Fritz von der Hocht (2020). "Upper Oligocene brachiopods from NW Germany, with description of a new Platidiinae genus, Germanoplatidia n. gen". Rivista Italiana di Paleontologia e Stratigrafia. 126 (1): 223–248. doi:10.13130/2039-4942/13060.
  55. ^ a b c Jenaro L. Garcia-Alcalde; Ahmed El Hassani (2020). "The Givetian "secret" fauna of the Western Anti-Atlas (Jbel Ou Driss and Oued Mzerreb), Morocco". Bulletin de l'Institut Scientifique, Rabat, Section Sciences de la Terre. 42: 13–47.
  56. ^ Brian H. Reily (2020). "Imbriea nom. nov., a replacement name for Orthopleura Imbrie, 1959 (Brachiopoda)". Zootaxa. 4894 (1): 143–145. doi:10.11646/zootaxa.4894.1.9. PMID 33311098. S2CID 229177737.
  57. ^ a b c d e Mélani Berrocal-Casero (2020). "Coniacian (Upper Cretaceous) Terebratulides (Brachiopoda) from Northern Spain". Cretaceous Research. 118: Article 104648. doi:10.1016/j.cretres.2020.104648. S2CID 224947119.
  58. ^ a b Desmond L. Strusz (2020). "Pentamerid Brachiopods from the Lower Silurian (Wenlock) Canberra Formation, A.C.T., Australia". Proceedings of the Linnean Society of New South Wales. 142: 15–28.
  59. ^ Gustavo G. Voldman; M. Luisa Martínez Chacón; Christopher J. Duffin; Luis Pedro Fernández; Juan L. Alonso (2020). "Pennsylvanian brachiopod, fish and conodont faunas from the Caliza Masiva (San Emiliano Formation) at the Mina Profunda area, Cantabrian Zone, NW Spain". Geobios. 59: 91–106. doi:10.1016/j.geobios.2020.03.004. hdl:10651/56854. S2CID 218785384.
  60. ^ Jun-ichi Tazawa (2020). "Early Carboniferous (Mississippian) brachiopods from the Shittakazawa, Arisu and Odaira Formations, South Kitakami Belt, Japan" (PDF). Memoir of the Fukui Prefectural Dinosaur Museum. 19: 11–88.
  61. ^ Zhifei Zhang; Lars E. Holmer; Yue Liang; Yanlong Chen; Xiaolin Duan (2020). "The oldest "Lingulellotreta" (Lingulata, Brachiopoda) from China and its phylogenetic significance: integrating new material from the Cambrian Stage 3–4 Lagerstätten in eastern Yunnan, South China". Journal of Systematic Palaeontology. 18 (11): 945–973. doi:10.1080/14772019.2019.1698669. S2CID 214482402.
  62. ^ José Amet Rivaz Hernández (2020). "Linnaeocaninella nomen novum for the Middle Permian fossil Caninella Liang, 1990 (Brachiopoda: Productida: Richthofenidae), preoccupied by Caninella Gorsky, 1938 (Cnidaria: Anthozoa: Bothrophyllidae)". Zootaxa. 4732 (2): 335–336. doi:10.11646/zootaxa.4732.2.9. PMID 32230266. S2CID 214382236.
  63. ^ Xiaolin Duan; Yue Liang; Lars E. Holmer; Zhifei Zhang (2020). "First report of acrotretoid brachiopod shell beds in the lower Cambrian (Stage 4) Guanshan Biota of eastern Yunnan, South China". Journal of Paleontology. 95 (1): 40–55. doi:10.1017/jpa.2020.66. S2CID 225289176.
  64. ^ Zhifei Zhang; Luke C. Strotz; Timothy P. Topper; Feiyang Chen; Yanlong Chen; Yue Liang; Zhiliang Zhang; Christian B. Skovsted; Glenn A. Brock (2020). "An encrusting kleptoparasite-host interaction from the early Cambrian". Nature Communications. 11 (1): Article number 2625. Bibcode:2020NatCo..11.2625Z. doi:10.1038/s41467-020-16332-3. PMC 7266813. PMID 32488075.
  65. ^ a b Huiting Wu; Yang Zhang; Thomas L. Stubbs; Jingqi Liu; Yuanlin Sun (2020). "A new Changhsingian (Lopingian) brachiopod fauna of the shallow-water clastic shelf facies from Fujian Province, south-eastern China". Papers in Palaeontology. 7 (2): 861–884. doi:10.1002/spp2.1318. S2CID 225720486.
  66. ^ a b Luiz Felipe Aquino Corrêa; Maria Inês Feijó Ramos (2020). "Discinoids (Brachiopoda: Lingulata) from the upper Manacapuru Formation (Early Devonian), south border of Amazonas Basin, Brazil". Journal of South American Earth Sciences. 105: Article 102960. doi:10.1016/j.jsames.2020.102960. S2CID 226351592.
  67. ^ Zhiliang Zhang; Lars E. Holmer; Feiyang Chen; Glenn A. Brock (2020). "Ontogeny and evolutionary significance of a new acrotretide brachiopod genus from Cambrian Series 2 of South China". Journal of Systematic Palaeontology. 18 (19): 1569–1588. doi:10.1080/14772019.2020.1794991. S2CID 225469021.
  68. ^ a b G. R. Shi; J. B. Waterhouse; Sangmin Lee (2020). "Early Permian brachiopods from the Pebbley Beach Formation, Southern Sydney Basin, southeastern Australia". Alcheringa: An Australasian Journal of Palaeontology. 44 (3): 411–429. doi:10.1080/03115518.2020.1810773. S2CID 226256611.
  69. ^ Bing Pan; Christian B. Skovsted; Glenn A. Brock; Timothy P. Topper; Lars E. Holmer; Luo-Yang Li; Guo-Xiang Li (2020). "Early Cambrian organophosphatic brachiopods from the Xinji Formation, at Shuiyu section, Shanxi Province, North China". Palaeoworld. 29 (3): 512–533. doi:10.1016/j.palwor.2019.07.001. S2CID 199107616.
  70. ^ Thomas M. Claybourn; Christian B. Skovsted; Lars E. Holmer; Bing Pan; Paul M. Myrow; Timothy P. Topper; Glenn A. Brock (2020). "Brachiopods from the Byrd Group (Cambrian Series 2, Stage 4) Central Transantarctic Mountains, East Antarctica: biostratigraphy, phylogeny and systematics". Papers in Palaeontology. 6 (3): 349–383. doi:10.1002/spp2.1295. S2CID 214220424.
  71. ^ Ting Nie; Wen Guo; Yu-bo Zhang; Yuan-lin Sun (2020). "Productoid brachiopods from the Devonian (Famennian) Gelaohe and Carboniferous (Tournaisian) Tangbagou formations of the Dushan area of Guizhou, China". Acta Palaeontologica Sinica. 59 (4): 409–429. doi:10.19800/j.cnki.aps.2020.044.
  72. ^ a b Lars E. Holmer; Leonid E. Popov; Mansoureh Ghobadi Pour; Inna A. Klishevich; Yue Liang; Zhifei Zhang (2020). "Linguliform brachiopods from the Cambrian (Guzhangian) Karpinsk Formation of Novaya Zemlya". Papers in Palaeontology. 6 (4): 571–592. doi:10.1002/spp2.1314. S2CID 219030837.
  73. ^ V. I. Makoshin (2020). "A new species of the genus Verchojania Abramov (Brachiopoda, Productida) from the Upper Carboniferous of the northern Verkhoyansk Region". Paleontological Journal. 54 (2): 111–116. doi:10.1134/S0031030120020082. S2CID 215741435.
  74. ^ Steven M. Stanley (2020). "Evidence that more than a third of Paleozoic articulate brachiopod genera (Strophomenata) lived infaunally". Paleobiology. 46 (3): 405–433. doi:10.1017/pab.2020.29. S2CID 221666554.
  75. ^ Cameron R. Penn-Clarke; David A.T. Harper (2020). "Early−Middle Devonian brachiopod provincialism and bioregionalization at high latitudes: A case study from southwestern Gondwana". GSA Bulletin. 133 (3–4): 819–836. doi:10.1130/B35670.1. S2CID 225426215.
  76. ^ Zhen Guo; Zhong-Qiang Chen; David A. T. Harper (2020). "Phylogenetic and ecomorphologic diversifications of spiriferinid brachiopods after the end-Permian extinction". Paleobiology. 46 (4): 495–510. doi:10.1017/pab.2020.34. S2CID 225298020.
  77. ^ a b c d e f g h Adam S. Osborn; Roger W. Portell; Rich Mooi (2020). "Neogene echinoids of Florida" (PDF). Bulletin of the Florida Museum of Natural History. 57 (3): 237–469.
  78. ^ a b c d e f Selina R. Cole; David F. Wright; William I. Ausich; Joseph M. Koniecki (2020). "Paleocommunity composition, relative abundance, and new camerate crinoids from the Brechin Lagerstätte (Upper Ordovician)". Journal of Paleontology. 94 (6): 1103–1123. doi:10.1017/jpa.2020.32. S2CID 219902033.
  79. ^ a b c Sandro M. Scheffler (2020). "Crinoids from the Lower (Pragian–Emsian) and Middle (early Eifelian) Devonian of Bolivia (Icla and Belén formations, Malvinokaffric Realm)". Journal of Paleontology. 95 (1): 141–153. doi:10.1017/jpa.2020.70. S2CID 224932937.
  80. ^ a b Daniel B. Blake; Forest J. Gahn; Thomas E. Guensburg (2020). "Two new early Asteroidea (Echinodermata) and early asteroid evolution". Journal of Paleontology. 94 (4): 734–747. doi:10.1017/jpa.2020.7. S2CID 216220103.
  81. ^ a b Timothy A. M. Ewin; Andrew S. Gale (2020). "Asteroids (Echinodermata) from the Barremian (Lower Cretaceous) of the Agadir Basin, west Morocco". Journal of Paleontology. 94 (5): 931–954. doi:10.1017/jpa.2020.20. S2CID 221355017.
  82. ^ Daniel B. Blake; James Sprinkle (2020). "Arceoaster hintei n. gen. n. sp., a late Silurian homeomorphic asteroid (Echinodermata, Hudsonasteridae)". Journal of Paleontology. 95 (1): 154–161. doi:10.1017/jpa.2020.57. S2CID 225356615.
  83. ^ Hans Hagdorn (2020). "Aszulcicrinus, a new genus of the Triassic crinoid family Dadocrinidae (Articulata; Encrinida) from Poland". Annales Societatis Geologorum Poloniae. 90 (4): 381–390. doi:10.14241/asgp.2020.17. S2CID 241205905.
  84. ^ Peter A. Jell; Alex G. Cook (2020). "New Carboniferous ophiuroid from central coastal New South Wales". Alcheringa: An Australasian Journal of Palaeontology. 44 (4): 520–527. doi:10.1080/03115518.2020.1837240. S2CID 229407349.
  85. ^ a b Joachim Pabst; Hans-Georg Herbig (2020). "An Upper Mississippian echinoderm microfauna from the Genicera Formation of northern León (Carboniferous, Cantabrian Mountains, N Spain)". Spanish Journal of Palaeontology. 35 (1): 47–76. doi:10.7203/sjp.35.1.17116. S2CID 221492575.
  86. ^ a b Andy Gale (2020). "Asteroids (Echinodermata) from the Crackers Member (lower Aptian, Deshayesites forbesi Zone) on the Isle of Wight (UK), with a revision of fossil Pseudarchasteridae". Proceedings of the Geologists' Association. 131 (3–4): 309–315. doi:10.1016/j.pgeola.2019.07.002. S2CID 202184399.
  87. ^ a b Miguel A. Torres-Martínez; Rafael Villanueva-Olea; Francisco Sour-Tovar (2020). "Columnar ossicles of Permian crinoids, including two new genera, from the Grupera Formation (Asselian–Sakmarian) of Chiapas, Mexico". Boletín de la Sociedad Geológica Mexicana. 72 (2): Article A280819. doi:10.18268/BSGM2020v72n2a300719. S2CID 225928145.
  88. ^ a b c d e f g h i j k l Andrew Scott Gale (2020). "Roveacrinidae (Crinoidea, Articulata) from the Cenomanian and Turonian of North Africa (Agadir Basin and Anti-Atlas, Morocco, and central Tunisia): biostratigraphy and taxonomy". Acta Geologica Polonica. 70 (3): 273–310. doi:10.24425/agp.2019.126458.
  89. ^ Marc Eléaume; Michel Roux; Michel Philippe (2020). "Discometra luberonensis sp. nov. (Crinoidea, Himerometridae), a new feather star from the Late Burdigalian". European Journal of Taxonomy (729): 121–137. doi:10.5852/ejt.2020.729.1193. S2CID 234375928.
  90. ^ Samuel Zamora; James Sprinkle; Colin D. Sumrall (2020). "A revaluation of rhipidocystid echinoderms based on a new flattened blastozoan from the Upper Ordovician of Maryland, USA". Acta Palaeontologica Polonica. 65 (3): 455–465. doi:10.4202/app.00718.2019. S2CID 219941219.
  91. ^ Peter Müller; Gerhard Hahn (2020). "Die Gattung Encrinaster (Ophiuroidea, Echinodermata) im deutschen Unter-Devon". Mainzer Geowissenschaftliche Mitteilungen. 48: 47–84.
  92. ^ C.R.C. Paul; J.C. Gutiérrez-Marco (2020). "Enodicalix (Diploporita, Aristocystitidae): A new echinoderm genus from the Middle Ordovician of Spain". Geologica Acta. 18 (3): 1–8. doi:10.1344/GeologicaActa2020.18.3. S2CID 213210693.
  93. ^ Andrew S. Gale (2020). "A new comb-star (Asteroidea, Astropectinidae) from the Upper Triassic (Carnian) of China". Zootaxa. 4861 (1): 139–144. doi:10.11646/zootaxa.4861.1.10. PMID 33055875. S2CID 222834378.
  94. ^ Fiona E. Fearnhead; Stephen K. Donovan; Joseph P. Botting; Lucy A. Muir (2020). "A lower Silurian (Llandovery) diplobathrid crinoid (Camerata) from mid-Wales". Geological Magazine. 157 (7): 1176–1180. Bibcode:2020GeoM..157.1176F. doi:10.1017/S0016756819001511. S2CID 216297348.
  95. ^ a b c J. A. Waters; J. W. Waters; P. Königshof; S. K. Carmichael; M. Ariuntogos (2020). "Famennian crinoids and blastoids (Echinodermata) from Mongolia". Palaeobiodiversity and Palaeoenvironments. 101 (3): 725–740. doi:10.1007/s12549-020-00450-3. S2CID 222096232.
  96. ^ Enrico Borghi; Paolo Stara (2020). "Revision of the genus Heterobrissus (Echinoidea), with a new species from Sardinia, and redefinition of Heterobrissus niasicus (Doderlein, 1901) in Echinopneustes n. gen". Biodiversity Journal. 11 (1): 263–287. doi:10.31396/Biodiv.Jour.2020.11.1.263-287. S2CID 219108587.
  97. ^ a b Frank Stiller (2020). "Sea lilies of the genera Holocrinus, Tollmannicrinus, and Eckicrinus (order Holocrinida) from the Anisian (Middle Triassic) of Qingyan, south-western China". PalZ. 94 (3): 545–559. doi:10.1007/s12542-019-00505-7. S2CID 209313722.
  98. ^ a b Darío G. Lazo; Graciela S. Bressan; Ernesto Schwarz; Gonzalo D. Veiga (2020). "First articulated stalked crinoids from the Mesozoic of South America: two new species from the Lower Cretaceous of the Neuquén Basin, west-central Argentina". Journal of Paleontology. 94 (4): 716–733. doi:10.1017/jpa.2020.15. S2CID 218995791.
  99. ^ Enric Forner i Valls; Manuel Saura Vilar (2020). "Revisió de l'espècie Cottaldia royoi Lambert, 1928 (Echinoidea) de l'Aptià de la conca del Maestrat". Nemus: Revista de l'Ateneu de Natura. 10: 47–58.
  100. ^ a b c Malton Carvalho Fraga; Cristina Silveira Vega (2020). "Asterozoans from the Devonian of the Paraná Basin, south Brazil". Journal of South American Earth Sciences. 97: Article 102398. Bibcode:2020JSAES..9702398F. doi:10.1016/j.jsames.2019.102398. S2CID 210637343.
  101. ^ Lea D. Numberger-Thuy; Ben Thuy (2020). "A new bathyal ophiacanthid brittle star (Ophiuroidea: Ophiacanthidae) with Caribbean affinities from the Plio-Pleistocene of the Mediterranean". Zootaxa. 4820 (1): 19–30. doi:10.11646/zootaxa.4820.1.2. PMID 33056080. S2CID 222829295.
  102. ^ Ben Thuy; Lea Numberger-Thuy; John W.M. Jagt (2020). "A new ophiacanthid brittle star (Echinodermata, Ophiuroidea) from sublittoral crinoid and seagrass communities of late Maastrichtian age in the southeast Netherlands". PeerJ. 8: e9671. doi:10.7717/peerj.9671. PMC 7450995. PMID 32904070.
  103. ^ Graeme R. Stevens (2020). "Paragonaster felli n. sp. (Echinodermata, Asterozoa) and a record of an Ophiuroid from the Early Cretaceous of New Zealand". New Zealand Journal of Geology and Geophysics. 64 (1): 83–88. doi:10.1080/00288306.2020.1767163. S2CID 225713696.
  104. ^ a b c d e f g Andrew Scott Gale; Jenny Marie Rashall; William James Kennedy; Frank Koch Holterhoff (2020). "The microcrinoid taxonomy, biostratigraphy and correlation of the upper Fredericksburg and lower Washita groups (Cretaceous, middle Albian to lower Cenomanian) of northern Texas and southern Oklahoma, USA". Acta Geologica Polonica. 71 (1): 1–52. doi:10.24425/agp.2020.132256.
  105. ^ Daniel B. Blake; Joseph Koniecki (2020). "Taxonomy and functional morphology of the Urasterellidae (Paleozoic Asteroidea, Echinodermata)". Journal of Paleontology. 94 (6): 1124–1147. doi:10.1017/jpa.2020.42. S2CID 222231799.
  106. ^ Marine Fau; Loïc Villier; Timothy A. M. Ewin; Andrew S. Gale (2020). "A revision of Ophidiaster davidsoni de Loriol and Pellat 1874 from the Tithonian of Boulogne (France) and its transfer from the Valvatacea to the new forcipulatacean genus Psammaster gen. nov". Fossil Record. 23 (2): 141–149. doi:10.5194/fr-23-141-2020. S2CID 225457036.
  107. ^ Ann W. Harris; Frank R. Ettensohn; Jill E. Carnahan-Jarvis (2020). "Paleoecology and taxonomy of Schoenaster carterensis, a new encrinasterid ophiuroid species from the Upper Mississippian (Chesterian) Slade Formation of northeastern Kentucky, USA". Journal of Paleontology. 94 (3): 531–547. doi:10.1017/jpa.2019.107. S2CID 216404128.
  108. ^ Peter Müller; Gerhard Hahn (2020). "A new large edrioasteroid from the Seifen Formation of the Westerwald, Rhenish Massif (Lower Devonian, Germany)". PalZ. 94 (4): 715–724. doi:10.1007/s12542-020-00526-7. S2CID 221463534.
  109. ^ Colin D. Sumrall; Daniel Phelps (2020). "Spiracarneyella, a new carneyellid edrioasteroid from the Upper Ordovician (Katian) of Kentucky and Ohio and comments on carneyellid heterochrony". Journal of Paleontology. 95 (3): 624–629. doi:10.1017/jpa.2020.97. S2CID 229449599.
  110. ^ S. V. Rozhnov (2020). "Streptoiocrinus gen. nov. (Disparida, Crinoidea) from the Lower and Middle Ordovician of the Leningrad Region, and Fluctuating Asymmetry of Radial Symmetry". Paleontological Journal. 54 (7): 704–714. doi:10.1134/S0031030120070114. S2CID 229292487.
  111. ^ Selina R. Cole; William I. Ausich; Mark A. Wilson (2020). "A Hirnantian holdover from the Late Ordovician mass extinction: phylogeny and biogeography of a new anthracocrinid crinoid from Estonia". Papers in Palaeontology. 7 (2): 1195–1204. doi:10.1002/spp2.1345. S2CID 228855856.
  112. ^ Alejandra Martínez-Melo; Jesús Alvarado-Ortega (2020). "Vaquerosella perrillatae sp. nov.: A Miocene species of Echinarachniidae (Echinodermata: Clypeasteroida) from Baja California Sur, Mexico". Palaeontologia Electronica. 23 (1): Article number 23(1):a14. doi:10.26879/1040. S2CID 215798225.
  113. ^ Bradley Deline; Jeffrey R. Thompson; Nicholas S. Smith; Samuel Zamora; Imran A. Rahman; Sarah L. Sheffield; William I. Ausich; Thomas W. Kammer; Colin D. Sumrall (2020). "Evolution and development at the origin of a phylum". Current Biology. 30 (9): 1672–1679.e3. doi:10.1016/j.cub.2020.02.054. PMID 32197083.
  114. ^ Elizabeth G. Clark; John R. Hutchinson; Peter J. Bishop; Derek E. G. Briggs (2020). "Arm waving in stylophoran echinoderms: three-dimensional mobility analysis illuminates cornute locomotion". Royal Society Open Science. 7 (6): Article ID 200191. Bibcode:2020RSOS....700191C. doi:10.1098/rsos.200191. PMC 7353985. PMID 32742688.
  115. ^ Adriane R. Lam; Sarah L. Sheffield; Nicholas J. Matzke (2020). "Estimating dispersal and evolutionary dynamics in diploporan blastozoans (Echinodermata) across the great Ordovician biodiversification event". Paleobiology. 47 (2): 198–220. doi:10.1017/pab.2020.24. S2CID 225637774.
  116. ^ Jennifer E. Bauer (2020). "Paleobiogeography, paleoecology, diversity, and speciation patterns in the Eublastoidea (Blastozoa: Echinodermata)". Paleobiology. 47 (2): 221–235. doi:10.1017/pab.2020.27. S2CID 225463295.
  117. ^ Sarah L. Sheffield; Colin D. Sumrall (2019). "A re-interpretation of the ambulacral system of Eumorphocystis (Blastozoa, Echinodermata) and its bearing on the evolution of early crinoids". Palaeontology. 62 (1): 163–173. doi:10.1111/pala.12396. S2CID 134585363.
  118. ^ Thomas E. Guensburg; James Sprinkle; Rich Mooi; Bertrand Lefebvre (2020). "Evolutionary significance of the blastozoan Eumorphocystis and its pseudo-arms" (PDF). Journal of Paleontology. 95 (2): 327–343. doi:10.1017/jpa.2020.84. S2CID 228841638.
  119. ^ Nicolás Mongiardino Koch; Jeffrey R. Thompson (2020). "A total-evidence dated phylogeny of Echinoidea combining phylogenomic and paleontological data". Systematic Biology. 70 (3): 421–439. doi:10.1093/sysbio/syaa069. PMID 32882040.
  120. ^ E. G. Clark; J. R. Hutchinson; D. E. G. Briggs (2020). "Three-dimensional visualization as a tool for interpreting locomotion strategies in ophiuroids from the Devonian Hunsrück Slate". Royal Society Open Science. 7 (12): Article ID 201380. Bibcode:2020RSOS....701380C. doi:10.1098/rsos.201380. PMC 7813258. PMID 33489281. S2CID 229355261.
  121. ^ T.J. Suttner; E. Kido; Ya. Ariunchimeg; G. Sersmaa; J.A. Waters; S.K. Carmichael; C.J. Batchelor; M. Ariuntogos; A. Hušková; L. Slavík; J.I. Valenzuela-Ríos; J.-C. Liao; Y.A. Gatovsky (2020). "Conodonts from Late Devonian island arc settings (Baruunhuurai Terrane, western Mongolia)". Palaeogeography, Palaeoclimatology, Palaeoecology. 549: Article 109099. Bibcode:2020PPP...549j9099S. doi:10.1016/j.palaeo.2019.03.001. S2CID 134520832.
  122. ^ a b Jerzy Dzik (2020). "Ordovician conodonts and the Tornquist Lineament". Palaeogeography, Palaeoclimatology, Palaeoecology. 549: Article 109157. Bibcode:2020PPP...549j9157D. doi:10.1016/j.palaeo.2019.04.013. S2CID 146281892.
  123. ^ a b Yong Yi Zhen (2020). "Revision of the Darriwilian (Middle Ordovician) conodonts documented by Watson (1988) from subsurface Canning Basin, Western Australia". Alcheringa: An Australasian Journal of Palaeontology. 44 (2): 217–252. doi:10.1080/03115518.2020.1737227. S2CID 218993720.
  124. ^ a b c Jian-Feng Lu; Peter Königshof (2020). "Eifelian (Middle Devonian) species of Bipennatus from the Beiliu Formation at Nalai, South China". Palaeoworld. 29 (4): 682–694. doi:10.1016/j.palwor.2019.12.002. S2CID 213882677.
  125. ^ Keyi Hu; Nicholas J. Hogancamp; Lance L. Lambert; Yuping Qi; Jitao Chen (2020). "Evolution of the conodont Diplognathodus ellesmerensis from D. benderi sp. nov. at the Bashkirian–Moscovian (lower–middle Pennsylvanian) boundary in South China". Papers in Palaeontology. 6 (4): 627–649. doi:10.1002/spp2.1309. S2CID 219447117.
  126. ^ Yong Yi Zhen; Robert S. Nicoll; Leon S. Normore; Ian G. Percival; John R. Laurie; Louisa M. Dent (2020). "Ordovician conodont biostratigraphy of the Willara Formation in the Canning Basin, Western Australia". Palaeoworld. 30 (2): 249–277. doi:10.1016/j.palwor.2020.06.006. S2CID 225694114.
  127. ^ a b Yanlong Chen; Michael M. Joachimski; Sylvain Richoz; Leopold Krystyn; Dunja Aljinović; Duje Smirčić; Tea Kolar-Jurkovšek; Xulong Lai; Zhifei Zhang (2020). "Smithian and Spathian (Early Triassic) conodonts from Oman and Croatia and their depth habitat revealed". Global and Planetary Change. 196: Article 103362. doi:10.1016/j.gloplacha.2020.103362. ISSN 0921-8181. S2CID 228976406.
  128. ^ a b c d e f Yuping Qi; James E. Barrick; Nicholas J. Hogancamp; Jitao Chen; Keyi Hu; Qiulai Wang; Xiangdong Wang (2020). "Conodont faunas across the Kasimovian–Gzhelian boundary (Late Pennsylvanian) in South China and implications for the selection of the stratotype for the base of the global Gzhelian Stage". Papers in Palaeontology. 6 (3): 439–484. doi:10.1002/spp2.1301. S2CID 219077985.
  129. ^ Jian-Feng Lu; José Ignacio Valenzuela-Ríos; Peter Königshof; Jau-Chyn Liao; Yi Wang; Wen-Kun Qie; Hong-He Xu (2020). "Emsian (Lower Devonian) conodonts from the Daliantang Formation at Daliantang, southeastern Yunnan, China". Palaeoworld. 30 (4): 659–676. doi:10.1016/j.palwor.2020.11.003. S2CID 229439740.
  130. ^ Viktor Karádi; Andrea Cau; Michele Mazza; Manuel Rigo (2020). "The last phase of conodont evolution during the Late Triassic: Integrating biostratigraphic and phylogenetic approaches". Palaeogeography, Palaeoclimatology, Palaeoecology. 549: Article 109144. Bibcode:2020PPP...549j9144K. doi:10.1016/j.palaeo.2019.03.045. S2CID 134898058.
  131. ^ Gui-chun Wu; Zhan-sheng Ji; Tea Kolar-Jurkovšek; Jian-xin Yao; Gary G. Lash (2020). "Early Triassic Pachycladina fauna newly found in the southern Lhasa Terrane of Tibet and its palaeogeographic implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 562: Article 110030. doi:10.1016/j.palaeo.2020.110030. S2CID 225151907.
  132. ^ Shunxin Zhang (2020). "Upper Cambrian and Lower Ordovician conodont biostratigraphy and revised lithostratigraphy, Boothia Peninsula, Nunavut". Canadian Journal of Earth Sciences. 57 (9): 1030–1047. Bibcode:2020CaJES..57.1030Z. doi:10.1139/cjes-2020-0006. S2CID 225514154.
  133. ^ L. G. Bondarenko; A. M. Popov (2020). "A new conodont species Scythogondolella dolosa sp. nov. from the Anasibirites nevolini Zone (Lower Triassic) of southern Primorye". Paleontological Journal. 54 (3): 287–289. doi:10.1134/S0031030120030041. S2CID 219959190.
  134. ^ Louise Souquet; Carlo Corradini; Catherine Girard (2020). "Siphonodella leiosa (Conodonta), a new unornamented species from the Tournaisian (lower Carboniferous) of Puech de la Suque (Montagne Noire, France)" (PDF). Geobios. 61: 55–60. doi:10.1016/j.geobios.2020.06.004. S2CID 225790221.
  135. ^ Sofie A. Gouwy; Thomas T. Uyeno; Alexander D. McCracken (2020). "Tortodus dodoensis, a new conodont species, and a Givetian (Middle Devonian) conodont fauna from the northern Mackenzie Mountains, northwest Canada". PalZ. 94 (2): 327–342. doi:10.1007/s12542-019-00462-1. S2CID 198137986.
  136. ^ Aneta Hušková; Ladislav Slavík (2020). "In search of Silurian/Devonian boundary conodont markers in carbonate environments of the Prague Synform (Czech Republic)". Palaeogeography, Palaeoclimatology, Palaeoecology. 549: Article 109126. Bibcode:2020PPP...549j9126H. doi:10.1016/j.palaeo.2019.03.027. S2CID 134821627.
  137. ^ Mohammad Shohel; Neo E. B. McAdams; Bradley D. Cramer; Tori Z. Forbes (2020). "Ontogenetic variability in crystallography and mosaicity of conodont apatite: implications for microstructure, palaeothermometry and geochemistry". Royal Society Open Science. 7 (7): Article ID 200322. Bibcode:2020RSOS....700322S. doi:10.1098/rsos.200322. PMC 7428274. PMID 32874630. S2CID 220383894.
  138. ^ W. Petryshen; C. M. Henderson; K. De Baets; E. Jarochowska (2020). "Evidence of parallel evolution in the dental elements of Sweetognathus conodonts". Proceedings of the Royal Society B: Biological Sciences. 287 (1939): Article ID 20201922. doi:10.1098/rspb.2020.1922. PMC 7739493. PMID 33203328. S2CID 226982208.
  139. ^ Micheli Stefanello; Leonardo Kerber; Agustin G. Martinelli; Sérgio Dias-da-Silva (2020). "A new prozostrodontian cynodont (Eucynodontia, Probainognathia) from the Upper Triassic of Southern Brazil". Journal of Vertebrate Paleontology. 40 (3): e1782415. doi:10.1080/02724634.2020.1782415. S2CID 225136429.
  140. ^ a b Frederik Spindler; Sebastian Voigt; Jan Fischer (2020). "Edaphosauridae (Synapsida, Eupelycosauria) from Europe and their relationship to North American representatives". PalZ. 94 (1): 125–153. doi:10.1007/s12542-019-00453-2. S2CID 198140317.
  141. ^ Jun Liu; Fernando Abdala (2020). "The tetrapod fauna of the upper Permian Naobaogou Formation of China: 5. Caodeyao liuyufengi gen. et sp. nov., a new peculiar therocephalian". PeerJ. 8: e9160. doi:10.7717/peerj.9160. PMC 7261480. PMID 32523808.
  142. ^ Helke B. Mocke; Leandro C. Gaetano; Fernando Abdala (2020). "A new species of the carnivorous cynodont Chiniquodon (Cynodontia, Chiniquodontidae) from the Namibian Triassic". Journal of Vertebrate Paleontology. 39 (6): e1754231. doi:10.1080/02724634.2019.1754231. S2CID 220548365.
  143. ^ Hillary C. Maddin; Arjan Mann; Brian Hebert (2020). "Varanopid from the Carboniferous of Nova Scotia reveals evidence of parental care in amniotes". Nature Ecology & Evolution. 4 (1): 50–56. doi:10.1038/s41559-019-1030-z. PMID 31900446. S2CID 209672554.
  144. ^ Christophe Hendrickx; Leandro C. Gaetano; Jonah N. Choiniere; Helke Mocke; Fernando Abdala (2020). "A new traversodontid cynodont with a peculiar postcanine dentition from the Middle/Late Triassic of Namibia and dental evolution in basal gomphodonts". Journal of Systematic Palaeontology. 18 (20): 1669–1706. doi:10.1080/14772019.2020.1804470. S2CID 221838726.
  145. ^ Frederik Spindler (2020). "Re-evaluation of an early sphenacodontian synapsid from the Lower Permian of England". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 111 (1): 27–37. doi:10.1017/S175569101900015X. S2CID 202192911.
  146. ^ a b c Mohd Shafi Bhat; Sanghamitra Ray; P. M. Datta (2020). "New cynodonts (Therapsida, Eucynodontia) from the Late Triassic of India and their significances". Journal of Paleontology. 95 (2): 376–393. doi:10.1017/jpa.2020.95. S2CID 228836405.
  147. ^ Tomasz Sulej; Grzegorz Krzesiński; Mateusz Tałanda; Andrzej S. Wolniewicz; Błażej Błażejowski; Niels Bonde; Piotr Gutowski; Maksymilian Sienkiewicz; Grzegorz Niedźwiedzki (2020). "The earliest-known mammaliaform fossil from Greenland sheds light on origin of mammals". Proceedings of the National Academy of Sciences of the United States of America. 117 (43): 26861–26867. Bibcode:2020PNAS..11726861S. doi:10.1073/pnas.2012437117. PMC 7604429. PMID 33046636. S2CID 222320190.
  148. ^ Ben T. Kligman; Adam D. Marsh; Hans-Dieter Sues; Christian A. Sidor (2020). "A new non-mammalian eucynodont from the Chinle Formation (Triassic: Norian), and implications for the early Mesozoic equatorial cynodont record". Biology Letters. 16 (11): Article ID 20200631. doi:10.1098/rsbl.2020.0631. PMC 7728676. PMID 33142088. S2CID 226238424.
  149. ^ Frederik Spindler (2020). "A faunivorous early sphenacodontian synapsid with a diastema". Palaeontologia Electronica. 23 (1): Article number 23(1):a01. doi:10.26879/1023. S2CID 211240492.
  150. ^ David S. Berman; Hillary C. Maddin; Amy C. Henrici; Stuart S. Sumida; Diane Scott; Robert R. Reisz (2020). "New primitive caseid (Synapsida, Caseasauria) from the Early Permian of Germany". Annals of Carnegie Museum. 86 (1): 43–75. doi:10.2992/007.086.0103. S2CID 216027787.
  151. ^ Adam K. Huttenlocker; Christian A. Sidor (2020). "A Basal Nonmammaliaform Cynodont from the Permian of Zambia and the Origins of Mammalian Endocranial and Postcranial Anatomy". Journal of Vertebrate Paleontology. 40 (5): e1827413. doi:10.1080/02724634.2020.1827413. S2CID 228883951.
  152. ^ Tomasz Sulej; Grzegorz Niedźwiedzki; Mateusz Tałanda; Dawid Dróżdż; Ewa Hara (2020). "A new early Late Triassic non-mammaliaform eucynodont from Poland". Historical Biology: An International Journal of Paleobiology. 32 (1): 80–92. doi:10.1080/08912963.2018.1471477. S2CID 90448333.
  153. ^ Liu, Jun (2020). "Taoheodon baizhijuni, gen. et sp. nov. (Anomodontia, Dicynodontoidea), from the upper Permian Sunjiagou Formation of China and its implications". Journal of Vertebrate Paleontology. 40 (1): e1762088. doi:10.1080/02724634.2020.1762088. S2CID 221749476.
  154. ^ David I. Whiteside; Christopher J. Duffin (2020). "New haramiyidan and reptile fossils from a Rhaetian bedded sequence close to the famous 'Microlestes' Quarry of Holwell, UK". Proceedings of the Geologists' Association. 132 (1): 34–49. doi:10.1016/j.pgeola.2020.09.003. S2CID 230569213.
  155. ^ Katrina E. Jones; Sarah Gonzalez; Kenneth D. Angielczyk; Stephanie E. Pierce (2020). "Regionalization of the axial skeleton predates functional adaptation in the forerunners of mammals". Nature Ecology & Evolution. 4 (3): 470–478. doi:10.1038/s41559-020-1094-9. PMID 32015524. S2CID 211017076.
  156. ^ Mathieu G. Faure-Brac; Jorge Cubo (2020). "Were the synapsids primitively endotherms? A palaeohistological approach using phylogenetic eigenvector maps". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1793): Article ID 20190138. doi:10.1098/rstb.2019.0138. PMC 7017441. PMID 31928185.
  157. ^ Philip Fahn-Lai; Andrew A. Biewener; Stephanie E. Pierce (2020). "Broad similarities in shoulder muscle architecture and organization across two amniotes: implications for reconstructing non-mammalian synapsids". PeerJ. 8: e8556. doi:10.7717/peerj.8556. PMC 7034385. PMID 32117627.
  158. ^ Leonidas Brikiatis (2020). "An early Pangaean vicariance model for synapsid evolution". Scientific Reports. 10 (1): Article number 13091. Bibcode:2020NatSR..1013091B. doi:10.1038/s41598-020-70117-8. PMC