2020 in archosaur paleontology

This article records new taxa of fossil archosaurs of every kind that are scheduled described during the year 2020, as well as other significant discoveries and events related to paleontology of archosaurs that are scheduled to occur in the year 2020.

List of years in archosaur paleontology
In reptile paleontology
2017
2018
2019
2020
2021
2022
2023
In paleontology
2017
2018
2019
2020
2021
2022
2023

General researchEdit

  • A study aiming to determine how mass properties and body proportions relate to each other and locomotor posture in archosaurs is published online by Bishop et al. (2020).[1]
  • A study on the brain growth in the American alligator and in the common ostrich throughout their ontogeny is published by Hu et al. (2020), who evaluate the implications of their findings for the knowledge of the development of the brain in non-avian dinosaurs.[2]
  • A study on the evolution of metabolic rates along the bird stem lineage is published by Rezende et al. (2020).[3]
  • A review of the anatomy of the respiratory systems and mechanics of breathing in living and fossil archosaurs, evaluating their physiological implications, is published by Brocklehurst et al. (2020).[4]
  • A study aiming to determine the relationship between atmospheric O2 and CO2 levels during the Late Triassic and the evolution of skeletal pneumaticity and respiratory systems in theropod dinosaurs and in paracrocodylomorphs is published by Hudgins, Uhen & Hinnov (2020).[5]
  • A study on sexual dimorphism in the skulls of extant gharials, and on its implications for the feasibility of detecting dimorphism in non-avian dinosaurs, is published by Hone et al. (2020).[6]
  • A study evaluating the impact of different sampling effects on calculations of mean von Ebner line increment width (the measure of dentin thickness divided by the mean width between von Ebner lines), tooth formation times and replacement rates in fossil archosaurs, based on data from extant American alligator, is published by Kosch & Zanno (2020).[7]
  • A study on the microstructure of teeth of Mesozoic birds and non-avian paravian theropods is published by Li et al. (2020), who evaluate the implications of their findings for the knowledge of differences in feeding ecology of early birds and closely related paravians.[8]
  • A study on the phylogenetic distribution and structural diversity of medullary bone in extant birds, reevaluating the criteria proposed to allow the identification of medullary bone in fossils of avemetatarsalians, is published by Canoville, Schweitzer & Zanno (2020).[9]
  • An archosaur egg of uncertain affinities, with eggshell containing several parallel dark bands, is reported from the Upper Cretaceous of South Korea by Choi et al. (2020), who investigate the origin of the dark bands, and name a new ootaxon Aenigmaoolithus vesicularis.[10]
  • A study on the relationship between the curvatures of ungual bones and behaviour in extant birds and squamates, evaluating its implications for the knowledge of the lifestyle of Mesozoic birds and non-avian theropods, is published by Cobb & Sellers (2020).[11]
  • Xing, Cockx & McKellar (2020) describe a large sample set of 150 specimens of the Cretaceous Burmese amber containing feathers most likely belonging to non-avian dinosaurs and enantiornithean birds.[12]

PseudosuchiansEdit

ResearchEdit

  • A study on the skeletal anatomy and bone histology of Gracilisuchus stipanicicorum, based on data from two new specimens, is published by Lecuona, Desojo & Cerda (2020).[13]
  • Redescription of the anatomy of the postcranial skeleton of Riojasuchus tenuisceps, and a study on the phylogenetic affinities of ornithosuchids, is published by von Baczko, Desojo & Ponce (2020).[14]
  • Description of a new erpetosuchid specimen from the Upper Triassic Lossiemouth Sandstone (Scotland, United Kingdom) and a review of the anatomy, taxonomy and systematics of other erpetosuchid specimens from the Lossiemouth Sandstone (all previously referred to Erpetosuchus) is published by Foffa et al. (2020).[15]
  • Description of new fossil material of Acaenasuchus geoffreyi and a study on the phylogenetic relationships of this species is published by Marsh et al. (2020).[16]
  • A three-dimensional reconstruction of the armour plates around the tail of Stagonolepis robertsoni is presented by Keeble & Benton (2020).[17]
  • Taxonomic revision, anatomical description, and a study on the phylogenetic relationships of the type and referred materials of Prestosuchus from the original collections of Friedrich von Huene is published by Desojo, von Baczko & Rauhut (2020), who transfer the species Stagonosuchus nyassicus to the genus Prestosuchus.[18]
  • A study on the skeletal anatomy and phylogenetic relationships of Heptasuchus clarki is published by Nesbitt, Zawiskie & Dawley (2020).[19]
  • A review of the crocodylomorph Triassic record in South America is published by Leardi, Yáñez & Pol (2020), who report the occurrence of a large-bodied crocodylomorph in the Ischigualasto Formation and a putative new non-crocodyliform crocodylomorph taxon from Los Colorados Formation (Argentina).[20]
  • A study on the anatomy of the braincase of Almadasuchus figarii, and on early evolution of cranial pneumaticity in Crocodylomorpha, is published by Leardi, Pol & Clark (2020).[21]
  • A study on the impact of the habitat on the evolution of body size in Crocodyliformes, based on data from extant and fossil taxa, is published by Gearty & Payne (2020).[22]
  • New fossil material of crocodylomorphs from the Birket Qarun Formation in the Fayum Depression (Egypt), including the first record of a sebecosuchian from the late Eocene of Africa, is described by Stefanic et al. (2020).[23]
  • A study on the anatomy of the skull and on the phylogenetic relationships of Araripesuchus buitreraensis, based on data from new as well as previously reported specimens, is published by Fernandez Dumont et al. (2020).[24]
  • A study on changes in the inner ear vestibular system, involved in sensing balance and equilibrium, throughout the evolutionary history of thalattosuchians is published by Schwab et al. (2020).[25]
  • A revision of the genus Steneosaurus is published by Johnson, Young & Brusatte (2020), who designate S. rostromajor as the type species of this genus, consider S. rostromajor to be a nomen dubium and propose that the genus Steneosaurus is undiagnostic.[26]
  • Description of new fossil material of Teleidosaurus calvadosii from the middle Bathonian of Ecouché (Normandy, France) and a redescription of the anatomy of this species is published by Hua (2020).[27]
  • A study on the thermophysiology of metriorhynchids, as indicated by the oxygen isotope composition of the tooth enamel phosphate, is published by Séon et al. (2020).[28]
  • Fossil material of two large-bodied metriorhynchids is reported from lower Kimmeridgian sediments in Bavaria and Baden-Württemberg (Germany) by Abel, Sachs & Young (2020), who interpret these fossils as evidence of a new lineage of large-bodied geosaurines from the Kimmeridgian and Tithonian of Europe.[29]
  • Redescription of the holotype specimen of Enaliosuchus macrospondylus, a revision of the fossil material assigned to this species, and a review of the current knowledge of metriorhynchid diversity during the Cretaceous is published by Sachs, Young & Hornung (2020).[30]
  • A study aiming to determine whether notosuchians were warm-blooded, based on data from bone histology, is published by Cubo et al. (2020), who interpret their findings as indicating that notosuchians were likely to be ectotherms.[31]
  • A study on the diversity of notosuchians, aiming to determine which factors are potentially distorting the interpretations of the diversity of this group, is published by de Celis et al. (2020).[32]
  • A study on the anatomy and biomechanics of baurusuchid skulls, evaluating their implications for the knowledge of likely predatory behaviors of baurusuchids, is published by Montefeltro et al. (2020).[33]
  • New information on the anatomy of the endocranial cavities of Campinasuchus dinizi is presented by Fonseca et al. (2020).[34]
  • A study on the anatomy of the brain and inner ear of Baurusuchus, based on data from reconstructed endocasts, is published by Dumont et al. (2020).[35]
  • Pholidosaurid fossil material, representing the most recent record of this group reported so far, is described from the Paleocene (Danian) of Ouled Abdoun Basin (Morocco) by Jouve & Jalil (2020), who also reinterpret Dakotasuchus kingi, Woodbinesuchus byersmauricei and Sabinosuchus coahuilensis as pholidosaurids, and study the diversity of tethysuchians from the Late Jurassic to the early Paleogene.[36]
  • New specimen of Susisuchus anatoceps, displaying a non-eusuchian type palate (i.e. choana not entirely bounded by the pterygoids), is described by Montefeltro et al. (2020), who evaluate the implications of this finding for the knowledge of the anatomy of this taxon and the phylogenetic position of susisuchids.[37]
  • A study on skull anatomy and phylogenetic relationships of Bernissartia fagesii is published by Martin et al. (2020).[38]
  • Reconstruction of the internal cavities of the skull of Agaresuchus fontisensis, including the cavities that contained the brain, nerves and blood vessels, is presented by Serrano‐Martínez et al. (2020).[39]
  • A study on the skeletal anatomy and phylogenetic relationships of Eocaiman cavernensis is published by Godoy et al. (2020).[40]
  • A tibia of the mylodontid sloth Pseudoprepotherium bearing 46 predation tooth marks is described from the Miocene Pebas Formation (Peru) by Pujos & Salas-Gismondi (2020), who interpret this finding as evidence of predation of a young or sub-adult Purussaurus on a mylodontid ground sloth.[41]
  • New fossil material of Mourasuchus arendsi is described from the Miocene Urumaco Formation (Venezuela) by Cidade, Rincón & Solórzano (2020), who evaluate the implications of these fossils for the knowledge of the paleobiology of this species.[42]
  • A study on the shape and biomechanical properties of the humeri of mekosuchines and extant Australian crocodiles, and on their implications for the knowledge of the locomotion of mekosuchines, is published by Stein et al. (2020).[43]
  • Redescription of the anatomy and a study on the phylogenetic relationships of Crocodylus checchiai is published by Delfino et al. (2020).[44]
  • Fossil tracks produced by large crocodylomorphs, possibly moving bipedally, are described from the Lower Cretaceous Jinju Formation (South Korea) by Kim et al. (2020), who name a new ichnotaxon Batrachopus grandis.[45]
  • A study on the impact of recognition of cryptic species of extant crocodylians on interpretations of the crocodyliform fossil record is published by Brochu & Sumrall (2020).[46]

New taxaEdit

Name Novelty Status Authors Age Type locality Country Notes Images

Alligator hailensis[47]

Sp. nov

Valid

Stout

Early Pleistocene

  United States
(  Florida)

An alligator.

Andrianavoay[48]

Gen. et comb. nov

Valid

Johnson, Young & Brusatte

Middle Jurassic (Bathonian)

Kandreho

  Madagascar

A machimosaurid teleosauroid. The type species is "Steneosaurus" baroni Newton (1893).

Bottosaurus fustidens[49]

Sp. nov

Valid

Cossette

Paleocene (Tiffanian)

Black Peaks

  United States
(  Texas)

A caiman.

Brochuchus parvidens[50]

Sp. nov

Valid

Cossette et al.

Miocene

  Kenya

A member of the family Crocodylidae.

Charitomenosuchus[48]

Gen. et comb. nov

Valid

Johnson, Young & Brusatte

Middle Jurassic (Middle Callovian)

Oxford Clay

  United Kingdom

A machimosaurid teleosauroid. The type species is "Steneosaurus" leedsi Andrews (1909).

Clovesuurdameredeor[48]

Gen. et comb. nov

Valid

Johnson, Young & Brusatte

Middle Jurassic (Bathonian)

Cornbrash

  United Kingdom

A machimosaurid teleosauroid. The type species is "Steneosaurus" stephani Hulke (1877).

Cricosaurus puelchorum[51]

Sp. nov

Valid

Herrera, Fernández & Vennari

Early Cretaceous (Berriasian)

Vaca Muerta

  Argentina

A species of Cricosaurus. Announced in 2020; the final version of the article naming it was published in 2021.  
Deinosuchus schwimmeri[52] Sp. nov Valid Cossette & Brochu Late Cretaceous (Campanian) Coffee Sand
Mooreville
  United States
(  Alabama
  Mississippi)
A species of Deinosuchus.  

Dorbignysuchus[53]

Gen. et sp. nov

Valid

Jouve et al.

Paleocene

Santa Lucía

  Bolivia

A dyrosaurid. The type species is D. niatu.

Dynamosuchus [54]

Gen. et sp. nov

Valid

Müller et al.

Late Triassic (Carnian)

Santa Maria

  Brazil

A member of the family Ornithosuchidae. The type species is D. collisensis.

 

Indosinosuchus kalasinensis[48]

Sp. nov

Valid

Johnson, Young & Brusatte

Late Jurassic (Tithonian?)

Phu Krandung

  Thailand

A teleosaurid teleosauroid.

Luciasuchus[53]

Gen. et sp. nov

Valid

Jouve et al.

Paleocene

Santa Lucía

  Bolivia

A dyrosaurid. The type species is L. lurusinqa.

Melanosuchus latrubessei[55]

Sp. nov

Valid

Souza-Filho et al.

Late Miocene

Solimões

  Brazil

A relative of the black caiman.

Neosteneosaurus[48]

Gen. et comb. nov

Valid

Johnson, Young & Brusatte

Middle Jurassic (Middle Callovian)

Oxford Clay
Marnes de Dives

  United Kingdom
  France

A machimosaurid teleosauroid. The type species is "Steneosaurus" edwardsi Eudes-Deslongchamps (1867).

Ogresuchus[56]

Gen. et sp. nov

Valid

Sellés et al.

Late Cretaceous (early Maastrichtian)

Tremp

  Spain

A sebecid crocodyliform. The type species is O. furatus. Announced in 2020; the correction including the required evidence of registration in ZooBank was published in 2021.[57]

Paludirex[58]

Gen. et sp. et comb. nov

Valid

Ristevski et al.

Pliocene and Pleistocene

  Australia

A mekosuchine. The type species is P. vincenti; genus also includes "Pallimnarchus" gracilis Willis & Molnar (1997).

Plagiophthalmosuchus[48]

Gen. et comb. nov

Valid

Johnson, Young & Brusatte

Early Jurassic (Early Toarcian)

Dudelange
Whitby Mudstone
Alum Shale

  Luxembourg
  United Kingdom

A basal teleosauroid. The type species is "Steneosaurus" gracilirostris Westphal (1961).

Proexochokefalos[48]

Gen. et comb. nov

Valid

Johnson, Young & Brusatte

Middle Jurassic (Upper Callovian)

Marnes de Dives
Calcaire de Caen
Reuchenette

  France
  Switzerland

A machimosaurid teleosauroid. The type species is "Steneosaurus" heberti Morel de Glasville, 1876; genus also includes 'S.' cf. bouchardi Sauvage (1872).

Rodeosuchus[53]

Gen. et sp. nov

Valid

Jouve et al.

Paleocene

Santa Lucía

  Bolivia

A dyrosaurid. The type species is R. machukiru.

Seldsienean[48]

Gen. et comb. nov

Valid

Johnson, Young & Brusatte

Middle Jurassic (Bathonian)

Calcaire de Caen
Great Oolite
Cornbrash
Forest Marble

  France
  United Kingdom

A machimosaurid teleosauroid. The type species is "Steneosaurus" megistorhynchus Saint-Hilaire (1866).

Thalattosuchus[59]

Gen. et comb. nov

Valid

Young et al.

Jurassic (Callovian/Oxfordian)

Marnes de Dives
Oxford Clay

  France
  United Kingdom

A metriorhynchid crocodylomorph; a new genus for "Crocodilus" superciliosus Blainville in Eudes-Deslongchamps (1852).

 

Non-avialan dinosaursEdit

ResearchEdit

GeneralEdit

  • A study on the palynological record from the Carnian–Norian transition in the western Barents Sea region is published by Klausen, Paterson & Benton (2020), who interpret their findings as indicating that major sea‐level changes across the vast delta plains situated in the northern Pangaea might have triggered terrestrial turnovers during the Carnian–Norian transition and facilitated the gradual rise of the dinosaurs to ecosystem dominance.[60]
  • A study comparing and testing for correlation between rates of morphological evolution and extinction at the species level in non-avian dinosaurs is published by Crouch (2020).[61]
  • A study on the biogeography of the Cretaceous Australian dinosaur fauna is published by Kubo (2020).[62]
  • A study assessing the accuracy and precision of two major approaches to body mass estimation in non-avian dinosaurs is published by Campione & Evans (2020).[63]
  • A study on the relationships between trabecular bone architecture and its mechanical properties in dinosaurs is published by Aguirre et al. (2020).[64]
  • A study on small dinosaur tracks from the Lower Jurassic Portland Formation (Connecticut, United States), aiming to reconstruct the foot motions of the trackmaker, is published by Falkingham, Turner & Gatesy (2020).[65]
  • A review of the Late Cretaceous dinosaur tracksites of Bolivia is published by Meyer et al. (2020), who describe new dinosaur tracksites from the Chuquisaca and Potosi departments, and report parallel trackways of subadult ankylosaurs interpreted as evidence of social behavior amongst these dinosaurs.[66]
  • A study on the evolutionary history of dinosaur integument, aiming to determine the most likely ancestral integumentary condition in dinosaurs, is published by Campione, Barrett & Evans (2020).[67]
  • A study aiming to determine dinosaur body temperatures on the basis of data from fossil eggshells, comparing them with paleoenvironmental temperatures, and evaluating their implications for the knowledge of dinosaur thermoregulation, is published by Dawson et al. (2020).[68]
  • A study on body temperatures of Late Cretaceous sauropods and theropods from western and central India, based on data from fossil eggshells, is published by Laskar et al. (2020).[69]
  • Evidence for an originally non-biomineralized, soft-shelled nature of eggs of Mussaurus and Protoceratops is presented by Norell et al. (2020), who argue that the first dinosaur egg was soft-shelled, and that the calcified, hard-shelled dinosaur egg evolved independently at least three times throughout the Mesozoic era;[70] their interpretation of a soft Mussaurus eggshell is subsequently contested by Choi et al. (2022).[71][72]
  • A study on the trace elements and isotopic compositions of eggshells of dinosaur eggs from the Cretaceous Zhaoying Formation (Henan, China), evaluating their implications for reconstructions of local paleoenvironment, is published by He et al. (2020).[73]
  • A study on the affinities of putative gekkotan eggshells from the Late Cretaceous of Europe is published by Choi et al. (2020), who interpret the fossil material of Pseudogeckoolithus as theropod eggshells.[74]
  • Remains of small theropod eggs, providing new information on the diversity of small dinosaurs in the Hyogo region (Japan), are reported from the Cretaceous (Albian) of the Kamitaki Egg Quarry (Ohyamashimo Formation) by Tanaka et al. (2020), who name new ootaxa Himeoolithus murakamii (the smallest non-avian theropod egg known to date), Nipponoolithus ramosus and Subtiliolithus hyogoensis.[75]
  • Chapelle, Fernandez & Choiniere (2020) evaluate the possibility of estimating the developmental stage of dinosaur embryos, on the basis of a study of skull ossification sequences in embryos of Massospondylus carinatus and extant saurians.[76]
  • Fossil remains of a member or a relative of the genus Scelidosaurus and of an indeterminate neotheropod are described from the Lower Jurassic Lias Group (Northern Ireland) by Simms et al. (2020), representing the first non-avian dinosaur remains reported from Ireland.[77]
  • Prasad & Parmar (2020) describe fossil teeth of ornithischian and theropod dinosaurs (including five morphotypes of putative dromaeosaurid teeth) from the Middle Jurassic Kota Formation, providing new information on the Jurassic dinosaur fauna of India.[78]
  • Two sacral vertebrae representing the oldest record of fusion of these vertebrae among dinosaurs are described from the Upper Triassic Candelária Sequence (Brazil) by Moro et al. (2020), who also review the occurrence of sacral fusion in dinosaurs and their close relatives.[79]
  • A study aiming to test whether non-avian dinosaurs were in long-term decline prior to the Cretaceous–Paleogene extinction event is published by Bonsor et al. (2020);[80] the study is subsequently criticized by Sakamoto, Benton & Venditti (2021).[81]
  • A study on the causes of extinction of non-avian dinosaurs at the end of the Cretaceous, evaluating dinosaur habitability in the wake of climatic perturbations caused by various asteroid impact and Deccan volcanism scenarios, is published by Chiarenza et al. (2020).[82]

SaurischiansEdit

  • A study on the skeletal anatomy and phylogenetic relationships of Daemonosaurus chauliodus is published by Nesbitt & Sues (2020).[83]
  • A study on the evolutionary trends and functional relationships between giant body size and hip anatomy in saurischians is published by Tsai et al. (2020).[84]
  • A study on the metabolism of Coelophysis and Plateosaurus, aiming to determine whether the absence of large sauropodomorph dinosaurs in the tropical to subtropical latitudes during the Late Triassic (e.g. the Chinle Formation) was caused by physiological limitations, is published by Lovelace et al. (2020).[85]
  • A study on locomotion in non-avian theropods, aiming to determine the selective pressures that influenced evolution of limb length and proportions of limb components in theropods, is published by Dececchi et al. (2020).[86]
  • A study on the growth strategies of theropod dinosaurs, with a focus on gigantic tyrannosaurids and carcharodontosaurids, is published by Cullen et al. (2020).[87]
  • The discovery of sternal plates of Tawa hallae from the Late Triassic of New Mexico and Arizona, representing the oldest known dinosaur sternal plates described so far, is reported by Bradley et al. (2020), who note the presence of morphological features similar to sternal traits in avialans.[88]
  • A study on the anatomy and phylogenetic relationships of Dilophosaurus wetherilli, based on data from the holotype, referred, and previously undescribed specimens from the Kayenta Formation, is published by Marsh & Rowe (2020).[89]
  • Redescription of the anatomy, revision of the taxonomy and a study on the phylogenetic relationships of the genus Sarcosaurus is published by Ezcurra et al. (2020).[90]
  • New fossil material of theropod dinosaurs representing a wide taxonomic range is reported from the Late Jurassic of the Langenberg Quarry (Lower Saxony, Germany) by Evers & Wings (2020), who interpret these fossils as evidence of the presence of several taxa of theropods in the Late Jurassic archipelago in the area of Central Europe.[91]
  • Teeth attributed to the genus Ceratosaurus are described from the Late Jurassic Tacuarembó Formation (Uruguay) by Matías et al., (2020).[92]
  • A vertebra of an elaphrosaurine theropod is described from the Lower Cretaceous (Albian) Eumeralla Formation (Victoria, Australia) by Poropat et al. (2020), representing the first record of Elaphrosaurinae from Australia reported so far.[93]
  • New theropod fossil material is reported from the Griman Creek Formation by Brougham, Smith & Bell (2020), who interpret it as evidence of the presence of noasaurids in Australia during the Cretaceous.[94]
  • A study on the bone microstructure and growth dynamics of Vespersaurus paranaensis is published by Souza et al. (2020).[95]
  • A study on a row of large foramina on the external surface of the skull of Skorpiovenator bustingorryi is published by Cerroni et al. (2020), who report evidence indicating that these foramina were linked to an internal canal that ran across the nasal bones, which they interpret as indicative of the presence of blood vessels and nerves, and attempt to determine possible biological significance of this neurovascular system.[96]
  • A study on the anatomy of the skull of Carnotaurus sastrei is published by Cerroni, Canale & Novas (2020).[97]
  • Almost complete skeleton of Majungasaurus crenatissimus preserving evidence of multiple pre-mortem pathologies is described from the Upper Cretaceous Maevarano Formation (Madagascar) by Gutherz et al. (2020), who interpret these pathologies as most likely to be the result of multiple non-fatal events experienced during the life of the individual, rather than a single traumatic incident.[98]
  • Hornung (2020) interprets the holotype specimen of "Ornithocheirus" hilsensis as a partial phalanx of a large-sized theropod, making it one of the earliest dinosaur discoveries in Germany and one of the few records of large-sized theropods near the Valanginian/Hauterivian boundary of Central Europe.[99]
  • Pereira et al. (2020) describe theropod fossil material from the Albian-Cenomanian Açu Formation (Brazil), and evaluate the diversity of theropods from this formation.[100]
  • Fragmentary maxilla of a member of the genus Torvosaurus is described from the Middle Jurassic (Callovian) Ornatenton Formation (Germany) by Rauhut et al. (2020), representing the first occurrence of this genus from Germany and the oldest record of Torvosaurus reported so far.[101]
  • A study on the formation time and replacement rates of spinosaurid teeth from the Kem Kem Group (Morocco), comparing them to those of other archosaurs and evaluating their palaeoecological implications, is published by Heckeberg & Rauhut (2020).[102]
  • A study on the anatomy of the braincase of Irritator challengeri, and on its implications for the knowledge of the neuroanatomy and ecology of this dinosaur, is published by Schade, Rauhut & Evers (2020).[103]
  • A study on the anatomy of the tail of Spinosaurus aegyptiacus is published by Ibrahim et al. (2020), who present evidence of tall neural spines and elongate chevrons forming a large, flexible fin-like organ, interpreted by the authors as evidence of adaptation to tail-propelled aquatic locomotion.[104]
  • A study on the taxonomic status of spinosaurs from the Kem Kem Group (Morocco) is published by Smyth, Ibrahim & Martill (2020), who consider Oxalaia quilombensis, Spinosaurus maroccanus, and Sigilmassasaurus brevicollis to be junior synonyms of Spinosaurus aegyptiacus.[105]
  • Beevor et al. (2020) report a new locality near Tarda on the northern margin of the Tafilalt (Morocco) dominated by dental remains of Spinosaurus, and interpret the high abundance of spinosaur teeth compared to remains of terrestrial dinosaurs as evidence supporting the interpretation of Spinosaurus as an aquatic animal.[106]
  • A study on the anatomy of teeth of Sinraptor dongi, comparing it with dentition of other theropods and evaluating its implications for the knowledge of the feeding ecology of S. dongi, is published by Hendrickx et al. (2020).[107]
  • A study on theropod bite marks on Late Jurassic vertebrate fossils from the Mygatt-Moore Quarry (Colorado, United States), the identification of the trace makers and their feeding ecology is published by Drumheller et al. (2020), who report possible evidence of cannibalism in Allosaurus.[108]
  • A revision of putative carcharodontosaurid teeth from the Upper Cretaceous Bauru Group (Brazil) is published by Delcourt et al. (2020), who interpret the studied fossil material as more likely to belong to abelisaurid theropods.[109]
  • A study on an indeterminate megaraptoran specimen from the Winton Formation (Australia) is published by White et al. (2020), who interpret this finding as evidence of either ontogenetic or intraspecific variation in Australovenator, or the presence of a second megaraptorid taxon in the Winton Formation.[110]
  • Two partial skeletons of large-bodied megaraptorid theropods, representing the most ancient unquestionable records of Megaraptoridae from South America reported so far, are described from the Upper Cretaceous (CenomanianTuronian) Bajo Barreal Formation (Argentina) by Lamanna et al. (2020).[111]
  • A study on the pneumaticity of the sacrum and tail of Aoniraptor libertatem, and on its implications for the knowledge of the evolution of pneumaticity through Theropoda, is published by Rolando, Marsà & Novas (2020).[112]
  • Pol & Goloboff (2020) present a protocol that identifies unstable taxa that decrease support measures in the phylogenetic analyses, and explore a dataset of coelurosaurian relationships published by Pei et al. (2020)[113] using this protocol.[114]
  • A study on the biogeography of coelurosaurian theropods is published by Ding et al. (2020).[115]
  • A study on the endocranial anatomy of Bistahieversor sealeyi, evaluating its implications for the knowledge of the evolution of the brains and sinuses of tyrannosauroids, is published by McKeown et al. (2020).[116]
  • A metatarsal bone of a young tyrannosaurid theropod, assigned to a very small juvenile Gorgosaurus is described from the Campanian Dinosaur Park Formation (Alberta, Canada) by Yun (2020).[117]
  • A frontal bone of a subadult Daspletosaurus torosus is described from the Campanian Dinosaur Park Formation (Alberta, Canada) by Yun (2020).[118]
  • A study on the proposed autapomorphies of Dynamoterror dynastes is published by Yun (2020), who determined a taxonomic name to be a nomen dubium.[119]
  • A study on the bone microstructure of two half-grown specimens of Tyrannosaurus rex, evaluating its implications for the knowledge of the early life history of members of this species and the taxonomic validity of Nanotyrannus lancensis, is published by Woodward et al. (2020).[120]
  • A study on changes in skeleton of Tyrannosaurus rex during its growth, aiming to assign known specimens of this taxon to specific growth categories, is published by Carr (2020).[121]
  • A study on the pathologies observed in the caudal vertebrae and left fibula of the Tyrannosaurus rex specimen FMNH PR2081 ("Sue") is published by Hamm et al. (2020), who diagnose this specimen as affected by osteomyelitis.[122]
  • A study on the anatomy of the integumentary structures of Juravenator starki and Sciurumimus albersdoerferi from the Kimmeridgian Torleite Formation of southern Germany is published by Foth et al. (2020).[123]
  • A unique scale type with distinctive circular nodes, interpreted as integumentary sense organs analogous to those in modern crocodylians, is reported from the tail of Juravenator starki by Bell & Hendrickx (2020).[124]
  • A study on diversity and possible functions of the epidermal covering of Juravenator starki is published online by Bell & Hendrickx (2020).[125]
  • A compsognathid specimen preserved with elaborate integumentary structures was described from the Lower Cretaceous Crato Formation (Brazil);[126] the announcement of its discovery sparked a legal and ethical controversy regarding the circumstances of the fossil's export from Brazil, and the publication describing the specimen was subsequently withdrawn.[127]
  • A study on the pneumatic chambers in the vertebrae of Nothronychus mckinleyi is published by Smith, Sanders & Wolfe (2020).[128]
  • A review of the research on the phylogenetic relationships, morphology and locomotory (including aerial) capabilities of scansoriopterygids, and on their implications for the knowledge of the origin of oviraptorosaurs, is published by Sorkin (2020).[129]
  • Partial skeleton of an oviraptorosaur theropod closely associated with two eggs (one within the pelvic canal and the other just posterior to it) is described from the Upper Cretaceous Nanxiong Formation (China) by Jin et al. (2020), who note the complete absence of medullary bone in this egg-bearing specimen.[130]
  • New fossil material of Chirostenotes pergracilis, representing the first associated mandibular and postcranial material of a caenagnathid from the Dinosaur Park Formation (Alberta, Canada), is described by Funston & Currie (2020), who evaluate the implications of these fossils for the knowledge of taxonomy and diversity of caenagnathids from the Dinosaur Park Formation and the growth patterns of Chirostenotes pergracilis.[131]
  • Description of new caenagnathid fossil material from the Dinosaur Park Formation (Alberta, Canada), providing new information on pelvic anatomy of caenagnathids, is published by Rhodes, Funston & Currie (2020).[132]
  • Description of a partial skeleton of a caenagnathid theropod from the Upper Cretaceous Hell Creek Formation (Montana, United States) and study on the bone histology of this specimen is published by Cullen et al. (2020), who evaluate the implications of their findings for the knowledge of the utility of size as a determinant for referral of incomplete or fragmentary skeletal remains to specific or new coelurosaur taxa.[133]
  • An adult oviraptorid specimen preserved atop an egg clutch that contains embryonic remains, representing the first such finding among non-avialan dinosaurs, is described by Bi et al. (2020).[134]
  • The first probable deinonychosaur (likely troodontid) tracks from Canada are described from the Campanian Wapiti Formation (Alberta) by Enriquez et al. (2020).[135]
  • New theropod teeth, possibly belonging to members of the family Dromaeosauridae and representing the first record of that group from the southern Junggar Basin, are reported from the Upper Jurassic Qigu Formation (China) by Maisch & Matzke (2020).[136]
  • A study on the facial pneumatic features of members of the family Dromaeosauridae, and on the evolutionary history of these features, is published by Brownstein (2020).[137]
  • A study on the differences in the locomotor and predatory specializations of eudromaeosaurs and unenlagiines, as indicated by the anatomy of their hindlimbs, is published by Gianechini, Ercoli & Díaz‐Martínez (2020).[138]
  • A study on eudromaeosaurian maxillae, aiming to determine the extent to which maxillae can be used to draw ecological and phylogenetic inferences about dromaeosaurids, is published by Powers, Sullivan & Currie (2020).[139]
  • Evidence of sequential wing feather molt in a specimen of Microraptor is presented by Kiat et al. (2020), who evaluate the implications of this finding for the knowledge of the ecology and locomotion of this theropod.[140]
  • Partial dentary of a juvenile saurornitholestine dromaeosaurid is described from the Upper Cretaceous Prince Creek Formation (Alaska, United States) by Chiarenza et al. (2020), representing the first confirmed non-dental fossil specimen of a member of Dromaeosauridae in the Arctic.[141]
  • The first cranial material of Saurornitholestes is described from the Judith River Formation (Montana, United States) by Wilson & Fowler (2020), representing the easternmost occurrence of this genus reported so far.[142]
  • A study testing for dietary changes through growth in Deinonychus antirrhopus is published by Frederickson, Engel & Cifelli (2020).[143]
  • A study on the anatomy of the hindbrain and inner ear of Velociraptor mongoliensis, evaluating its implications for the knowledge of the trophic ecology and sensory aptitude of this theropod, is published by King et al. (2020).[144]
  • A study aiming to determine the thermoregulatory efficiency of contact incubation of partially buried eggs by Troodon formosus is published by Hogan & Varricchio (2020).[145]
  • Description of the anatomy of the skeleton of Rahonavis ostromi is published by Forster et al. (2020).[146]
  • A study on the flight potential and gliding capabilities of Yi qi and Ambopteryx longibrachium is published by Dececchi et al. (2020).[147]
  • A study on the chemical preservation of fossil feathers preserved in association with the skeleton of Anchiornis huxleyi is published by Cincotta et al. (2020).[148]
  • A study on the quality of the sauropodomorph fossil record is published by Cashmore et al. (2020).[149]
  • A study on the anatomy of the endocranial cavity and the probable anatomy of the brain of Buriolestes schultzi is published by Müller et al. (2020).[150]
  • Description of new fossil material of Thecodontosaurus antiquus, providing new information on the skeletal anatomy of this species, is published by Ballell, Rayfield & Benton (2020), who evaluate the implications of these fossils for the knowledge of the paleoecology of Thecodontosaurus and the taxonomy of Late Triassic British sauropodomorphs.[151]
  • A study on the anatomy of the braincase of Thecodontosaurus antiquus is published by Ballell et al. (2020), who also reconstruct the anatomy of the brain of this dinosaur, and evaluate its implications for the knowledge of the paleobiology of Thecodontosaurus.[152]
  • Greenfield et al. (2020) reviewed the nomenclature of Coloradisaurus and determined that the authorship should be attributed to Peter Galton and not David Lambert.[153]
  • A study on the morphological variation of Plateosaurus occurring at the genus level, as indicated by data on the shape variation of a sample of limb long bones, is published by Lefebvre et al. (2020).[154]
  • New skeleton of Plateosaurus, representing the first substantially complete specimen of a juvenile Plateosaurus and the first such specimen with a body size significantly below the known adult size range of this taxon, is described from the Norian Klettgau Formation (Switzerland) by Nau et al. (2020).[155]
  • The second-known specimen of Ignavusaurus rachelis, extending known geographic range of this species, is described from the Likhoele Mountain near Mafeteng (Upper Elliot Formation, Lesotho) by Bodenham & Barrett (2020).[156]
  • A study on teeth development in embryos of Lufengosaurus is published by Reisz et al. (2020).[157]
  • A study on the histology of the humeri of two basal sauropod specimens from the Jurassic of Niger and Thailand, reporting evidence of a layer of the radial fibrolamellar bone buried in the outer cortex of these bones, is published by Jentgen-Ceschino, Stein & Fischer (2020), who interpret their findings as evidence of these sauropods being affected by pathologies similar to Ewing's sarcoma and avian osteopetrosis or haemangioma.[158]
  • A study comparing articulation and range of motion of necks of extant giraffes and Spinophorosaurus nigerensis is published by Vidal et al. (2020).[159]
  • A study on the body plan, functional morphology of the neck and feeding capabilities of Spinophorosaurus nigerensis is published by Vidal et al. (2020).[160]
  • A study on the skeletal anatomy and phylogenetic relationships of Klamelisaurus gobiensis is published by Moore et al. (2020).[161]
  • Two vertebrae of diplodocoid sauropods are described from the Middle Jurassic (Callovian) Podosinki Formation (Russia) by Averianov & Zverkov (2020), who evaluate the implications of this finding for the knowledge of the initial radiation of Diplodocoidea.[162]
  • Fossils of a member of Flagellicaudata are described from the Middle Jurassic Otlaltepec Formation (Mexico) by Rivera-Sylva & Espinosa-Arrubarrena (2020), representing the first conclusive evidence of the occurrence of Flagellicaudata in this part of North America throughout the Bathonian-Callovian.[163]
  • Baron (2020) argues that the elongate tails of diplodocid sauropods were used for herding co-ordination.[164]
  • A review of the distribution of the Cretaceous fossils of rebbachisaurid sauropods is published by Pereira et al. (2020), who report the first occurrence of a rebbachisaurid from the Açu Formation (Potiguar Basin, Brazil), and discuss its paleobiogeographic implications.[165]
  • A reconstruction of the epaxial and hypaxial musculature of the tail of Giraffatitan brancai is published by Díez Díaz et al. (2020).[166]
  • A humerus of a titanosauriform sauropod, likely belonging to a member or a relative of the genus Duriatitan, is described from the Tithonian-Berriasian Rupelo Formation (Burgos, Spain) by Torcida Fernández-Baldor, Canudo & Huerta (2020).[167]
  • A large sauropod humerus, probably belonging to a member of the species Fusuisaurus zhaoi, is described from the Lower Cretaceous Xinlong Formation (Guangxi, China) by Mo et al. (2020).[168]
  • A study on sauropod teeth from the Cenomanian Griman Creek Formation (Australia), evaluating their implications for the knowledge of the diversity and palaeoecology of the sauropods from this formation, is published by Frauenfelder et al. (2020), who report evidence of the presence of at least two taxa of non-titanosaur titanosauriforms and a possible titanosaur.[169]
  • A study on histology and affinities of two bone fragments from the Upper Cretaceous (lower Santonian to/or lower Campanian) of the Western Srednogorie (Bulgaria) is published by Nikolov et al. (2020), who interpret these fossils as bones of a titanosaur sauropod, coming from a time interval when sauropods are rare in the fossil record of Europe.[170]
  • An almost intact embryonic skull of a titanosaur sauropod is described from the Upper Cretaceous Allen Formation (Argentina) by Kundrát et al. (2020), who interpret this specimen as indicating that titanosaurs hatched with a temporary monocerotid (single-horned) face, retracted narial openings, and early binocular vision.[171]
  • Evidence of aggressive case of osteomyelitis affecting a titanosaur specimen from the Upper Cretaceous Adamantina Formation (Brazil) is reported by Aureliano et al. (2020), who also report the preservation of tens of parasites throughout the specimen’s vascular canals.[172]
  • Description of the skeletal anatomy of Savannasaurus elliottorum is published by Poropat et al. (2020).[173]
  • A study on the anatomy of the brain and inner ear of Narambuenatitan palomoi is published by Paulina-Carabajal, Filippi & Knoll (2020).[174]
  • Voegele et al. (2020) reconstruct the forelimb and shoulder girdle musculature of Dreadnoughtus schrani,[175] as well as the pelvic girdle and hindlimb musculature of this sauropod.[176]
  • A study on the anatomy of the appendicular skeleton of Patagotitan mayorum is published by Otero, Carballido & Moreno (2020), who also provide a new body mass estimate of this species.[177]

OrnithischiansEdit

  • A study on the phylogenetic relationships of the silesaurids is published by Müller & Garcia (2020), who recover silesaurids as an evolutionary grade of early ornithischian dinosaurs.[178]
  • A study on the microstructure of the tooth enamel of Manidens condorensis, evaluating its implications for the knowledge of the evolution of tooth enamel in Ornithischia, is published by Becerra & Pol (2020).[179]
  • A study on tooth replacement in Manidens condorensis is published by Becerra et al. (2020).[180]
  • New specimens of Scutellosaurus lawleri, providing new information on the anatomy of this species, are described from the Lower Jurassic Kayenta Formation (Arizona, United States), by Breeden & Rowe (2020).[181]
  • Studies on the structure and development of the dermal skeleton of Scelidosaurus harrisonii, the neurocranium and the associated principal sensory systems of this dinosaur, its locomotor abilities, breathing, and on its phylogenetic relationships, are published by Norman (2020).[182][183]
  • Description of the dermal armor of Stegosaurus, revision of the various reconstructions of the dermal armor of S. ungulatus and S. stenops, and a summary of the evidence for and against the different functions proposed for the plates and spines of Stegosaurus is published by Galton (2020).[184]
  • An isolated caudal vertebra representing the first evidence of the presence of an ankylosaur in the Upper Jurassic Qigu Formation (China) is described by Augustin et al. (2020).[185]
  • A study aiming to determine the social lifestyle of ankylosaurs, as indicated by anatomy, taphonomic history, ontogenetic composition of the mass death assemblages and inferred habitat characteristics, is published by Botfalvai, Prondvai & Ősi (2020).[186]
  • Redescription of the anatomy of the holotype specimens of Hylaeosaurus armatus and Polacanthus foxii, and a study on the taxonomy of all ankylosaur specimens from the British Wealden Supergroup, is published by Raven et al. (2020).[187]
  • Fossil stomach contents preserved within the abdominal cavity of the holotype specimen of Borealopelta markmitchelli are described by Brown et al. (2020).[188]
  • Description of the anatomy of braincases of three specimens of Bissektipelta archibaldi is published by Kuzmin et al. (2020).[189]
  • A study on the phylogenetic relationships of cerapodan ornithischians is published by Dieudonné et al. (2020).[190]
  • A study on the bone histology and probable life history of Jeholosaurus shangyuanensis is published by Han et al. (2020).[191]
  • A study on the bone histology and growth patterns of Trinisaura santamartaensis and Morrosaurus antarcticus is published by Garcia-Marsà et al. (2020).[192]
  • Redescription of Eucercosaurus tanyspondylus and Syngonosaurus macrocercus from the Cenomanian Cambridge Greensand (United Kingdom) is published by Barrett & Bonsor (2020), who interpret both these taxa as described on the basis of fossils of iguanodontian dinosaurs possessing no clear diagnostic features.[193]
  • A study on the bone microstructure of Mongolian hadrosauroid dinosaurs, evaluating its implications for the knowledge of growth strategies and evolution of gigantism in hadrosauroids, is published by Słowiak et al. (2020).[194]
  • Brownstein (2020) describes new fossil material of hadrosauromorphs from the Maastrichtian New Egypt Formation (New Jersey, United States), including a skeleton of a specimen which was probably a small-bodied adult hadrosauromorph from a lineage outside Hadrosauridae and fossils of juvenile hadrosauromorphs.[195]
  • A study on the anatomy of the tail of Tethyshadros insularis is published by Dalla Vecchia (2020).[196]
  • A study on pathologies affecting two hadrosaurid vertebrae from the Dinosaur Provincial Park (Alberta, Canada) is published by Rothschild et al. (2020), who consider Langerhans cell histiocytosis to be the most likely diagnosis, making it the first case of LCH recognized in a dinosaur so far.[197]
  • A study on a set of fused hadrosaur vertebrae with fragments of a tooth of Tyrannosaurus rex scattered through the intervertebral space is published by Rothschild et al. (2020), who interpret this findings as evidence indicating that the space between the vertebrae was not occupied by intervertebral discs, but rather by an articular space similar to that in modern reptiles.[198]
  • A study on the migratory behaviours of hadrosaurs, as indicated by strontium isotope data from hadrosaur teeth from the Late Cretaceous of Alberta (Canada), is published by Terrill, Henderson & Anderson (2020).[199]
  • A study aiming to determine whether body size and ontogenetic age were strongly correlated in hadrosaurid dinosaurs from the Dinosaur Park Formation (Alberta, Canada), and to test the hypothesis of a rapid growth rate of hadrosaurids from the Dinosaur Park Formation relative to those from the Two Medicine Formation, is published by Wosik et al. (2020).[200]
  • Partial forelimb of a large hadrosaurid with similarities to forelimbs of lambeosaurines is described from the Maastrichtian New Egypt Formation (New Jersey, United States) by Brownstein & Bissell (2020), who interpret this findings as evidence of the presence of a morphotype of large hadrosauromorph with elongate forelimbs in the latest Maastrichtian of eastern North America.[201]
  • A study on the anatomy of fossils of Ugrunaaluk kuukpikensis and on the taxonomic status of this species is published by Takasaki et al. (2020), who consider Ugrunaaluk to be a junior synonym of the genus Edmontosaurus.[202]
  • Evidence of pre-mortem traumatic injuries in multiple skeletal elements (especially in tail vertebrae) of Edmontosaurus annectens from the Lance Formation (Wyoming, United States) is presented by Siviero et al. (2020).[203]
  • A study on the taphonomy and depositional history of an extensive Maastrichtian bonebed in the Lance Formation of eastern Wyoming dominated by fossils of Edmontosaurus annectens is published by Snyder et al. (2020).[204]
  • A study on the interior structure of the nasal spine of Tsintaosaurus spinorhinus is published by Zhang et al. (2020).[205]
  • Description of new fossil material of Pararhabdodon isonensis, and a study on the bone histology and life history of this taxon, is published by Serrano et al. (2020).[206]
  • A study on the morphology and likely causes of the injuries in the holotype specimen of Parasaurolophus walkeri is published by Bertozzo et al. (2020).[207]
  • Evidence of preservation of proteins, chromosomes and chemical markers of DNA in the cartilage of a nestling of Hypacrosaurus stebingeri from the Campanian Two Medicine Formation (Montana, United States) is presented by Bailleul et al. (2020).[208]
  • A study on patterns of morphological variation of the ceratopsian frill, and on its implications for the knowledge of the ontogeny and evolution of this structure, is published by Prieto‐Márquez et al. (2020).[209]
  • New protoceratopsid specimens are described from the Üüden Sair and Zamyn Khond localities (Mongolia) by Czepiński (2020), who evaluates the implications of these specimens for correlation of fossil sites of the Djadochta Formation, and interprets one of these specimens as probable evidence of an anagenetic transition from Protoceratops andrewsi to Bagaceratops rozhdestvenskyi.[210]
  • Evidence of osteosarcoma affecting a specimen of Centrosaurus apertus, representing the first case of osteosarcoma in a dinosaur reported so far, is presented by Ekhtiari et al. (2020).[211]
  • Description of an immature specimen of Styracosaurus albertensis (the smallest known for this species) from the Campanian Dinosaur Park Formation (Alberta, Canada), and a study comparing the ontogeny and individual variation of the skulls in Styracosaurus and Centrosaurus, is published by Brown, Holmes & Currie (2020).[212]
  • A study on the braincases of two specimens of Triceratops is published by Sakagami & Kawabe (2020), who present three-dimensional virtual renderings of the endocasts of the cranial cavities and bony labyrinths, and compare the endocranial endocasts of specimens of Triceratops and other ceratopsians.[213]

New taxaEdit

Name Novelty Status Authors Age Type locality Country Notes Images

Abdarainurus[214]

Gen. et sp. nov

Valid

Averianov & Lopatin

Late Cretaceous

Alagteeg

  Mongolia

A sauropod dinosaur, probably a basal member of Titanosauria. The type species is A. barsboldi.

 

Adratiklit[215]

Gen. et sp. nov

Valid

Maidment et al.

Middle Jurassic (Bathonian)

El Mers II

  Morocco

A member of Stegosauria. The type species is A. boulahfa. Announced in 2019; the final version of the article naming was published in 2020.

 
Ajnabia[216] Gen. et sp. nov Valid Longrich et al. Late Cretaceous (Maastrichtian) Ouled Abdoun Basin   Morocco A lambeosaurine hadrosaurid. The type species is A. odysseus.

Allosaurus jimmadseni[217]

Sp. nov

Valid

Chure & Loewen

Late Jurassic (Kimmeridgian)

Morrison

  United States
(  Colorado
  Utah
  Wyoming)

A species of Allosaurus.

Amanzia[218]

Gen. et comb. nov

Valid

Schwarz et al.

Late Jurassic (Kimmeridgian)

Reuchenette

  Switzerland

A non-neosauropod eusauropod of uncertain phylogenetic placement. The type species is "Ornithopsis" greppini Huene (1922).

 

Analong[219]

Gen. et sp. nov

Valid

Ren et al.

Middle Jurassic

Chuanjie

  China

A mamenchisaurid sauropod. The type species is A. chuanjieensis.

Anhuilong[220]

Gen. et sp. nov

Valid

Ren, Huang & You

Middle Jurassic

Hongqin

  China

A mamenchisaurid sauropod. The type species is A. diboensis. Announced in 2018; the final version of the article naming it was published in 2020.

Aratasaurus[221][222] Gen. et sp. nov Valid Sayão et al. Early Cretaceous (Albian) Romualdo   Brazil A basal member of Coelurosauria. The type species is A. museunacionali.  
Bagualia[223] Gen. et sp. nov Valid Pol et al. Early Jurassic (Toarcian) Cañadón Asfalto   Argentina An early member of Eusauropoda. The type species is B. alba.

Beg[224]

Gen. et sp. nov

Valid

Yu et al.

Latest Early or earliest Late Cretaceous

Ulaanoosh

  Mongolia

An early member of Neoceratopsia. The type species is B. tse.

Bravasaurus[225]

Gen. et sp. nov

Valid

Hechenleitner et al.

Late Cretaceous (Campanian-Maastrichtian)

Ciénaga del Río Huaco

  Argentina

A titanosaur sauropod. The type species is B. arrierosorum.

Changmiania[226] Gen. et sp. nov Valid Yang et al. Early Cretaceous (Barremian) Yixian   China A basal ornithopod. The type species is C. liaoningensis.
Citipes[227] Gen. et comb. nov Valid Funston Late Cretaceous (Campanian) Dinosaur Park   Canada
(  Alberta)
An oviraptorosaur theropod. The type species is "Ornithomimus" elegans Parks (1933).  

Dineobellator[228]

Gen. et sp. nov

Valid

Jasinski, Sullivan & Dodson

Late Cretaceous (Maastrichtian)

Ojo Alamo

  United States
(  New Mexico)

A dromaeosaurid theropod. The type species is D. notohesperus.

 

Erythrovenator[229]

Gen. et sp. nov

Valid

Müller

Late Triassic (Carnian-Norian)

Candelária

  Brazil

A basal theropod. The type species is E. jacuiensis. Announced in 2020; the final version of the article naming it was published in 2021.

 

Garrigatitan[230]

Gen. et sp. nov

Valid

Díez Díaz et al.

Late Cretaceous (Campanian)

Grès à Reptiles

  France

A titanosaur sauropod. The type species is G. meridionalis. Announced in 2020; the final version of the article naming it was published in 2021.

Huinculsaurus[231]

Gen. et sp. nov

Valid

Baiano, Coria & Cau

Late Cretaceous (late Cenomanian-Turonian)

Huincul

  Argentina

A theropod related to Elaphrosaurus. The type species is H. montesi.

 

Irisosaurus[232][233]

Gen. et sp. nov

Valid

Peyre de Fabrègues et al.

Early Jurassic

Fengjiahe

  China

An early member of Sauropodiformes. The type species is I. yimenensis.

 

Jinbeisaurus[234]

Gen. et sp. nov

Valid

Wu et al.

Late Cretaceous

Huiquanpu

  China

A tyrannosauroid theropod. The type species is J. wangi. Announced in 2019; the final version of the article naming was published in 2020.

Kholumolumo[235]

Gen. et sp. nov

Valid

Fabrègues & Allain

Late Triassic

Elliot

  Lesotho

An early member of Sauropodomorpha. The type species is K. ellenbergerorum.

Lajasvenator[236]

Gen. et sp. nov

Valid

Coria et al.

Early Cretaceous (Valanginian)

Mulichinco

  Argentina

A carcharodontosaurid theropod. The type species is L. ascheriae. Announced in 2019; the final version of the article naming was published in 2020.

 
Lusovenator[237] Gen. et sp. nov Valid Malafaia et al. Late Jurassic (Kimmeridgian) Praia da Amoreira-Porto Novo   Portugal A carcharodontosaurian theropod. The type species is L. santosi.

Narindasaurus[238]

Gen. et sp. nov

Valid

Royo-Torres et al.

Middle Jurassic (Bathonian)

Isalo III

  Madagascar

A sauropod belonging to the group Turiasauria. The type species is N. thevenini.

Navajoceratops[239]

Gen. et sp. nov

Valid

Fowler & Freedman Fowler

Late Cretaceous (Campanian)

Kirtland

  United States
(  New Mexico)

A chasmosaurine ceratopsid. The type species is N. sullivani.

 
Niebla[240] Gen. et sp. nov Valid Aranciaga Rolando et al. Late Cretaceous (Maastrichtian) Allen   Argentina An abelisaurid theropod. The type species is N. antiqua .  

Oksoko[241]

Gen. et sp. nov

Valid

Funston et al.

Late Cretaceous (Maastrichtian)

Nemegt

  Mongolia

An oviraptorid theropod. The type species is O. avarsan.

Omeisaurus puxiani[242]

Sp. nov

Valid

Tan et al.

Middle Jurassic

Shaximiao

  China

A species of Omeisaurus, a mamenchisaurid sauropod. Announced in 2020; the final version of the article naming was published in 2021.  

Overoraptor[243]

Gen. et sp. nov

Valid

Motta et al.

Late Cretaceous (Cenomanian-Turonian)

Huincul

  Argentina

A paravian theropod, possibly a relative of Rahonavis. The type species is O. chimentoi.

Paraxenisaurus[244]

Gen. et sp. nov

Valid

Serrano-Brañas et al.

Late Cretaceous

Cerro del Pueblo

  Mexico

A deinocheirid ornithomimosaur theropod. The type species is P. normalensis.

 

Punatitan[225]

Gen. et sp. nov

Valid

Hechenleitner et al.

Late Cretaceous (Campanian-Maastrichtian)

Ciénaga del Río Huaco

  Argentina

A titanosaur sauropod. The type species is P. coughlini.

Riabininohadros[245]

Gen. et comb. nov

Valid

Lopatin & Averianov

Late Cretaceous (Maastrichtian)

  Ukraine

An ankylopollexian iguanodont. The type species is "Orthomerus" weberi Riabinin (1945).

 
Schleitheimia[246] Gen. et sp. nov Valid Rauhut, Holwerda & Furrer Late Triassic (Norian) Klettgau   Switzerland An early member of Sauropodiformes. The type species is S. schutzi.
Sinankylosaurus[247] Gen. et sp. nov Valid Wang et al. Late Cretaceous (Campanian) Wangshi   China An ankylosaur. The type species is S. zhuchengensis.

Smitanosaurus[248]

Gen. et comb. nov

Valid

Whitlock & Wilson

Late Jurassic

Morrison

  United States
(  Colorado)

A dicraeosaurid sauropod; a new genus for "Morosaurus" agilis Marsh (1889).

Spectrovenator[249]

Gen. et sp. nov

Valid

Zaher et al.

Early Cretaceous (Barremian-Aptian)

Quiricó

  Brazil

An abelisaurid theropod. The type species is S. ragei.

 

Stellasaurus[250]

Gen. et sp. nov

Valid

Wilson, Ryan & Evans

Late Cretaceous (Campanian)

Two Medicine

  United States
(  Montana)

A centrosaurine ceratopsid. The type species is S. ancellae.

 

Terminocavus[239]

Gen. et sp. nov

Valid

Fowler & Freedman Fowler

Late Cretaceous (Campanian)

Kirtland

  United States
(  New Mexico)

A chasmosaurine ceratopsid. The type species is T. sealeyi.

 

Thanatotheristes[251]

Gen. et sp. nov

Valid

Voris et al.

Late Cretaceous (Campanian)

Foremost

  Canada
(  Alberta)

A tyrannosaurid theropod. The type species is T. degrootorum.

Thanos[252] Gen. et sp. nov Valid Delcourt & Iori Late Cretaceous (Santonian) São José do Rio Preto   Brazil An abelisaurid theropod. The type species is T. simonattoi. Announced in 2018; the final version of the article naming it was published in 2020.  

Tralkasaurus[253]

Gen. et sp. nov

Valid

Cerroni et al.

Late Cretaceous (Cenomanian-Turonian)

Huincul

  Argentina

An abelisaurid theropod. The type species is T. cuyi. Announced in 2019; the final version of the article naming was published in 2020.

Trierarchuncus[254][255] Gen. et sp. nov Valid Fowler et al. Late Cretaceous (Maastrichtian) Hell Creek   United States
(  Montana)
An alvarezsaurid theropod. The type species is T. prairiensis.

Vallibonavenatrix[256]

Gen. et sp. nov

Valid

Malafaia et al.

Early Cretaceous (Barremian)

Arcillas de Morella

  Spain

A spinosaurid theropod. The type species is V. cani. Announced in 2019; the final version of the article naming it was published in 2020.

 

Vectaerovenator[257]

Gen. et sp. nov

Valid

Barker et al.

Early Cretaceous (Aptian)

Ferruginous Sands

  United Kingdom

A tetanuran theropod of uncertain phylogenetic placement. The type species is V. inopinatus.

 

Wulong[258]

Gen. et sp. nov

Valid

Poust et al.

Early Cretaceous (Aptian)

Jiufotang

  China

A microraptorine dromaeosaurid theropod. The type species is W. bohaiensis.

 

Xunmenglong[259]

Gen. et sp. nov

Valid

Xing et al.

Early Cretaceous

Huajiying

  China

A compsognathid theropod. The type species is X. yinliangis. Announced in 2019; the final version of the article naming it was published in 2020.

Yamanasaurus[260]

Gen. et sp. nov

Valid

Apesteguía et al.

Late Cretaceous

Río Playas

  Ecuador

A saltasaurine titanosaur. The type species is Y. lojaensis. Announced in 2019; the final version of the article naming it was published in 2020.

 

Yunyangosaurus[261]

Gen. et sp. nov

Valid

Dai et al.

Middle Jurassic

Xintiangou

  China

A tetanuran theropod, possibly a member of Megalosauroidea. The type species is Y. puanensis.

BirdsEdit

ResearchEdit

  • A study on the phylogenetic relationships and powered flight potential of early birds and their closest relatives is published by Pei et al. (2020), who argue that the potential for powered flight evolved at least three times (once in birds and twice in dromaeosaurids).[113]
  • A study aiming to determine whether the origin of birds was marked with a distinct shift in cranial evolutionary dynamics, based on data from birds and non-avian dinosaurs, is published by Felice et al. (2020).[262]
  • A study on patterns of evolution of avian brain size and its relationship with body size evolution, based on data from extant and fossil birds and from non-avian theropod dinosaurs, is published by Ksepka et al. (2020).[263]
  • A study aiming to determine the volumes of the brain structures used to infer behavior or functional capabilities in Archaeopteryx lithographica, Lithornis plebius, Dinornis robustus, Paraptenodytes antarcticus, Psilopterus lemoinei, Llallawavis scagliai and an unnamed Miocene galliform is published by Early, Ridgely & Witmer (2020).[264]
  • The study on the identity of the holotype feather of Archaeopteryx lithographica published by Kaye et al. (2019)[265] is criticized by Carney, Tischlinger & Shawkey (2020).[266]
  • Evidence of feather moulting in the Thermopolis specimen of Archaeopteryx is presented by Kaye, Pittman & Wahl (2020), who evaluate the implications of this finding for the knowledge of the origins of flight-related molting and flight;[267] the study is subsequently criticized by Kiat et al. (2021).[268][269]
  • A study on the structure and possible function of the paddle-shaped skeletal elements preserved in the thoracic region of the skeleton of Jeholornis is published by Zheng et al. (2020), who interpret these elements as anomalously expanded sternal ribs.[270]
  • Traces of the soft tissue of the beak preserved with two specimens of Confuciusornis are described by Zheng et al. (2020).[271]
  • Miller et al. (2020) describe a new specimen of Confuciusornis sanctus preserving a disassociated rhamphotheca, and evaluate the differences in the keratinous and bony beak anatomy between confuciusornithids and modern birds.[272]
  • A study on the furcula-coracoid articulation in Confuciusornis and in extant birds that utilize different flight styles is published by Wu et al. (2020), who report the first evidence of fossilized secondary cartilage on the furcula of a fossil bird, and evaluate the implications of their findings for the knowledge of flight styles in Mesozoic birds.[273]
  • A study on the anatomy of the skull of Sapeornis chaoyangensis is published by Hu et al. (2020).[274]
  • New specimen of Longusunguis kurochkini, providing new information on the anatomy of this taxon and indicating that the plesiomorphic diapsid skull was retained by at least some basal enantiornithines, is described from the Lower Cretaceous Jiufotang Formation (China) by Hu et al. (2020).[275]
  • An isolated foot of an enantiornithine consisting of complete metatarsals and digits, including the claws, is described from the Cretaceous Burmese amber by Xing et al. (2020).[276]
  • New enantiornithine specimen preserving portions of two forelimbs and two feet, as well as associated feathers, is described from the Cretaceous Burmese amber by Xing et al. (2020), providing new evidence of a diversity of limb proportions and plumage patterns in the enantiornithine fauna from Myanmar.[277]
  • Bailleul et al. (2020) confirm the presence of ovarian follicles in an enantiornithine specimen STM10–12 from the Lower Cretaceous of China;[278] the conclusions of this study are subsequently contested by Mayr et al. (2020), who interpret putative ovarian follicles of this specimen and other birds from the Jehol Biota as more likely to be ingested food items.[279]
  • New specimen of Protopteryx fengningensis, providing additional information on the plumage of this species, is described by O’Connor et al. (2020).[280]
  • Wang & Zhou (2020) describe a new specimen of Piscivorenantiornis inusitatus from the Lower Cretaceous Jiufotang Formation (China), providing new information on the anatomy and phylogenetic relationships of this taxon.[281]
  • A feather fragment from an aquatic bird is reported from amber recovered from the Pipestone Creek bonebed from the Campanian Wapiti Formation (Alberta, Canada) by Cockx et al. (2020).[282]
  • A tibiotarsus of a non-hesperornithid hesperornithiform is described from the Upper Cretaceous (Maastrichtian) Kita-ama Formation (Japan) by Tanaka et al. (2020), representing the first hesperornithiform record from marine Maastrichtian deposits in Asia reported so far, and indicating that the habitat of hesperornithiforms during the Maastrichtian extended to both terrestrial and marine environments in Asia and North America.[283]
  • A study on the anatomy of the skeleton of Parahesperornis alexi is published by Bell & Chiappe (2020), who report that this taxon possessed a mosaic of basal and derived traits found among other hesperornithiform taxa.[284]
  • A study on melanosome morphologies in two lithornithid specimens from the Eocene Green River Formation (United States), evaluating their implications for reconstructions of coloration in lithornithids and for the knowledge of color evolution in palaeognaths, is published by Eliason & Clarke (2020).[285]
  • Evidence of the presence of the bill tip organ in lithornithids is presented by du Toit, Chinsamy & Cunningham (2020), who interpret their findings as indicating that remote-touch probe foraging evolved very early among the Neornithes and may even have predated the palaeognathous–neognathous divergence.[286]
  • A study on the life history of the elephant birds, as indicated by bone histology, is published by Chinsamy et al. (2020).[287]
  • A study on the evolutionary history of the ostriches in Africa and Eurasia during the Miocene, Pliocene and Pleistocene, as indicated by data from eggshell and bone fossil record, is published by Mikhailov & Zelenkov (2020).[288]
  • A dentary fragment of a pelagornithid bird with an estimated body size on par with the largest known members of Pelagornithidae is described from the Eocene Submeseta Formation (Seymour Island, Antarctica) by Kloess, Poust & Stidham (2020), who interpret this finding as evidence of early evolution of giant body size in Pelagornithidae.[289]
  • A study on the flight capacity of Pelagornis chilensis is published by Meza-Vélez (2020).[290]
  • Volkova & Zelenkov (2020) describe new fossil material of geese from the late Miocene locality Khyargas Nuur 2 in western Mongolia, and evaluate the implications of these fossils for the knowledge of the late Miocene evolution and paleogeography of geese.[291]
  • A coracoid of a small-bodied paraortygid is reported from the Uinta Formation (Utah, United States) by Stidham, Townsend & Holroyd (2020), representing the only known pangalliform from the middle Eocene of North America, occurring in a temporal gap in their history between the early Eocene Gallinuloides wyomingensis and late Eocene Nanortyx inexpectus.[292]
  • A revision of the fossil material from Ukraine attributed to Plioperdix pontica, and a study on the taxonomy of small phasianids of the Neogene-Pleistocene in the Northern Black Sea region and Eastern Europe, is published by Zelenkov & Gorobets (2020).[293]
  • Barton et al. (2020) reinterpret purported chicken specimens from the Neolithic site at Dadiwan as remains of pheasants, and argue that these remains provide evidence of exploitation of grain-fed pheasants by early farmers in arid northwest China.[294]
  • Lawal et al. (2020) report that chicken was domesticated 8,000 years ago from its primary ancestor, Red junglefowl and that the genome of chicken was subsequently enhanced through introgression with the other three junglefowls i.e. Grey junglefowl, Sri Lankan junglefowl, and Green junglefowl.[295]
  • A study on the origin and history of domestication of chickens, as indicated by data from domestic chicken and wild jungle fowl genomes, is published by Wang et al. (2020), who interpret their findings as indicating that domestic chickens were initially derived from the red junglefowl subspecies Gallus gallus spadiceus, and that they interbred locally with other subspecies of the red junglefowl and with other jungle fowl species after their domestication.[296]
  • Partial skull of a large-bodied crane with a long beak, representing the oldest record of the subfamily Gruinae reported so far and expanding the known temporal range for the occurrence of large-sized cranes in Europe, is described from the Miocene (Tortonian) locality Hammerschmiede (Bavaria, Germany) by Mayr, Lechner & Böhme (2020).[297]
  • A study comparing the osteology of plotopterids and Paleocene stem group penguins is published by Mayr et al. (2020).[298]
  • New fossil material of Macranhinga ranzii is described from the Miocene Solimões Formation (Brazil) by Guilherme et al. (2020), who also study the phylogenetic relationships of this species.[299]
  • A study on the morphological diversity of bills of extant and fossil penguins, and its relationship with feeding habits, is published by Chávez-Hoffmeister (2020).[300]
  • Partial skeleton of an early penguin (possibly belonging to the species Muriwaimanu tuatahi), preserving the first complete wing of a Paleocene penguin reported so far and providing new information on the skeletal anatomy of this taxon, is described from the Waipara Greensand (New Zealand) by Mayr et al. (2020).[301]
  • An articulated wing of Palaeeudyptes gunnari, preserving mineralized skin, is described from the Eocene (Lutetian) of Seymour Island (Antarctica) by Acosta Hospitaleche et al. (2020).[302]
  • A study on the swimming capabilities of Inkayacu paracasensis is published by Meza-Vélez (2020).[303]
  • New fossil material of Anhinga pannonica is described from the Miocene (Tortonian) of the Hammerschmiede clay pit (Bavaria, Germany) by Mayr, Lechner & Böhme (2020), who also reinterpret the putative Miocene cormorant Phalacrocorax brunhuberi as another, previously misclassified, record of A. pannonica.[304]
  • New fossil material of penguins and a member of Gruiformes is reported from the Eocene La Meseta and Submeseta Formations of the Seymour Island by Davis et al. (2020), supporting previously controversial reports of Gruiformes from Antarctica.[305]
  • Partial tibiotarsus of an owl (possibly a member of Selenornithinae) is described from the Oligocene of the Jebel Qatrani Formation (Egypt) by Smith, Stidham & Mitchell (2020), representing the first occurrence of a fossil owl from the Paleogene of Africa reported so far.[306]
  • Part of a maxilla of a member of the genus Tockus is described from the early Miocene of Napak (Uganda) by Riamon et al. (2020), representing the earliest fossil of a hornbill reported so far.[307]
  • A nearly complete passerine specimen is described from the early Oligocene of Revest-des-Brousses (Luberon, Alpes-de-Haute-Provence, France) by Riamon, Tourment & Louchart (2020), who interpret this specimen as a member of Tyranni, most likely belonging to the stem group of Tyrannida.[308]
  • New fossil material of larks is reported from the late Pliocene localities in Transbaikalia (Russia) and Mongolia by Palastrova & Zelenkov (2020), who transfer the species Pliocalcarius orkhonensis to the genus Eremophila, and evaluate the implications of their findings for the knowledge of the evolutionary history of larks.[309]
  • An exceptionally well-preserved bird carcass found in the Siberian permafrost and dated to approximately 44–49 ka BP is described by Dussex et al. (2020), who identify this specimen as a female horned lark, and evaluate the implications of this specimen for the knowledge of the evolution and biogeography of its species during the Pleistocene.[310]
  • New fossil material of Rhodospiza shaamarica is described from the Pliocene localities of Shaamar (northern Mongolia) and Beregovaya (south Transbaikalia, Russia) by Palastrova & Zelenkov (2020), who transfer this species to the genus Emberiza.[311]
  • A study on Pleistocene bird tracks from the Cape south coast of South Africa is published by Helm et al. (2020), who report six tracksites with tracks produced by large birds, possibly indicating the existence of large Pleistocene forms of extant bird taxa.[312]
  • A study on the impact of the climate changes of the last 35,000 years on small birds from the La Brea Tar Pits is published by Long, Prothero & Syverson (2020).[313]
  • A study comparing predicted breeding and wintering distributions for landbird species identified from the La Brea Tar Pits during the Last Glacial Maximum, aiming to determine if niche models successfully predict species’ presence, to estimate the degree of species turnover, to evaluate the fluidity of life history strategies of birds from La Brea, and to compare niche breadths of bark-foraging birds from La Brea between the Last Glacial Maximum and the present, is published by Zink et al. (2020).[314]
  • New fossil material of seabirds, including remains of the little auk or a related species, is reported from the Pleistocene Kazusa and Shimosa groups (Japan) by Watanabe et al. (2020), who interpret this finding as possible evidence that the little auk more widespread in the North Pacific in the middle Pleistocene than it is today.[315]
  • A study comparing the bird communities of the Bahamian Archipelago (The Bahamas and Turks and Caicos Islands) during the Late Pleistocene, Holocene prior to human arrival and Late Holocene subsequent to human arrival, aiming to determine what drove changes in biodiversity of Bahamian birds throughout the Late Quaternary, is published by Steadman & Franklin (2020).[316]
  • A study on flightlessness in bird species known to have gone extinct since the rise of humans (i.e. in the Late Pleistocene and Holocene), aiming to determine the extent to which inferences about evolutionary transitions and rates of evolution of flightlessness in birds are biased by anthropogenic extinctions, is published by Sayol et al. (2020).[317]

New taxaEdit

Name Novelty Status Authors Age Type locality Country Notes Images
Abitusavis[318] Gen. et sp. nov Valid Wang et al. Early Cretaceous   China A relative of Yanornis. The type species is A. lii.
Aldiomedes[319] Gen. et sp. nov Valid Mayr & Tennyson Late Pliocene Tangahoe   New Zealand An albatross. The type species is A. angustirostris. Announced in 2019; the final version of the article naming it was published in 2020.

Antarcticavis[320]

Gen. et sp. nov

Valid

Cordes-Person et al.

Late Cretaceous (Maastrichtian)

Snow Hill Island

Antarctica

A bird of uncertain phylogenetic placement, possibly a member of Ornithuromorpha belonging to the group Ornithurae. The type species is A. capelambensis. Announced in 2019; the final version of the article naming was published in 2020.

Asio ecuadoriensis[321]

Sp. nov

Valid

Lo Coco, Agnolín & Carrión

Late Pleistocene

  Ecuador

An owl, a species of Asio.

Asteriornis[322]

Gen. et sp. nov

Valid

Field et al.

Late Cretaceous (Maastrichtian)

Maastricht

  Belgium

An early member of Neornithes, occupying a position close to the last common ancestor of Galloanserae. The type species is A. maastrichtensis.

Aviraptor[323]

Gen. et sp. nov

Valid

Mayr & Hurum

Oligocene (Rupelian)

  Poland

A member of the family Accipitridae. The type species is A. longicrus.

Buteo sanfelipensis[324] Sp. nov Valid Suárez Quaternary Las Breas de San Felipe tar seeps   Cuba A species of Buteo.
Buteogallus royi[324] Sp. nov Valid Suárez Quaternary Las Breas de San Felipe tar seeps   Cuba A species of Buteogallus.
Cathartes emsliei[325] Sp. nov Valid Suárez & Olson Late Pleistocene to Holocene   Cuba A species of Cathartes.
Chauvireria bulgarica[326] Sp. nov Valid Boev Early Pleistocene   Bulgaria A species of Chauvireria, a member of the family Phasianidae.
Coragyps seductus[324] Sp. nov Valid Suárez Quaternary Las Breas de San Felipe tar seeps   Cuba A New World vulture.
Corvus bragai[327] Sp. nov Valid Pavia Plio-Pleistocene transition   South Africa A species of Corvus.
Cousteauvia[328] Gen. et sp. nov Valid Zelenkov Eocene (Priabonian)   Kazakhstan A member of Anseriformes of uncertain phylogenetic placement. The type species is C. kustovia.

?Crossvallia waiparensis[329]

Sp. nov

Valid

Mayr et al.

Paleocene

Waipara

  New Zealand

A large-sized penguin. Announced in 2019; the final version of the article naming it was published in 2020.

Dobrosturnus[330]

Gen. et sp. nov

Valid

Boev

Middle Miocene

  Bulgaria

A starling. The type species is D. kardamensis.

Empeirodytes[331] Gen. et sp. nov Valid Ohashi & Hasegawa Oligocene Ashiya Group   Japan A member of the family Plotopteridae. The type species is E. okazakii.
Eudyptes atatu[332] Sp. nov Valid Thomas, Tennyson, Scofield & Ksepka in Thomas et al. Pliocene (Piacenzian) Tangahoe   New Zealand A crested penguin.
Falcatakely[333] Gen. et sp. nov Valid O’Connor et al. Late Cretaceous (Maastrichtian) Maevarano   Madagascar A member of Enantiornithes. The type species is F. forsterae.
Fulica montanei[334] Sp. nov Valid Alarcón-Muñoz, Labarca & Soto-Acuña Late Pleistocene-early Holocene Laguna de Tagua Tagua   Chile A coot.
Gastornis laurenti[335] Sp. nov Valid Mourer-Chauviré & Bourdon Early Eocene   France A species of Gastornis.
Gigantohierax itchei[324] Sp. nov Valid Suárez Quaternary Las Breas de San Felipe tar seeps   Cuba A member of the family Accipitridae
Glaucidium ireneae[327] Sp. nov Valid Pavia Plio-Pleistocene transition   South Africa A pygmy owl.
Icterus turmalis[336] Sp. nov Valid Steadman & Oswald Late Pleistocene Talara tar seeps   Peru A New World oriole.

Jacamatia[337]

Gen. et sp. nov

Valid

Duhamel et al.

Early Oligocene

  France

A member of the stem group of Galbulae. The type species is J. luberonensis.

Khinganornis[338]

Gen. et sp. nov

Valid

Wang et al.

Early Cretaceous (Aptian)

Longjiang

  China

A derived member of Ornithuromorpha. The type species is K. hulunbuirensis.

Kompsornis[339]

Gen. et sp. nov

Valid

Wang et al.

Early Cretaceous

Jiufotang

  China

A member of Jeholornithiformes. The type species is K. longicaudus.

Linxiavis[340] Gen. et sp. nov Valid Li et al. Late Miocene Liushu   China A sandgrouse. The type species is L. inaquosus.
Milvago diazfrancoi[324] Sp. nov Valid Suárez Quaternary Las Breas de San Felipe tar seeps   Cuba A species of Milvago.
Mirusavis[341] Gen. et sp. nov Valid Wang et al. Early Cretaceous Yixian   China A member of Enantiornithes. The type species is M. parvus. Announced in 2019; the final version of the article naming it was published in 2020.
Molothrus resinosus[336] Sp. nov Valid Steadman & Oswald Late Pleistocene Talara tar seeps   Peru A cowbird.
Nahmavis[342] Gen. et sp. nov Valid Musser & Clarke Early Eocene Green River   United States A member of Neoaves of uncertain phylogenetic placement, possibly a charadriiform or a stem-gruiform. The type species is N. grandei.
Ornimegalonyx ewingi[343] Sp. nov Valid Suárez Quaternary   Cuba A giant owl.
?Palaeoplancus dammanni[344] Sp. nov Valid Mayr & Perner Eocene (Chadronian) White River Group   United States
(  Wyoming)
Probably a stem group representative of the family Accipitridae.

Phasianus bulgaricus[345]

Sp. nov

Valid

Boev

Miocene (Turolian)

  Bulgaria

A species of Phasianus.

Primoptynx[346] Gen. et sp. nov Valid Mayr, Gingerich & Smith Eocene (Wasatchian) Willwood   United States
(  Wyoming)
A large-sized owl. The type species is P. poliotauros.
Prosobonia sauli[347] Sp. nov Valid De Pietri et al. Holocene   Pitcairn Islands A Polynesian sandpiper.
Similiyanornis[318] Gen. et sp. nov Valid Wang et al. Early Cretaceous   China A relative of Yanornis. The type species is S. brevipectus.
Stenornis[331] Gen. et sp. nov Valid Ohashi & Hasegawa Oligocene Ashiya Group   Japan A member of the family Plotopteridae. The type species is S. kanmonensis.
Tongoenas[348] Gen. et sp. nov Valid Steadman & Takano Pleistocene and Holocene   Tonga A pigeon. The type species is T. burleyi.
Tyto maniola[349] Sp. nov Valid Suárez & Olson Pleistocene   Cuba A species of Tyto.
Vinchinavis[350] Gen. et sp. nov Valid Tambussi et al. Miocene Toro Negro   Argentina A large eagle. The type species is V. paka. Announced in 2020; the final version of the article naming it was published in 2021.
Vorombe Gen. et comb. nov Valid Hansford & Turvey Holocene   Madagascar An elephant bird. The type species is "Aepyornis" titan Andrews (1894). Announced in 2018;[351] the correction including the required ZooBank accession number was published in 2020.[352]
Wilaru prideauxi Sp. nov. Valid De Pietri et al. Early Miocene Etadunna
Wipajiri
  Australia A species of Wilaru. Announced in 2016;[353] the correction including the required ZooBank accession number was published in 2020.[354]

PterosaursEdit

ResearchEdit

  • A study on the ingroup relationships within Pterosauria is published by Baron (2020), who names new clades Zambellisauria and Caviramidae.[355]
  • A study on the fusion process of the notarial elements of pterosaurs is published by Aires et al. (2020).[356]
  • A study on the evolution of the flight efficiency of pterosaurs is published by Venditti et al. (2020).[357]
  • A study aiming to determine diets of 17 pterosaur genera, as indicated by data from dental microwear texture analysis, is published by Bestwick et al. (2020).[358]
  • Mazin & Pouech (2020) describe non-pterodactyloid pterosaur tracks from the ichnological site known as "the Pterosaur Beach of Crayssac" (Tithonian; south-western France), evaluate the implications of these tracks for the knowledge of the terrestrial capabilities of non-pterodactyloid pterosaurs, and name a new ichnogenus Rhamphichnus.[359]
  • The record of pycnofibers in two specimens of anurognathid pterosaurs from the Jurassic of China interpreted by Yang et al. (2019) as showing diagnostic features of feathers[360] is reexamined and challenged by Unwin & Martill (2020).[361][362]
  • A coleoid cephalopod specimen preserved with an associated tooth of a pterosaur (probably Rhamphorhynchus) is reported from the Upper Jurassic Altmühltal Formation (Germany) by Hoffmann et al. (2020), who evaluate the implications of this finding for the knowledge of feeding behaviours of Rhamphorhynchus.[363]
  • A study on changes in the skeletal anatomy during growth in Rhamphorhynchus muensteri is published by Hone et al. (2020), who consider it likely that R. muensteri was able to fly soon after hatching.[364]
  • A well-preserved basihyal is reported for the first time in a pterosaur specimen (possibly belonging to the species Gladocephaloideus jingangshanensis) from the Lower Cretaceous Yixian Formation (China) by Jiang et al. (2020).[365]
  • Jacobs et al. (2020) describe new fossil material of pterosaurs from the Kem Kem Beds (Morocco), bringing the Kem Kem pterosaur fauna up to at least nine species (of which three are ornithocheirids), and confirming that toothed pterosaurs remained diverse during the mid-Cretaceous.[366]
  • Fossil material of pterosaurs (including a large non-pteranodontian ornithocheiroid) is described from the Valanginian Rosablanca Formation by Cadena, Unwin & Martill (2020), representing the first record of pterosaurs from Colombia.[367]
  • New forelimb of a pteranodontoid pterosaur is described from the Lower Cretaceous Yixian Formation (China) by Jiang et al. (2020), who also revise the species Yixianopterus jingangshanensis.[368]
  • Averianov (2020) reassesses the taxonomy of the Lonchodectidae, transferring the species "Lonchodraco" machaerorhynchus (including L. microdon and Pterodactylus oweni) to the genus Ikrandraco.[369]
  • Martill et al. (2020) report evidence of the presence of clusters of circular foramina on the tip of the beak of Lonchodraco giganteus, interpret this finding as evidence of enhanced sensitivity of the rostrum tip, and argue that this pattern implies tactile feeding in L. giganteus.[370]
  • An ornithocheirid metacarpus, representing one of the geologically youngest ornithocheirid remains reported worldwide, is described from the Upper Cretaceous (Cenomanian) of the Crema Bonfil quarry (Coahuila, Mexico) by Frey et al. (2020), who evaluate the implications of this finding for the knowledge of the extinction of the toothed pterosaurs during the Late Cretaceous.[371]
  • Fossil material of a large pteranodontid pterosaur is described from the Campanian Beloe Ozero locality (Rybushka Formation; Saratov Oblast, Russia) by Averianov & Arkhangelsky (2020), who also review other putative records of pteranodontids in the Late Cretaceous of North America, Europe and Asia, and argue that Volgadraco bogolubovi is more likely to be a pteranodontid than azhdarchid.[372]
  • New tapejarid specimen, providing new information on the anatomy of the vertebral column of tapejarids, is described from the Aptian Crato Formation (Brazil) by Cheng et al. (2020).[373]
  • New information on the anatomy of Dsungaripterus weii (especially on the palatal region), based on the study of new and previously collected specimens, is published by Chen et al. (2020).[374]
  • New fossil material of Tethydraco regalis is described from the Maastrichtian deposits of the Ouled Abdoun Basin (Morocco) by Labita & Martill (2020), who consider it more likely that T. regalis was an azhdarchid rather than a pteranodontian.[375]
  • New specimens of edentulous pterosaur jaw fragments are described from the Cambridge Greensand (eastern England, United Kingdom) by Smith et al. (2020), who also revise the fossil material of Ornithostoma sedgwicki and assign this taxon to the group Azhdarchoidea rather than to the family Pteranodontidae.[376]

New taxaEdit

Name Novelty Status Authors Age Type locality Country Notes Images
Aerodraco[377] Gen. et comb. nov Valid Holgado & Pêgas Early Cretaceous (Albian) Cambridge Greensand   United Kingdom A coloborhynchine pterosaur. The type species is "Pterodactylus" sedgwickii Owen (1859).

Afrotapejara[378]

Gen. et sp. nov

Valid

Martill et al.

Cretaceous

Kem Kem

  Morocco

A tapejarid pterosaur. The type species is A. zouhri.

 

Albadraco[379]

Gen. et sp. nov

Valid

Solomon et al.

Late Cretaceous (Maastrichtian)

Sard

  Romania

An azhdarchid pterosaur. The type species is A. tharmisensis. Announced in 2019; the final version of the article naming it was published in 2020.

Apatorhamphus[380]

Gen. et sp. nov

Valid

McPhee et al.

Middle Cretaceous (Albian/Cenomanian)

Kem Kem

  Morocco

A possible chaoyangopterid azhdarchoid pterosaur. The type species is A. gyrostega.[380]

Ikrandraco

Gen. et sp. nov

Valid

Wang et al.

Early Cretaceous (Aptian)

Jiufotang

  China

A non-anhanguerian pteranodontoid. The type species is Ikrandraco avatar. Announced in 2014;[381] the correction including evidence of registration in ZooBank within the work itself was published in 2020.[382]

Leptostomia[383]

Gen. et sp. nov

Valid

Smith et al.

Cretaceous (?AlbianCenomanian)

Kem Kem

  Morocco

A small, long-beaked pterosaur, likely a member of Azhdarchoidea. The type species is L. begaaensis. Announced in 2020; the final version of the article naming it was published in 2021.

 

Luchibang[384]

Gen. et sp. nov

Valid

Hone et al.

Early Cretaceous

Yixian

  China

A member of the family Istiodactylidae. The type species is L. xingzhe.[385]

Luopterus[386]

Gen. et comb. nov

Valid

Hone

Jurassic

Tiaojishan

  China

A member of the family Anurognathidae; a new genus for "Dendrorhynchoides" mutoudengensis & Hone (2012).

Nicorhynchus[377] Gen. et comb. nov Valid Holgado & Pêgas Cretaceous (Albian to Cenomanian) Cambridge Greensand
Kem Kem Group
  Morocco
  United Kingdom
A coloborhynchine pterosaur. The type species is "Ornithocheirus" capito Seeley (1870); genus also includes "Coloborhynchus" fluviferox Jacobs et al. (2019).

 

Ordosipterus[387]

Gen. et sp. nov

Valid

Ji

Early Cretaceous

Luohandong

  China

A member of the family Dsungaripteridae. The type species is O. planignathus.

Otogopterus[388]

Gen. et sp. nov

Valid

Ji & Zhang

Early Cretaceous

Luohandong

  China

A member of the family Ctenochasmatidae. The type species is O. haoae.

Uktenadactylus rodriguesae[377] Sp. nov Valid Holgado & Pêgas Early Cretaceous (Barremian) Wessex   United Kingdom A species of Uktenadactylus, a coloborhynchine pterosaur.
Wightia[389] Gen. et sp. nov Valid Martill et al. Early Cretaceous (Barremian) Wessex   United Kingdom A tapejarid pterosaur. The type species is W. declivirostris.

Other archosaursEdit

ResearchEdit

  • A study on the anatomy, locomotion and phylogenetic relationships of Scleromochlus taylori is published by Bennett (2020).[390]
  • An Otischalkian assemblage of lagerpetid and silesaurid fossils, including lagerpetid material of unusually large size assignable to Dromomeron, is described from the Los Esteros Member of the Santa Rosa Formation (New Mexico, United States) by Beyl, Nesbitt & Stocker (2020), who interpret this finding as evidence that lagerpetids achieved large body size earlier than previously recognized.[391]
  • A study on the phylogenetic relationships of lagerpetids is published by Ezcurra et al. (2020), who interpret lagerpetids as the sister group of pterosaurs.[392]
  • New dinosauromorph fossil material is described from the Upper Triassic Chinle Formation (Petrified Forest National Park, Arizona, United States) by Marsh & Parker (2020), who also review the global fossil record of Late Triassic dinosauromorphs.[393]
  • A study on the musculoskeletal apparatus and posture of Silesaurus opolensis, evaluating its implications for the knowledge of the evolution of the fully erect limb posture in archosaurs, is published by Piechowski & Tałanda (2020).[394]

New taxaEdit

Name Novelty Status Authors Age Type locality Country Notes Images
Kongonaphon[395] Gen. et sp. nov Valid Kammerer et al. Mid-to-Late Triassic Isalo II   Madagascar A member of the family Lagerpetidae. The type species is K. kely.  

ReferencesEdit

  1. ^ Peter J. Bishop; Karl T. Bates; Vivian R. Allen; Donald M. Henderson; Marcela Randau; John R. Hutchinson (2020). "Relationships of mass properties and body proportions to locomotor habit in terrestrial Archosauria". Paleobiology. 46 (4): 550–568. doi:10.1017/pab.2020.47. S2CID 227129682.
  2. ^ Krishna Hu; J. Logan King; Cheyenne A. Romick; David L. Dufeau; Lawrence M. Witmer; Thomas L. Stubbs; Emily J. Rayfield; Michael J. Benton (2020). "Ontogenetic endocranial shape change in alligators and ostriches and implications for the development of the non‐avian dinosaur endocranium". The Anatomical Record. 304 (8): 1759–1775. doi:10.1002/ar.24579. PMID 33314780. S2CID 229176577.
  3. ^ Enrico L. Rezende; Leonardo D. Bacigalupe; Roberto F. Nespolo; Francisco Bozinovic (2020). "Shrinking dinosaurs and the evolution of endothermy in birds". Science Advances. 6 (1): eaaw4486. Bibcode:2020SciA....6.4486R. doi:10.1126/sciadv.aaw4486. PMC 6938711. PMID 31911937.
  4. ^ Robert J. Brocklehurst; Emma R. Schachner; Jonathan R. Codd; William I. Sellers (2020). "Respiratory evolution in archosaurs". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1793): Article ID 20190140. doi:10.1098/rstb.2019.0140. PMC 7017431. PMID 31928195.
  5. ^ Michael Naylor Hudgins; Emma R. Schachner; Linda A. Hinnov (2020). "The evolution of respiratory systems in Theropoda and Paracrocodylomorpha, the end-Triassic extinction, and the role of Late Triassic atmospheric O2 and CO2". Palaeogeography, Palaeoclimatology, Palaeoecology. 545: Article 109638. Bibcode:2020PPP...545j9638H. doi:10.1016/j.palaeo.2020.109638. S2CID 214015203.
  6. ^ David Hone; Jordan C. Mallon; Patrick Hennessey; Lawrence M. Witmer (2020). "Ontogeny of a sexually selected structure in an extant archosaur Gavialis gangeticus (Pseudosuchia: Crocodylia) with implications for sexual dimorphism in dinosaurs". PeerJ. 8: e9134. doi:10.7717/peerj.9134. PMC 7227661. PMID 32435543.
  7. ^ Jens C.D. Kosch; Lindsay E. Zanno (2020). "Sampling impacts the assessment of tooth growth and replacement rates in archosaurs: implications for paleontological studies". PeerJ. 8: e9918. doi:10.7717/peerj.9918. PMC 7505082. PMID 32999766.
  8. ^ Zhiheng Li; Chun-Chieh Wang; Min Wang; Cheng-Cheng Chiang; Yan Wang; Xiaoting Zheng; E-Wen Huang; Kiko Hsiao; Zhonghe Zhou (2020). "Ultramicrostructural reductions in teeth: implications for dietary transition from non-avian dinosaurs to birds". BMC Evolutionary Biology. 20 (1): 46. doi:10.1186/s12862-020-01611-w. PMC 7171806. PMID 32316913.
  9. ^ Aurore Canoville; Mary H. Schweitzer; Lindsay Zanno (2020). "Identifying medullary bone in extinct avemetatarsalians: challenges, implications and perspectives". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1793): Article ID 20190133. doi:10.1098/rstb.2019.0133. PMC 7017430. PMID 31928189. S2CID 210157421.
  10. ^ Seung Choi; Sung Keun Lee; Noe-Heon Kim; Seongyeong Kim; Yuong-Nam Lee (2020). "Raman spectroscopy detects amorphous carbon in an enigmatic egg from the Upper Cretaceous Wido Volcanics of South Korea". Frontiers in Earth Science. 7: Article 349. Bibcode:2019FrEaS...7..349C. doi:10.3389/feart.2019.00349. S2CID 210861482.
  11. ^ Savannah Elizabeth Cobb; William I. Sellers (2020). "Inferring lifestyle for Aves and Theropoda: A model based on curvatures of extant avian ungual bones". PLOS ONE. 15 (2): e0211173. Bibcode:2020PLoSO..1511173C. doi:10.1371/journal.pone.0211173. PMC 7001973. PMID 32023255.
  12. ^ Lida Xing; Pierre Cockx; Ryan C. McKellar (2020). "Disassociated feathers in Burmese amber shed new light on mid-Cretaceous dinosaurs and avifauna". Gondwana Research. 82: 241–253. Bibcode:2020GondR..82..241X. doi:10.1016/j.gr.2019.12.017. S2CID 214148586.
  13. ^ Agustina Lecuona; Julia Brenda Desojo; Ignacio Alejandro Cerda (2020). "New information on the anatomy and histology of Gracilisuchus stipanicicorum (Archosauria: Pseudosuchia) from the Chañares Formation (early Carnian), Argentina". Comptes Rendus Palevol. 19 (3): 40–62.
  14. ^ M. Belén von Baczko; Julia B. Desojo; Denis Ponce (2020). "Postcranial anatomy and osteoderm histology of Riojasuchus tenuisceps and a phylogenetic update on Ornithosuchidae (Archosauria, Pseudosuchia)". Journal of Vertebrate Paleontology. 39 (5): e1693396. doi:10.1080/02724634.2019.1693396. hdl:11336/138965. S2CID 213887703.
  15. ^ Davide Foffa; Richard J. Butler; Sterling J. Nesbitt; Stig Walsh; Paul M. Barrett; Stephen L. Brusatte; Nicholas C. Fraser (2020). "Revision of Erpetosuchus (Archosauria: Pseudosuchia) and new erpetosuchid material from the Late Triassic 'Elgin Reptile' fauna based on μCT scanning techniques" (PDF). Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 111 (4): 209–233. doi:10.1017/S1755691020000109. hdl:20.500.11820/92297237-59c2-499e-a05a-1d5bb6997c23. S2CID 228887493.
  16. ^ Adam D. Marsh; Matthew E. Smith; William G. Parker; Randall B. Irmis; Ben T. Kligman (2020). "Skeletal Anatomy of Acaenasuchus geoffreyi Long and Murry, 1995 (Archosauria: Pseudosuchia) and its Implications for the Origin of the Aetosaurian Carapace". Journal of Vertebrate Paleontology. 40 (4): e1794885. doi:10.1080/02724634.2020.1794885. S2CID 225136804.
  17. ^ Emily Keeble; Michael J. Benton (2020). "Three-dimensional tomographic study of dermal armour from the tail of the Triassic aetosaur Stagonolepis robertsoni" (PDF). Scottish Journal of Geology. 56 (1): 55–62. doi:10.1144/sjg2019-026. S2CID 211030624.[permanent dead link]
  18. ^ Julia Brenda Desojo; María Belén von Baczko; Oliver W.M. Rauhut (2020). "Anatomy, taxonomy and phylogenetic relationships of Prestosuchus chiniquensis (Archosauria: Pseudosuchia) from the original collection of von Huene, Middle-Late Triassic of southern Brazil". Palaeontologia Electronica. 23 (1): Article number 23(1):a04. doi:10.26879/1026. S2CID 213432918.
  19. ^ Sterling J. Nesbitt; John M. Zawiskie; Robert M. Dawley (2020). "The osteology and phylogenetic position of the loricatan (Archosauria: Pseudosuchia) Heptasuchus clarki, from the ?Mid-Upper Triassic, southeastern Big Horn Mountains, Central Wyoming (USA)". PeerJ. 8: e10101. doi:10.7717/peerj.10101. PMC 7597643. PMID 33194383.
  20. ^ Juan Martín Leardi; Imanol Yáñez; Diego Pol (2020). "South American Crocodylomorphs (Archosauria; Crocodylomorpha): A review of the early fossil record in the continent and its relevance on understanding the origins of the clade". Journal of South American Earth Sciences. 104: Article 102780. Bibcode:2020JSAES.10402780L. doi:10.1016/j.jsames.2020.102780. S2CID 225237455.
  21. ^ Juan Martín Leardi; Diego Pol; James Matthew Clark (2020). "Braincase anatomy of Almadasuchus figarii (Archosauria, Crocodylomorpha) and a review of the cranial pneumaticity in the origins of Crocodylomorpha". Journal of Anatomy. 237 (1): 48–73. doi:10.1111/joa.13171. PMC 7309285. PMID 32227598.
  22. ^ William Gearty; Jonathan L. Payne (2020). "Physiological constraints on body size distributions in Crocodyliformes". Evolution. 74 (2): 245–255. doi:10.1111/evo.13901. PMID 31943148. S2CID 210335476.
  23. ^ Candice M. Stefanic; Jennifer H. Nestler; Erik R. Seiffert; Alan H. Turner (2020). "New crocodylomorph material from the Fayum Depression, Egypt, including the first occurrence of a sebecosuchian in African late Eocene deposits". Journal of Vertebrate Paleontology. 39 (6): e1729781. doi:10.1080/02724634.2019.1729781. S2CID 216272094.
  24. ^ M.L. Fernandez Dumont; P. Bona; D. Pol; S. Apesteguía (2020). "New anatomical information on Araripesuchus buitreraensis with implications for the systematics of Uruguaysuchidae (Crocodyliforms, Notosuchia)". Cretaceous Research. 113: Article 104494. doi:10.1016/j.cretres.2020.104494. S2CID 218942443.
  25. ^ Julia A. Schwab; Mark T. Young; James M. Neenan; Stig A. Walsh; Lawrence M. Witmer; Yanina Herrera; Ronan Allain; Christopher A. Brochu; Jonah N. Choiniere; James M. Clark; Kathleen N. Dollman; Steve Etches; Guido Fritsch; Paul M. Gignac; Alexander Ruebenstahl; Sven Sachs; Alan H. Turner; Patrick Vignaud; Eric W. Wilberg; Xing Xu; Lindsay E. Zanno; Stephen L. Brusatte (2020). "Inner ear sensory system changes as extinct crocodylomorphs transitioned from land to water". Proceedings of the National Academy of Sciences of the United States of America. 117 (19): 10422–10428. Bibcode:2020PNAS..11710422S. doi:10.1073/pnas.2002146117. PMC 7229756. PMID 32312812.
  26. ^ Michela M. Johnson; Mark T. Young; Stephen L. Brusatte (2020). "Emptying the wastebasket: a historical and taxonomic revision of the Jurassic crocodylomorph Steneosaurus". Zoological Journal of the Linnean Society. 189 (2): 428–448. doi:10.1093/zoolinnean/zlaa027.
  27. ^ Stéphane Hua (2020). "A new specimen of Teleidosaurus calvadosii (Eudes-Deslongchamps, 1866) (Crocodylia, Thalattosuchia) from the Middle Jurassic of France". Annales de Paléontologie. 106 (4): Article 102423. doi:10.1016/j.annpal.2020.102423. S2CID 219426498.
  28. ^ Nicolas Séon; Romain Amiot; Jeremy E. Martin; Mark T. Young; Heather Middleton; François Fourel; Laurent Picot; Xavier Valentin; Christophe Lécuyer (2020). "Thermophysiologies of Jurassic marine crocodylomorphs inferred from the oxygen isotope composition of their tooth apatite". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1793): Article ID 20190139. doi:10.1098/rstb.2019.0139. PMC 7017436. PMID 31928186. S2CID 210157410.
  29. ^ Pascal Abel; Sven Sachs; Mark Thomas Young (2020). "Metriorhynchid crocodylomorphs from the lower Kimmeridgian of Southern Germany: evidence for a new large-bodied geosaurin lineage in Europe" (PDF). Alcheringa: An Australasian Journal of Palaeontology. 44 (2): 312–326. doi:10.1080/03115518.2019.1701079. hdl:20.500.11820/e71fe1e8-9a0f-44c3-abeb-02c14721f37f. S2CID 214328465.
  30. ^ Sven Sachs; Mark T. Young; Jahn J. Hornung (2020). "The enigma of Enaliosuchus, and a reassessment of the Lower Cretaceous fossil record of Metriorhynchidae" (PDF). Cretaceous Research. 114: Article 104479. doi:10.1016/j.cretres.2020.104479. hdl:20.500.11820/c52d1d56-1bf3-4aae-b2e1-38c85eed44fa. S2CID 218996914.
  31. ^ Jorge Cubo; Mariana V. A. Sena; Paul Aubier; Guillaume Houee; Penelope Claisse; Mathieu G. Faure-Brac; Ronan Allain; Rafael C. L. P. Andrade; Juliana M. Sayão; Gustavo R. Oliveira (2020). "Were Notosuchia (Pseudosuchia: Crocodylomorpha) warm-blooded? A palaeohistological analysis suggests ectothermy". Biological Journal of the Linnean Society. 131 (1): 154–162. doi:10.1093/biolinnean/blaa081.
  32. ^ A. de Celis; I. Narváez; A. Arcucci; F. Ortega (2020). "Lagerstätte effect drives notosuchian palaeodiversity (Crocodyliformes, Notosuchia)". Historical Biology. 33 (11): 3031–3040. doi:10.1080/08912963.2020.1844682. S2CID 228864096.
  33. ^ Felipe C. Montefeltro; Stephan Lautenschlager; Pedro L. Godoy; Gabriel S. Ferreira; Richard J. Butler (2020). "A unique predator in a unique ecosystem: modelling the apex predator within a Late Cretaceous crocodyliform‐dominated fauna from Brazil". Journal of Anatomy. 237 (2): 323–333. doi:10.1111/joa.13192. PMC 7369189. PMID 32255518.
  34. ^ Pedro Henrique Morais Fonseca; Agustín Guillermo Martinelli; Thiago da Silva Marinho; Luiz Carlos Borges Ribeiro; Cesar Leandro Schultz; Marina Bento Soares (2020). "Morphology of the endocranial cavities of Campinasuchus dinizi (Crocodyliformes: Baurusuchidae) from the Upper Cretaceous of Brazil". Geobios. 58: 1–16. doi:10.1016/j.geobios.2019.11.001. S2CID 213615580.
  35. ^ Marcos V. Dumont Jr; Rodrigo M. Santucci; Marco Brandalise de Andrade; Carlos Eduardo Maia de Oliveira (2022). "Paleoneurology of Baurusuchus (Crocodyliformes: Baurusuchidae), ontogenetic variation, brain size, and sensorial implications". The Anatomical Record. 305 (10): 2670–2694. doi:10.1002/ar.24567. PMID 33211405. S2CID 227067296.
  36. ^ Stéphane Jouve; Nour-Eddine Jalil (2020). "Paleocene resurrection of a crocodylomorph taxon: Biotic crises, climatic and sea level fluctuations" (PDF). Gondwana Research. 85: 1–18. Bibcode:2020GondR..85....1J. doi:10.1016/j.gr.2020.03.010. S2CID 219451890.
  37. ^ Felipe C. Montefeltro; Mario Bronzati; Max C. Langer; Luiz E. Anelli (2020). "A new specimen of Susisuchus anatoceps (Crocodyliformes, Neosuchia) with a non-eusuchian-type palate". Journal of Vertebrate Paleontology. 39 (5): e1716240. doi:10.1080/02724634.2019.1716240. S2CID 213053518.
  38. ^ Jeremy E. Martin; Thierry Smith; Céline Salaviale; Jerôme Adrien; Massimo Delfino (2020). "Virtual reconstruction of the skull of Bernissartia fagesii and current understanding of the neosuchian–eusuchian transition". Journal of Systematic Palaeontology. 18 (13): 1079–1101. doi:10.1080/14772019.2020.1731722. S2CID 216464226.
  39. ^ Alejandro Serrano‐Martínez; Fabien Knoll; Iván Narváez; Stephan Lautenschlager; Francisco Ortega (2020). "Neuroanatomical and neurosensorial analysis of the Late Cretaceous basal eusuchian Agaresuchus fontisensis (Cuenca, Spain)". Papers in Palaeontology. 7 (1): 641–656. doi:10.1002/spp2.1296. ISSN 2056-2799. S2CID 214145783.
  40. ^ Pedro L. Godoy; Giovanne M. Cidade; Felipe C. Montefeltro; Max C. Langer; Mark A. Norell (2020). "Redescription and phylogenetic affinities of the caimanine Eocaiman cavernensis (Crocodylia, Alligatoroidea) from the Eocene of Argentina". Papers in Palaeontology. 7 (3): 1205–1231. doi:10.1002/spp2.1339. S2CID 222240131.
  41. ^ François Pujos; Rodolfo Salas-Gismondi (2020). "Predation of the giant Miocene caiman Purussaurus on a mylodontid ground sloth in the wetlands of proto-Amazonia". Biology Letters. 16 (8): Article ID 20200239. doi:10.1098/rsbl.2020.0239. PMC 7480153. PMID 32842894. S2CID 221298643.
  42. ^ Giovanne M. Cidade; Ascanio D. Rincón; Andrés Solórzano (2020). "New cranial and postcranial elements of Mourasuchus (Alligatoroidea: Caimaninae) from the late Miocene of Venezuela and their palaeobiological implications". Historical Biology. 33 (10): 2387–2399. doi:10.1080/08912963.2020.1795844. S2CID 225395230.
  43. ^ Michael D. Stein; Suzanne J. Hand; Michael Archer; Stephen Wroe; Laura A.B. Wilson (2020). "Quantitatively assessing mekosuchine crocodile locomotion by geometric morphometric and finite element analysis of the forelimb". PeerJ. 8: e9349. doi:10.7717/peerj.9349. PMC 7301899. PMID 32587803.
  44. ^ Massimo Delfino; Dawid A. Iurino; Bruno Mercurio; Paolo Piras; Lorenzo Rook; Raffaele Sardella (2020). "Old African fossils provide new evidence for the origin of the American crocodiles". Scientific Reports. 10 (1): Article number 11127. Bibcode:2020NatSR..1011127D. doi:10.1038/s41598-020-68482-5. PMC 7378212. PMID 32703957.
  45. ^ Kyung Soo Kim; Martin G. Lockley; Jong Deock Lim; Seul Mi Bae; Anthony Romilio (2020). "Trackway evidence for large bipedal crocodylomorphs from the Cretaceous of Korea". Scientific Reports. 10 (1): Article number 8680. Bibcode:2020NatSR..10.8680K. doi:10.1038/s41598-020-66008-7. PMC 7289791. PMID 32528068.
  46. ^ Christopher A. Brochu; Colin D. Sumrall (2020). "Modern cryptic species and crocodylian diversity in the fossil record". Zoological Journal of the Linnean Society. 189 (2): 700–711. doi:10.1093/zoolinnean/zlaa039.
  47. ^ Jeremy B. Stout (2020). "New early Pleistocene Alligator (Eusuchia: Crocodylia) from Florida bridges a gap in Alligator evolution". Zootaxa. 4868 (1): 41–60. doi:10.11646/zootaxa.4868.1.3. PMID 33311408. S2CID 226337860.
  48. ^ a b c d e f g h Michela M. Johnson; Mark T. Young; Stephen L. Brusatte (2020). "The phylogenetics of Teleosauroidea (Crocodylomorpha, Thalattosuchia) and implications for their ecology and evolution". PeerJ. 8: e9808. doi:10.7717/peerj.9808. PMC 7548081. PMID 33083104.
  49. ^ Adam P. Cossette (2020). "A new species of Bottosaurus (Alligatoroidea: Caimaninae) from the Black Peaks Formation (Palaeocene) of Texas indicates an early radiation of North American caimanines". Zoological Journal of the Linnean Society. 191 (1): 276–301. doi:10.1093/zoolinnean/zlz178.
  50. ^ Adam P. Cossette; Amanda J. Adams; Stephanie K. Drumheller; Jennifer H. Nestler; Brenda R. Benefit; Monte L. McCrossin; Frederick K. Manthi; Rose Nyaboke Juma; Christopher A. Brochu (2020). "A new crocodylid from the middle Miocene of Kenya and the timing of crocodylian faunal change in the late Cenozoic of Africa". Journal of Paleontology. 94 (6): 1165–1179. doi:10.1017/jpa.2020.60. S2CID 222232657.
  51. ^ Yanina Herrera; Marta S. Fernández; Verónica V. Vennari (2020). "Cricosaurus (Thalattosuchia, Metriorhynchidae) survival across the J/K boundary in the High Andes (Mendoza Province, Argentina)". Cretaceous Research. 118: Article 104673. doi:10.1016/j.cretres.2020.104673. hdl:11336/142931. S2CID 225149236.
  52. ^ Adam P. Cossette; Christopher A. Brochu (2020). "A systematic review of the giant alligatoroid Deinosuchus from the Campanian of North America and its implications for the relationships at the root of Crocodylia". Journal of Vertebrate Paleontology. 40 (1): e1767638. doi:10.1080/02724634.2020.1767638. S2CID 221749353.
  53. ^ a b c Stéphane Jouve; Christian de Muizon; Ricardo Cespedes-Paz; Víctor Sossa-Soruco; Stephane Knoll (2020). "The longirostrine crocodyliforms from Bolivia and their evolution through the Cretaceous–Palaeogene boundary". Zoological Journal of the Linnean Society. 192 (2): 475–509. doi:10.1093/zoolinnean/zlaa081.
  54. ^ Rodrigo T. Müller; M. Belén Von Baczko; Julia B. Desojo; Sterling J. Nesbitt (2020). "The first ornithosuchid from Brazil and its macroevolutionary and phylogenetic implications for Late Triassic faunas in Gondwana". Acta Palaeontologica Polonica. 65 (1): 1–10. doi:10.4202/app.00652.2019. S2CID 213816236.
  55. ^ Jonas Pereira de Souza-Filho; Edson Guilherme; Peter Mann de Toledo; Ismar de Souza Carvalho; Francisco Ricardo Negri; Andréa Aparecida da Rocha Maciente; Giovanne M. Cidade; Mauro Bruno da Silva Lacerda; Lucy Gomes de Souza (2020). "On a new Melanosuchus species (Alligatoroidea: Caimaninae) from Solimões Formation (Eocene-Pliocene), Northern Brazil, and evolution of Caimaninae". Zootaxa. 4894 (4): 561–593. doi:10.11646/zootaxa.4894.4.5. PMID 33311064. S2CID 229178080.
  56. ^ Albert G. Sellés; Alejandro Blanco; Bernat Vila; Josep Marmi; Francisco J. López-Soriano; Sergio Llácer; Jaime Frigola; Miquel Canals; Àngel Galobart (2020). "A small Cretaceous crocodyliform in a dinosaur nesting ground and the origin of sebecids". Scientific Reports. 10 (1): Article number 15293. Bibcode:2020NatSR..1015293S. doi:10.1038/s41598-020-71975-y. PMC 7499430. PMID 32943663.
  57. ^ Albert G. Sellés; Alejandro Blanco; Bernat Vila; Josep Marmi; Francisco J. López-Soriano; Sergio Llácer; Jaime Frigola; Miquel Canals; Àngel Galobart (2021). "Author Correction: A small Cretaceous crocodyliform in a dinosaur nesting ground and the origin of sebecids". Scientific Reports. 11 (1): Article number 1172. doi:10.1038/s41598-021-81062-5. PMC 7791096. PMID 33414506.
  58. ^ Jorgo Ristevski; Adam M. Yates; Gilbert J. Price; Ralph E. Molnar; Vera Weisbecker; Steven W. Salisbury (2020). "Australia's prehistoric 'swamp king': revision of the Plio-Pleistocene crocodylian genus Pallimnarchus de Vis, 1886". PeerJ. 8: e10466. doi:10.7717/peerj.10466. PMC 7759136. PMID 33391869.
  59. ^ Mark T. Young, FLS; Arnaud Brignon; Sven Sachs; Jahn J. Hornung; Davide Foffa; James J. N. Kitson; Michela M. Johnson; Lorna Steel (2021). "Cutting the Gordian knot: a historical and taxonomic revision of the Jurassic crocodylomorph Metriorhynchus". Zoological Journal of the Linnean Society. 192 (2): 510–553. doi:10.1093/zoolinnean/zlaa092. ISSN 0024-4082.
  60. ^ Tore G. Klausen; Niall W. Paterson; Michael J. Benton (2020). "Geological control on dinosaurs' rise to dominance: Late Triassic ecosystem stress by relative sea level change". Terra Nova. 32 (6): 434–441. Bibcode:2020TeNov..32..434K. doi:10.1111/ter.12480. S2CID 219906193.
  61. ^ Nicholas M. A. Crouch (2020). "Extinction rates of non-avian dinosaur species are uncorrelated with the rate of evolution of phylogenetically informative characters". Biology Letters. 16 (6): Article ID 20200231. doi:10.1098/rsbl.2020.0231. PMC 7336841. PMID 32574533.
  62. ^ Tai Kubo (2020). "Biogeographical network analysis of Cretaceous Australian dinosaurs". Gondwana Research. 82: 39–47. Bibcode:2020GondR..82...39K. doi:10.1016/j.gr.2019.12.012. S2CID 212880512.
  63. ^ Nicolás E. Campione; David C. Evans (2020). "The accuracy and precision of body mass estimation in non‐avian dinosaurs". Biological Reviews. 95 (6): 1759–1797. doi:10.1111/brv.12638. PMID 32869488. S2CID 221404013.
  64. ^ Trevor G. Aguirre; Aniket Ingrole; Luca Fuller; Tim W. Seek; Anthony R. Fiorillo; Joseph J. W. Sertich; Seth W. Donahue (2020). "Differing trabecular bone architecture in dinosaurs and mammals contribute to stiffness and limits on bone strain". PLOS ONE. 15 (8): e0237042. Bibcode:2020PLoSO..1537042A. doi:10.1371/journal.pone.0237042. PMC 7437811. PMID 32813735.
  65. ^ Peter L. Falkingham; Morgan L. Turner; Stephen M. Gatesy (2020). "Constructing and testing hypotheses of dinosaur foot motions from fossil tracks using digitization and simulation". Palaeontology. 63 (6): 865–880. doi:10.1111/pala.12502. S2CID 225356859.
  66. ^ Ch.A. Meyer; D. Marty; B. Thüring; S. Thüring; M. Belvedere (2020). "The Late Cretaceous dinosaur track record of Bolivia – Review and perspective". Journal of South American Earth Sciences. 106: Article 102992. doi:10.1016/j.jsames.2020.102992. ISSN 0895-9811. S2CID 229473959.
  67. ^ Nicolás E. Campione; Paul M. Barrett; David C. Evans (2020). "On the ancestry of feathers in Mesozoic dinosaurs". In Christian Foth; Oliver W. M. Rauhut (eds.). The evolution of feathers. Fascinating Life Sciences. Springer. pp. 213–243. doi:10.1007/978-3-030-27223-4_12. ISBN 978-3-030-27223-4. S2CID 216395898.
  68. ^ Robin R. Dawson; Daniel J. Field; Pincelli M. Hull; Darla K. Zelenitsky; François Therrien; Hagit P. Affek (2020). "Eggshell geochemistry reveals ancestral metabolic thermoregulation in Dinosauria". Science Advances. 6 (7): eaax9361. Bibcode:2020SciA....6.9361D. doi:10.1126/sciadv.aax9361. PMC 7021498. PMID 32110726.
  69. ^ Amzad H. Laskar; Dhananjay Mohabey; Sourendra K. Bhattacharya; Mao-Chang Liang (2020). "Variable thermoregulation of Late Cretaceous dinosaurs inferred by clumped isotope analysis of fossilized eggshell carbonates". Heliyon. 6 (10): e05265. doi:10.1016/j.heliyon.2020.e05265. PMC 7581925. PMID 33117899.
  70. ^ Mark A. Norell; Jasmina Wiemann; Matteo Fabbri; Congyu Yu; Claudia A. Marsicano; Anita Moore-Nall; David J. Varricchio; Diego Pol; Darla K. Zelenitsky (2020). "The first dinosaur egg was soft". Nature. 583 (7816): 406–410. Bibcode:2020Natur.583..406N. doi:10.1038/s41586-020-2412-8. PMID 32555457. S2CID 219730449.
  71. ^ Seung Choi; Tzu-Ruei Yang; Miguel Moreno-Azanza; Noe-Heon Kim; Congyu Yu (2022). "Triassic sauropodomorph eggshell might not be soft". Nature. 610 (7932): E8–E10. doi:10.1038/s41586-022-05151-9. PMID 36261569.
  72. ^ Mark A. Norell; Jasmina Wiemann; Iris Menéndez; Matteo Fabbri; Congyu Yu; Claudia A. Marsicano; Anita Moore-Nall; David J. Varricchio; Diego Pol; Darla K. Zelenitsky (2022). "Reply to: Triassic sauropodomorph eggshell might not be soft". Nature. 610 (7932): E11–E14. doi:10.1038/s41586-022-05152-8. PMID 36261552.
  73. ^ Qing He; Sen Yang; Songhai Jia; Li Xu; Lida Xing; Diansong Gao; Di Liu; Yongli Gao; Yalin Zheng (2020). "Trace element and isotope geochemistry of macroelongatoolithid eggs as an indicator of palaeoenvironmental reconstruction from the Late Cretaceous Xixia Basin, China". Cretaceous Research. 109: Article 104373. doi:10.1016/j.cretres.2020.104373. S2CID 214498095.
  74. ^ Seung Choi; Miguel Moreno‐Azanza; Zoltán Csiki‐Sava; Edina Prondvai; Yuong‐Nam Lee (2020). "Comparative crystallography suggests maniraptoran theropod affinities for latest Cretaceous European 'geckoid' eggshell" (PDF). Papers in Palaeontology. 6 (2): 265–292. doi:10.1002/spp2.1294. S2CID 214537088.
  75. ^ Kohei Tanaka; Darla K. Zelenitsky; François Therrien; Tadahiro Ikeda; Katsuhiro Kubota; Haruo Saegusa; Tomonori Tanaka; Kenji Ikuno (2020). "Exceptionally small theropod eggs from the Lower Cretaceous Ohyamashimo Formation of Tamba, Hyogo Prefecture, Japan". Cretaceous Research. 114: Article 104519. doi:10.1016/j.cretres.2020.104519. S2CID 219449961.
  76. ^ Kimberley E. J. Chapelle; Vincent Fernandez; Jonah N. Choiniere (2020). "Conserved in-ovo cranial ossification sequences of extant saurians allow estimation of embryonic dinosaur developmental stages". Scientific Reports. 10 (1): Article number 4224. Bibcode:2020NatSR..10.4224C. doi:10.1038/s41598-020-60292-z. PMC 7145871. PMID 32273522.
  77. ^ Michael J. Simms; Robert S.H. Smyth; David M. Martill; Patrick C. Collins; Roger Byrne (2020). "First dinosaur remains from Ireland". Proceedings of the Geologists' Association. 132 (6): 771–779. doi:10.1016/j.pgeola.2020.06.005. S2CID 228811170.
  78. ^ Guntupalli V. R. Prasad; Varun Parmar (2020). "First ornithischian and theropod dinosaur teeth from the Middle Jurassic Kota Formation of India: paleobiogeographic relationships". In Guntupalli V.R. Prasad; Rajeev Patnaik (eds.). Biological consequences of plate tectonics. New perspectives on post-Gondwana break-up–A tribute to Ashok Sahni. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 1–30. doi:10.1007/978-3-030-49753-8_1. ISBN 978-3-030-49752-1. S2CID 229665927.
  79. ^ Débora Moro; Leonardo Kerber; Rodrigo T. Müller; Flávio A. Pretto (2020). "Sacral co‐ossification in dinosaurs: The oldest record of fused sacral vertebrae in Dinosauria and the diversity of sacral co‐ossification patterns in the group". Journal of Anatomy. 238 (4): 828–844. doi:10.1111/joa.13356. PMC 7930772. PMID 33164207.
  80. ^ Joseph A. Bonsor; Paul M. Barrett; Thomas J. Raven; Natalie Cooper (2020). "Dinosaur diversification rates were not in decline prior to the K-Pg boundary". Royal Society Open Science. 7 (11): Article ID: 201195. Bibcode:2020RSOS....701195B. doi:10.1098/rsos.201195. PMC 7735361. PMID 33391800. S2CID 226981705.
  81. ^ Manabu Sakamoto; Michael J. Benton; Chris Venditti (2021). "Strong support for a heterogeneous speciation decline model in Dinosauria: a response to claims made by Bonsor et al. (2020)". Royal Society Open Science. 8 (8): Article ID: 202143. Bibcode:2021RSOS....802143S. doi:10.1098/rsos.202143. PMC 8385376. PMID 34457325.
  82. ^ Alfio Alessandro Chiarenza; Alexander Farnsworth; Philip D. Mannion; Daniel J. Lunt; Paul J. Valdes; Joanna V. Morgan; Peter A. Allison (2020). "Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction". Proceedings of the National Academy of Sciences of the United States of America. 117 (29): 17084–17093. Bibcode:2020PNAS..11717084C. doi:10.1073/pnas.2006087117. PMC 7382232. PMID 32601204.
  83. ^ Sterling J. Nesbitt; Hans-Dieter Sues (2020). "The osteology of the early-diverging dinosaur Daemonosaurus chauliodus (Archosauria: Dinosauria) from the Coelophysis Quarry (Triassic: Rhaetian) of New Mexico and its relationships to other early dinosaurs". Zoological Journal of the Linnean Society. 191 (1): 150–179. doi:10.1093/zoolinnean/zlaa080.
  84. ^ Henry P. Tsai; Kevin M. Middleton; John R. Hutchinson; Casey M. Holliday (2020). "More than one way to be a giant: Convergence and disparity in the hip joints of saurischian dinosaurs" (PDF). Evolution. 74 (8): 1654–1681. doi:10.1111/evo.14017. PMID 32433795. S2CID 218765317.
  85. ^ David M. Lovelace; Scott A. Hartman; Paul D. Mathewson; Benjamin J. Linzmeier; Warren P. Porter (2020). "Modeling Dragons: Using linked mechanistic physiological and microclimate models to explore environmental, physiological, and morphological constraints on the early evolution of dinosaurs". PLOS ONE. 15 (5): e0223872. Bibcode:2020PLoSO..1523872L. doi:10.1371/journal.pone.0223872. PMC 7259893. PMID 32469936.
  86. ^ T. Alexander Dececchi; Aleksandra M. Mloszewska; Thomas R. Holtz Jr.; Michael B. Habib; Hans C. E. Larsson (2020). "The fast and the frugal: Divergent locomotory strategies drive limb lengthening in theropod dinosaurs". PLOS ONE. 15 (5): e0223698. Bibcode:2020PLoSO..1523698D. doi:10.1371/journal.pone.0223698. PMC 7220109. PMID 32401793.
  87. ^ Cullen, Thomas M.; Canale, Juan I.; Apesteguía, Sebastián; Smith, Nathan D.; Hu, Dongyu; Makovicky, Peter J. (2020-11-25). "Osteohistological analyses reveal diverse strategies of theropod dinosaur body-size evolution". Proceedings of the Royal Society B: Biological Sciences. 287 (1939): 20202258. doi:10.1098/rspb.2020.2258. PMC 7739506. PMID 33234083. S2CID 227154091.
  88. ^ Alexander B. Bradley; Sara H. Burch; Alan H. Turner; Nathan D. Smith; Randall B. Irmis; Sterling J. Nesbitt (2020). "Sternal elements of early dinosaurs fill a critical gap in the evolution of the sternum in Avemetatarsalia (Reptilia: Archosauria)". Journal of Vertebrate Paleontology. 39 (5): e1700992. doi:10.1080/02724634.2019.1700992. S2CID 213431272.
  89. ^ Adam D. Marsh; Timothy B. Rowe (2020). "A comprehensive anatomical and phylogenetic evaluation of Dilophosaurus wetherilli (Dinosauria, Theropoda) with descriptions of new specimens from the Kayenta Formation of northern Arizona". Journal of Paleontology. 94 (Supplement S78): 1–103. doi:10.1017/jpa.2020.14. S2CID 220601744.
  90. ^ Martín D. Ezcurra; Richard J. Butler; Susannah C. R. Maidment; Ivan J. Sansom; Luke E. Meade; Jonathan D. Radley (2020). "A revision of the early neotheropod genus Sarcosaurus from the Early Jurassic (Hettangian–Sinemurian) of central England". Zoological Journal of the Linnean Society. 191 (1): 113–149. doi:10.1093/zoolinnean/zlaa054.
  91. ^ Serjoscha W. Evers; Oliver Wings (2020). "Late Jurassic theropod dinosaur bones from the Langenberg Quarry (Lower Saxony, Germany) provide evidence for several theropod lineages in the central European archipelago". PeerJ. 8: e8437. doi:10.7717/peerj.8437. PMC 7007975. PMID 32071804.
  92. ^ Soto, Matías; Toriño, Pablo; Perea, Daniel (2020-11-01). "Ceratosaurus (Theropoda, Ceratosauria) teeth from the Tacuarembó Formation (Late Jurassic, Uruguay)". Journal of South American Earth Sciences. 103: 102781. Bibcode:2020JSAES.10302781S. doi:10.1016/j.jsames.2020.102781. ISSN 0895-9811. S2CID 224842133.
  93. ^ Stephen F. Poropat; Adele H. Pentland; Ruairidh J. Duncan; Joseph J. Bevitt; Patricia Vickers-Rich; Thomas H. Rich (2020). "First elaphrosaurine theropod dinosaur (Ceratosauria: Noasauridae) from Australia — A cervical vertebra from the Early Cretaceous of Victoria". Gondwana Research. 84: 284–295. Bibcode:2020GondR..84..284P. doi:10.1016/j.gr.2020.03.009. S2CID 218930877.
  94. ^ Tom Brougham; Elizabeth T. Smith; Phil R. Bell (2020). "Noasaurids are a component of the Australian 'mid'-Cretaceous theropod fauna". Scientific Reports. 10 (1): Article number 1428. Bibcode:2020NatSR..10.1428B. doi:10.1038/s41598-020-57667-7. PMC 6989633. PMID 31996712.
  95. ^ Geovane Alves de Souza; Marina Bento Soares; Arthur Souza Brum; Maria Zucolotto; Juliana M. Sayão; Luiz Carlos Weinschütz; Alexander W.A. Kellner (2020). "Osteohistology and growth dynamics of the Brazilian noasaurid Vespersaurus paranaensis Langer et al., 2019 (Theropoda: Abelisauroidea)". PeerJ. 8: e9771. doi:10.7717/peerj.9771. PMC 7500327. PMID 32983636. S2CID 221906765.
  96. ^ Mauricio A. Cerroni; Juan I. Canale; Fernando E. Novas; Ariana Paulina‐Carabajal (2020). "An exceptional neurovascular system in abelisaurid theropod skull: New evidence from Skorpiovenator bustingorryi". Journal of Anatomy. 240 (4): 612–626. doi:10.1111/joa.13258. PMC 8930818. PMID 32569442. S2CID 219991206.
  97. ^ M.A. Cerroni; J. I. Canale; F. E. Novas (2020). "The skull of Carnotaurus sastrei Bonaparte 1985 revisited: insights from craniofacial bones, palate and lower jaw". Historical Biology. 33 (10): 2444–2485. doi:10.1080/08912963.2020.1802445. S2CID 225374445.
  98. ^ Samuel B. Gutherz; Joseph R. Groenke; Joseph J.W. Sertich; Sara H. Burch; Patrick M. O'Connor (2020). "Paleopathology in a nearly complete skeleton of Majungasaurus crenatissimus (Theropoda: Abelisauridae)". Cretaceous Research. 115: Article 104553. doi:10.1016/j.cretres.2020.104553. S2CID 224948887.
  99. ^ Hornung, Jahn Jochen (2020-10-13). "Comments on "Ornithocheirus hilsensis" Koken, 1883 – One of the earliest dinosaur discoveries in Germany". PalArch's Journal of Vertebrate Palaeontology. 17 (1): 1–12. ISSN 1567-2158.
  100. ^ Paulo Victor Gomes da Costa Pereira; Theo Baptista Ribeiro; Stephen Louis Brusatte; Carlos Roberto Dos Anjos Candeiro; Thiago da Silva Marinho; Lilian Paglarelli Bergqvist (2020). "Theropod (Dinosauria) diversity from the Açu Formation (mid-Cretaceous), Potiguar Basin, Northeast Brazil". Cretaceous Research. 114: Article 104517. doi:10.1016/j.cretres.2020.104517. hdl:20.500.11820/849a673d-9aa1-4b8e-be0c-f630af8a5d5e. S2CID 226198049.
  101. ^ Oliver W. M. Rauhut; Achim H. Schwermann; Tom R. Hübner; Klaus-Peter Lanser (2020). "The oldest record of the genus Torvosaurus (Theropoda: Megalosauridae) from the Callovian Ornatenton Formation of north-western Germany" (PDF). Geologie und Paläontologie in Westfalen. 93: 1–13.
  102. ^ Nicola S. Heckeberg; Oliver W. M. Rauhut (2020). "Histology of spinosaurid dinosaur teeth from the Albian-Cenomanian of Morocco: Implications for tooth replacement and ecology". Palaeontologia Electronica. 23 (3): Article number 23(3):a48. doi:10.26879/1041. S2CID 222285498.
  103. ^ Marco Schade; Oliver W. M. Rauhut; Serjoscha W. Evers (2020). "Neuroanatomy of the spinosaurid Irritator challengeri (Dinosauria: Theropoda) indicates potential adaptations for piscivory". Scientific Reports. 10 (1): Article number 9259. Bibcode:2020NatSR..10.9259S. doi:10.1038/s41598-020-66261-w. PMC 7283278. PMID 32518236.
  104. ^ Ibrahim, Nizar; Maganuco, Simone; Dal Sasso, Cristiano; Fabbri, Matteo; Auditore, Marco; Bindellini, Gabriele; Martill, David M.; Zouhri, Samir; Mattarelli, Diego A.; Unwin, David M.; Wiemann, Jasmina (2020). "Tail-propelled aquatic locomotion in a theropod dinosaur". Nature. 581 (7806): 67–70. Bibcode:2020Natur.581...67I. doi:10.1038/s41586-020-2190-3. ISSN 1476-4687. PMID 32376955. S2CID 216650535.
  105. ^ Robert S.H. Smyth; Nizar Ibrahim; David M. Martill (2020). "Sigilmassasaurus is Spinosaurus: a reappraisal of African spinosaurines". Cretaceous Research. 114: Article 104520. doi:10.1016/j.cretres.2020.104520. S2CID 219487346.
  106. ^ Thomas Beevor; Aaron Quigley; Roy E. Smith; Robert S.H. Smyth; Nizar Ibrahim; Samir Zouhri; David M. Martill (2020). "Taphonomic evidence supports an aquatic lifestyle for Spinosaurus". Cretaceous Research. 117: Article 104627. doi:10.1016/j.cretres.2020.104627. S2CID 224888268.
  107. ^ Christophe Hendrickx; Josef Stiegler; Philip J. Currie; Fenglu Han; Xing Xu; Jonah Choiniere; Xiao-Chun Wu (2020). "Dental anatomy of the apex predator Sinraptor dongi (Theropoda: Allosauroidea) from the Late Jurassic of China". Canadian Journal of Earth Sciences. 57 (9): 1127–1147. Bibcode:2020CaJES..57.1127H. doi:10.1139/cjes-2019-0231. S2CID 213426133.
  108. ^ Stephanie K. Drumheller; Julia B. McHugh; Miriam Kane; Anja Riedel; Domenic C. D'Amore (2020). "High frequencies of theropod bite marks provide evidence for feeding, scavenging, and possible cannibalism in a stressed Late Jurassic ecosystem". PLOS ONE. 15 (5): e0233115. Bibcode:2020PLoSO..1533115D. doi:10.1371/journal.pone.0233115. PMC 7252595. PMID 32459808.
  109. ^ Rafael Delcourt; Natan S. Brilhante; Orlando N. Grillo; Aline M. Ghilardi; Bruno G. Augusta; Fresia Ricardi-Branco (2020). "Carcharodontosauridae theropod tooth crowns from the Upper Cretaceous (Bauru Basin) of Brazil: A reassessment of isolated elements and its implications to palaeobiogeography of the group". Palaeogeography, Palaeoclimatology, Palaeoecology. 556: Article 109870. Bibcode:2020PPP...556j9870D. doi:10.1016/j.palaeo.2020.109870. S2CID 224864035.
  110. ^ White, Matt A.; Bell, Phil R.; Poropat, Stephen F.; Pentland, Adele H.; Rigby, Samantha L.; Cook, Alex G.; Sloan, Trish; Elliott, David A. (2020). "New theropod remains and implications for megaraptorid diversity in the Winton Formation (lower Upper Cretaceous), Queensland, Australia". Royal Society Open Science. 7 (1): 191462. Bibcode:2020RSOS....791462W. doi:10.1098/rsos.191462. PMC 7029900. PMID 32218963.
  111. ^ Matthew C. Lamanna; Gabriel A. Casal; Ruben D. F. Martinez; Lucio M. Ibiricu (2020). "Megaraptorid (Theropoda: Tetanurae) partial skeletons from the Upper Cretaceous Bajo Barreal Formation of central Patagonia, Argentina: implications for the evolution of large body size in Gondwanan megaraptorans". Annals of Carnegie Museum. 86 (3): 255–294. doi:10.2992/007.086.0302. S2CID 229355207.
  112. ^ Mauro Aranciaga Rolando; Jordi Garcia Marsà; Fernando Novas (2020). "Histology and pneumaticity of Aoniraptor libertatem (Dinosauria, Theropoda), an enigmatic mid‐sized megaraptoran from Patagonia". Journal of Anatomy. 237 (4): 741–756. doi:10.1111/joa.13225. PMC 7495275. PMID 32470191.
  113. ^ a b Rui Pei; Michael Pittman; Pablo A. Goloboff; T. Alexander Dececchi; Michael B. Habib; Thomas G. Kaye; Hans C.E. Larsson; Mark A. Norell; Stephen L. Brusatte; Xing Xu (2020). "Potential for powered flight neared by most close avialan relatives, but few crossed its thresholds". Current Biology. 30 (20): 4033–4046.e8. doi:10.1016/j.cub.2020.06.105. PMID 32763170. S2CID 221015472.
  114. ^ Diego Pol; Pablo A. Goloboff (2020). "The impact of unstable taxa in coelurosaurian phylogeny and resampling support measures for parsimony analyses". Bulletin of the American Museum of Natural History. 440: 97–115. doi:10.1206/0003-0090.440.1.1. hdl:2246/7237. S2CID 221256926.
  115. ^ Anyang Ding; Michael Pittman; Paul Upchurch; Jingmai O'Connor; Daniel J. Field; Xing Xu (2020). "The biogeography of coelurosaurian theropods and its impact on their evolutionary history". Bulletin of the American Museum of Natural History. 440: 117–157. doi:10.1206/0003-0090.440.1.1. hdl:2246/7237. S2CID 221256926.
  116. ^ Matthew McKeown; Stephen L. Brusatte; Thomas E. Williamson; Julia A. Schwab; Thomas D. Carr; Ian B. Butler; Amy Muir; Katlin Schroeder; Michelle A. Espy; James F. Hunter; Adrian S. Losko; Ronald O. Nelson; D. Cort Gautier; Sven C. Vogel (2020). "Neurosensory and sinus evolution as tyrannosauroid dinosaurs developed giant size: insight from the endocranial anatomy of Bistahieversor sealeyi". The Anatomical Record. 303 (4): 1043–1059. doi:10.1002/ar.24374. hdl:20.500.11820/8c657729-91df-4f7c-bca5-b9c469781768. PMID 31967416. S2CID 210871038.
  117. ^ Chan-gyu Yun (2020). "An exceptionally small juvenile Gorgosaurus libratus (Dinosauria: Theropoda) specimen from the Dinosaur Park Formation (Campanian) of Alberta". The Mosasaur. The Journal of the Delaware Valley Paleontological Society. XI: 107–115.
  118. ^ Chan-gyu Yun (2020). "A Subadult Frontal of Daspletosaurus torosus (Theropoda: Tyrannosauridae) from the Late Cretaceous of Alberta, Canada with Implications for Tyrannosaurid Ontogeny and Taxonomy". PalArch's Journal of Vertebrate Palaeontology. 17: 1–13. Archived from the original on 2020-09-27. Retrieved 2020-09-17.
  119. ^ Chan-gyu, Yun. (2020). "A reassessment of the taxonomic validity of Dynamoterror dynastes (Theropoda: Tyrannosauridae)". Zoodiversity. 54 (3): 259–264. doi:10.15407/zoo2020.03.259. S2CID 225707330.
  120. ^ Holly N. Woodward; Katie Tremaine; Scott A. Williams; Lindsay E. Zanno; John R. Horner; Nathan Myhrvold (2020). "Growing up Tyrannosaurus rex: Osteohistology refutes the pygmy "Nanotyrannus" and supports ontogenetic niche partitioning in juvenile Tyrannosaurus". Science Advances. 6 (1): eaax6250. Bibcode:2020SciA....6.6250W. doi:10.1126/sciadv.aax6250. PMC 6938697. PMID 31911944.
  121. ^ Thomas D. Carr (2020). "A high-resolution growth series of Tyrannosaurus rex obtained from multiple lines of evidence". PeerJ. 8: e9192. doi:10.7717/peerj.9192. S2CID 219914849.
  122. ^ C. A. Hamm; O. Hampe; D. Schwarz; F. Witzmann; P. J. Makovicky; C. A. Brochu; R. Reiter; P. Asbach (2020). "A comprehensive diagnostic approach combining phylogenetic disease bracketing and CT imaging reveals osteomyelitis in a Tyrannosaurus rex". Scientific Reports. 10 (1): Article number 18897. Bibcode:2020NatSR..1018897H. doi:10.1038/s41598-020-75731-0. PMC 7642268. PMID 33144637.
  123. ^ Christian Foth; Carolin Haug; Joachim T. Haug; Helmut Tischlinger; Oliver W. M. Rauhut (2020). "Two of a feather: a comparison of the preserved integument in the juvenile theropod dinosaurs Sciurumimus and Juravenator from the Kimmeridgian Torleite Formation of southern Germany". In Christian Foth; Oliver W. M. Rauhut (eds.). The evolution of feathers. Fascinating Life Sciences. Springer. pp. 79–101. doi:10.1007/978-3-030-27223-4_6. ISBN 978-3-030-27223-4. S2CID 216245045.
  124. ^ Phil R. Bell; Christophe Hendrickx (2020). "Crocodile-like sensory scales in a Late Jurassic theropod dinosaur". Current Biology. 30 (19): R1068–R1070. doi:10.1016/j.cub.2020.08.066. PMID 33022234. S2CID 222137370.
  125. ^ Phil R. Bell; Christophe Hendrickx (2020). "Epidermal complexity in the theropod dinosaur Juravenator from the Upper Jurassic of Germany". Palaeontology. 64 (2): 203–223. doi:10.1111/pala.12517. S2CID 233860853.
  126. ^ Gretchen Vogel (18 December 2020). "Chicken-size dino with a furlike mane stirs ethics debate". Science Magazine. American Association for the Advancement of Science. Archived from the original on 19 December 2020. Retrieved 19 December 2020.
  127. ^ Rodrigo Pérez Ortega (29 September 2021). "'It's like a second extinction': Retraction deepens legal and ethical battle over rare dinosaur". www.science.org. Archived from the original on 2021-09-29. Retrieved 2021-10-12.
  128. ^ David K. Smith; R. Kent Sanders; Douglas G. Wolfe (2020). "Vertebral pneumaticity of the North American therizinosaur Nothronychus". Journal of Anatomy. 238 (3): 598–614. doi:10.1111/joa.13327. PMC 7855063. PMID 33044012.
  129. ^ Boris Sorkin (2020). "Scansorial and aerial ability in Scansoriopterygidae and basal Oviraptorosauria". Historical Biology. 33 (12): 3202–3214. doi:10.1080/08912963.2020.1855158. S2CID 230540120.
  130. ^ Xingsheng Jin; David J. Varricchio; Ashley W. Poust; Tao He (2020). "An oviraptorosaur adult-egg association from the Cretaceous of Jiangxi Province, China". Journal of Vertebrate Paleontology. 39 (6): e1739060. doi:10.1080/02724634.2019.1739060. S2CID 219447073.
  131. ^ G. F. Funston; P. J. Currie (2020). "New material of Chirostenotes pergracilis (Theropoda, Oviraptorosauria) from the Campanian Dinosaur Park Formation of Alberta, Canada". Historical Biology. 33 (9): 1671–1685. doi:10.1080/08912963.2020.1726908. hdl:20.500.11820/990cb4be-8a56-4248-ac47-e4fddad8f7ba. S2CID 212849229.
  132. ^ Matthew M. Rhodes; Gregory F. Funston; Philip J. Currie (2020). "New material reveals the pelvic morphology of Caenagnathidae (Theropoda, Oviraptorosauria)". Cretaceous Research. 114: Article 104521. doi:10.1016/j.cretres.2020.104521. S2CID 219745025.
  133. ^ Thomas M. Cullen; D. Jade Simon; Elizabeth K. C. Benner; David C. Evans (2020). "Morphology and osteohistology of a large‐bodied caenagnathid (Theropoda, Oviraptorosauria) from the Hell Creek Formation (Montana): implications for size‐based classifications and growth reconstruction in theropods". Papers in Palaeontology. 7 (2): 751–767. doi:10.1002/spp2.1302. ISSN 2056-2799. S2CID 216310907.
  134. ^ Shundong Bi; Romain Amiot; Claire Peyre de Fabrègues; Michael Pittman; Matthew C.Lamanna; Yilun Yu; Congyu Yu; Tzuruei Yang; Shukang Zhang; Qi Zhao; Xing Xu (2020). "An oviraptorid preserved atop an embryo-bearing egg clutch sheds light on the reproductive biology of non-avialan theropod dinosaurs" (PDF). Science Bulletin. 66 (9): 947–954. doi:10.1016/j.scib.2020.12.018. S2CID 230524877.
  135. ^ Nathan J. Enriquez; Nicolás E. Campione; Corwin Sullivan; Matthew Vavrek; Robin L. Sissons; Matt A. White; Phil R. Bell (2020). "Probable deinonychosaur tracks from the Upper Cretaceous Wapiti Formation (upper Campanian) of Alberta, Canada". Geological Magazine. 158 (6): 1115–1128. doi:10.1017/S0016756820001247. S2CID 234375593.
  136. ^ Michael W. Maisch; Andreas T. Matzke (2020). "Small theropod teeth (Dinosauria) from the Upper Jurassic Qigu Formation of the southern Junggar Basin, NW China". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 295 (1): 91–100. doi:10.1127/njgpa/2020/0869. S2CID 213709095.
  137. ^ Chase Doran Brownstein (2020). "Dromaeosaurid crania demonstrate the progressive loss of facial pneumaticity in coelurosaurian dinosaurs". Zoological Journal of the Linnean Society. 191 (1): 87–112. doi:10.1093/zoolinnean/zlaa048.
  138. ^ Federico A. Gianechini; Marcos D. Ercoli; Ignacio Díaz‐Martínez (2020). "Differential locomotor and predatory strategies of Gondwanan and derived Laurasian dromaeosaurids (Dinosauria, Theropoda, Paraves): Inferences from morphometric and comparative anatomical studies". Journal of Anatomy. 236 (5): 772–797. doi:10.1111/joa.13153. PMC 7163733. PMID 32023660.
  139. ^ Mark James Powers; Corwin Sullivan; Philip John Currie (2020). "Re-examining ratio based premaxillary and maxillary characters in Eudromaeosauria (Dinosauria: Theropoda): Divergent trends in snout morphology between Asian and north American taxa". Palaeogeography, Palaeoclimatology, Palaeoecology. 547: Article 109704. Bibcode:2020PPP...547j9704P. doi:10.1016/j.palaeo.2020.109704. S2CID 216499705.
  140. ^ Yosef Kiat; Amir Balaban; Nir Sapir; Jingmai Kathleen O'Connor; Min Wang; Xing Xu (2020). "Sequential molt in a feathered dinosaur and implications for early paravian ecology and locomotion". Current Biology. 30 (18): 3633–3638.e2. doi:10.1016/j.cub.2020.06.046. PMID 32679101. S2CID 220575841.
  141. ^ Alfio Alessandro Chiarenza; Anthony R. Fiorillo; Ronald S. Tykoski; Paul J. McCarthy; Peter P. Flaig; Dori L. Contreras (2020). "The first juvenile dromaeosaurid (Dinosauria: Theropoda) from Arctic Alaska". PLOS ONE. 15 (7): e0235078. Bibcode:2020PLoSO..1535078C. doi:10.1371/journal.pone.0235078. PMC 7343144. PMID 32639990.
  142. ^ John P. Wilson; Denver W. Fowler (2020). "The easternmost occurrence of Saurornitholestes from the Judith River Formation, Montana, indicates broad biogeographic distribution of Saurornitholestes in the Western Interior of North America". Historical Biology. 33 (12): 3302–3306. doi:10.1080/08912963.2020.1862828. S2CID 234431926.
  143. ^ J.A. Frederickson; M.H. Engel; R.L. Cifelli (2020). "Ontogenetic dietary shifts in Deinonychus antirrhopus (Theropoda; Dromaeosauridae): Insights into the ecology and social behavior of raptorial dinosaurs through stable isotope analysis". Palaeogeography, Palaeoclimatology, Palaeoecology. 552: Article 109780. Bibcode:2020PPP...552j9780F. doi:10.1016/j.palaeo.2020.109780. S2CID 219059665.
  144. ^ J. Logan King; Justin S. Sipla; Justin A. Georgi; Amy M. Balanoff; James M. Neenan (2020). "The endocranium and trophic ecology of Velociraptor mongoliensis". Journal of Anatomy. 237 (5): 861–869. doi:10.1111/joa.13253. PMC 7542195. PMID 32648601.
  145. ^ Jason D. Hogan; David J. Varricchio (2020). "Do paleontologists dream of electric dinosaurs? Investigating the presumed inefficiency of dinosaurs contact incubating partially buried eggs". Paleobiology. 47 (1): 101–114. doi:10.1017/pab.2020.49. S2CID 226322413.
  146. ^ Catherine A. Forster; Patrick M. O'Connor; Luis M. Chiappe; Alan H. Turner (2020). "The osteology of the Late Cretaceous paravian Rahonavis ostromi from Madagascar". Palaeontologia Electronica. 23 (2): Article number 23(2):a29. doi:10.26879/793. S2CID 221507083.
  147. ^ T. Alexander Dececchi; Arindam Roy; Michael Pittman; Thomas G. Kaye; Xing Xu; Michael B. Habib; Hans C.E. Larsson; Xiaoli Wang; Xiaoting Zheng (2020). "Aerodynamics show membrane-winged theropods were a poor gliding dead-end". iScience. 23 (12): Article 101574. Bibcode:2020iSci...23j1574D. doi:10.1016/j.isci.2020.101574. PMC 7756141. PMID 33376962.
  148. ^ Aude Cincotta; Thanh Thuy Nguyen Tu; Julien L. Colaux; Guy Terwagne; Sylvie Derenne; Pascal Godefroit; Robert Carleer; Christelle Anquetil; Johan Yans (2020). "Chemical preservation of tail feathers from Anchiornis huxleyi, a theropod dinosaur from the Tiaojishan Formation (Upper Jurassic, China)". Palaeontology. 63 (5): 841–863. doi:10.1111/pala.12494. hdl:1942/32457. S2CID 225726078.
  149. ^ Daniel D. Cashmore; Philip D. Mannion; Paul Upchurch; Richard J. Butler (2020). "Ten more years of discovery: revisiting the quality of the sauropodomorph dinosaur fossil record". Palaeontology. 63 (6): 951–978. doi:10.1111/pala.12496. S2CID 219090716.
  150. ^ Rodrigo T. Müller; José D. Ferreira; Flávio A. Pretto; Mario Bronzati; Leonardo Kerber (2020). "The endocranial anatomy of Buriolestes schultzi (Dinosauria: Saurischia) and the early evolution of brain tissues in sauropodomorph dinosaurs". Journal of Anatomy. 238 (4): 809–827. doi:10.1111/joa.13350. PMC 7930773. PMID 33137855.
  151. ^ Antonio Ballell; Emily J. Rayfield; Michael J. Benton (2020). "Osteological redescription of the Late Triassic sauropodomorph dinosaur Thecodontosaurus antiquus based on new material from Tytherington, southwestern England". Journal of Vertebrate Paleontology. 40 (2): e1770774. doi:10.1080/02724634.2020.1770774. S2CID 221877432.
  152. ^ Antonio Ballell; J. Logan King; James M Neenan; Emily J. Rayfield; Michael J Benton (2020). "The braincase, brain and palaeobiology of the basal sauropodomorph dinosaur Thecodontosaurus antiquus". Zoological Journal of the Linnean Society. 193 (2): 541–562. doi:10.1093/zoolinnean/zlaa157.
  153. ^ Greenfield, T.; Bivens, G.; Fonseca, A. (2020). "The correct authorship of Coloradisaurus (Dinosauria, Sauropodomorpha): Galton, 1990, not Lambert, 1983". Bulletin of Zoological Nomenclature. 77 (1): 153–155. doi:10.21805/bzn.v77.a050. S2CID 229723564.
  154. ^ Rémi Lefebvre; Ronan Allain; Alexandra Houssaye; Raphaël Cornette (2020). "Disentangling biological variability and taphonomy: shape analysis of the limb long bones of the sauropodomorph dinosaur Plateosaurus". PeerJ. 8: e9359. doi:10.7717/peerj.9359. PMC 7382942. PMID 32775045.
  155. ^ Darius Nau; Jens N. Lallensack; Ursina Bachmann; P. Martin Sander (2020). "Postcranial osteology of the first early-stage juvenile skeleton of Plateosaurus trossingensis from the Norian of Frick, Switzerland". Acta Palaeontologica Polonica. 65 (4): 679–708. doi:10.4202/app.00757.2020. S2CID 229378149.
  156. ^ Ewan H. Bodenham; Paul M. Barrett (2020). "A new specimen of the sauropodomorph dinosaur Ignavusaurus rachelis from the Early Jurassic of Lesotho". Palaeontologia Africana. 54: 48–55. hdl:10539/30351.
  157. ^ Robert R. Reisz; Aaron R. H. LeBlanc; Hillary C. Maddin; Thomas W. Dudgeon; Diane Scott; Timothy Huang; Jun Chen; Chuan-Mu Chen; Shiming Zhong (2020). "Early Jurassic dinosaur fetal dental development and its significance for the evolution of sauropod dentition". Nature Communications. 11 (1): Article number 2240. Bibcode:2020NatCo..11.2240R. doi:10.1038/s41467-020-16045-7. PMC 7206009. PMID 32382025.
  158. ^ Benjamin Jentgen-Ceschino; Koen Stein; Valentin Fischer (2020). "Case study of radial fibrolamellar bone tissues in the outer cortex of basal sauropods". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1793): Article ID 20190143. doi:10.1098/rstb.2019.0143. PMC 7017438. PMID 31928196. S2CID 210157418.
  159. ^ Daniel Vidal; Pedro Mocho; Adrián Páramo; José Luis Sanz; Francisco Ortega (2020). "Ontogenetic similarities between giraffe and sauropod neck osteological mobility". PLOS ONE. 15 (1): e0227537. Bibcode:2020PLoSO..1527537V. doi:10.1371/journal.pone.0227537. PMC 6957182. PMID 31929581.
  160. ^ D. Vidal; P. Mocho; A. Aberasturi; J. L. Sanz; F. Ortega (2020). "High browsing skeletal adaptations in Spinophorosaurus reveal an evolutionary innovation in sauropod dinosaurs". Scientific Reports. 10 (1): Article number 6638. Bibcode:2020NatSR..10.6638V. doi:10.1038/s41598-020-63439-0. PMC 7171156. PMID 32313018.
  161. ^ Andrew J. Moore; Paul Upchurch; Paul M. Barrett; James M. Clark; Xu Xing (2020). "Osteology of Klamelisaurus gobiensis (Dinosauria, Eusauropoda) and the evolutionary history of Middle–Late Jurassic Chinese sauropods". Journal of Systematic Palaeontology. 18 (16): 1299–1393. doi:10.1080/14772019.2020.1759706. S2CID 219749618.
  162. ^ Alexander O. Averianov; Nikolay G. Zverkov (2020). "New diplodocoid sauropod dinosaur material from the Middle Jurassic of European Russia". Acta Palaeontologica Polonica. 65 (3): 499–509. doi:10.4202/app.00724.2020. S2CID 219414682.
  163. ^ Héctor E. Rivera-Sylva; Luis Espinosa-Arrubarrena (2020). "Remains of a diplodocid (Sauropoda: Flagellicaudata) from the Otlaltepec Formation Middle Jurassic (Bathonian-Callovian) from Puebla, Mexico". Paleontología Mexicana. 9 (2): 145–150.
  164. ^ Matthew G. Baron (2020). "Tactile tails: a new hypothesis for the function of the elongate tails of diplodocid sauropods". Historical Biology. 33 (10): 2057–2066. doi:10.1080/08912963.2020.1769092. S2CID 219762797.
  165. ^ Paulo Victor Luiz Gomes da Costa Pereira; Ingrid Martins Machado Garcia Veiga; Theo Baptista Ribeiro; Ryan Henrique Bezerra Cardozo; Carlos Roberto dos Anjos Candeiro; Lilian Paglarelli Bergqvist (2020). "The path of giants: a new occurrence of Rebbachisauridae (Dinosauria, Diplodocoidea) in the Açu Formation, NE Brazil, and its paleobiogeographic implications". Journal of South American Earth Sciences. 100: Article 102515. Bibcode:2020JSAES.10002515P. doi:10.1016/j.jsames.2020.102515. S2CID 212916577.
  166. ^ Verónica Díez Díaz; Oliver E. Demuth; Daniela Schwarz; Heinrich Mallison (2020). "The tail of the Late Jurassic sauropod Giraffatitan brancai: digital reconstruction of its epaxial and hypaxial musculature, and implications for tail biomechanics". Frontiers in Earth Science. 8: Article 160. Bibcode:2020FrEaS...8..160D. doi:10.3389/feart.2020.00160. S2CID 218973399.
  167. ^ F. Torcida Fernández-Baldor; J. I. Canudo; P. Huerta (2020). "New data on sauropod palaeobiodiversity at the Jurassic-Cretaceous transition of Spain (Burgos)". Journal of Iberian Geology. 46 (4): 351–362. doi:10.1007/s41513-020-00145-w. S2CID 227258628.
  168. ^ Jinyou Mo; Jincheng Li; Yunchuan Ling; Eric Buffetaut; Suravech Suteethorn; Varavudh Suteethorn; Haiyan Tong; Gilles Cuny; Romain Amiot; Xing Xu (2020). "New fossil remain of Fusuisaurus zhaoi (Sauropoda: Titanosauriformes) from the Lower Cretaceous of Guangxi, southern China" (PDF). Cretaceous Research. 109: Article 104379. doi:10.1016/j.cretres.2020.104379. S2CID 214396629.
  169. ^ Timothy G. Frauenfelder; Nicolás E. Campione; Elizabeth T. Smith; Phil R. Bell (2020). "Diversity and palaeoecology of Australia's southern‐most sauropods, Griman Creek Formation (Cenomanian), New South Wales, Australia". Lethaia. 54 (3): 354–367. doi:10.1111/let.12407. S2CID 228995067.
  170. ^ Vladimir Nikolov; Marlena Yaneva; Docho Dochev; Ralitsa Konyovska; Ivanina Sergeeva; Latinka Hristova (2020). "Bone histology reveals the first record of titanosaur (Dinosauria: Sauropoda) from the Late Cretaceous of Bulgaria". Palaeontologia Electronica. 23 (1): Article number 23(1):a10. doi:10.26879/879. S2CID 214618292.
  171. ^ Martin Kundrát; Rodolfo A. Coria; Terry W. Manning; Daniel Snitting; Luis M. Chiappe; John Nudds; Per E. Ahlberg (2020). "Specialized craniofacial anatomy of a titanosaurian embryo from Argentina". Current Biology. 30 (21): 4263–4269.e2. doi:10.1016/j.cub.2020.07.091. hdl:11336/150635. PMID 32857974. S2CID 221343275.
  172. ^ Tito Aureliano; Carolina S.I. Nascimento; Marcelo A. Fernandes; Fresia Ricardi-Branco; Aline M. Ghilardi (2020). "Blood parasites and acute osteomyelitis in a non-avian dinosaur (Sauropoda, Titanosauria) from the Upper Cretaceous Adamantina Formation, Bauru Basin, Southeast Brazil". Cretaceous Research. 118: Article 104672. doi:10.1016/j.cretres.2020.104672. S2CID 225134198.
  173. ^ Stephen F. Poropat; Philip D. Mannion; Paul Upchurch; Travis R. Tischler; Trish Sloan; George H. K. Sinapius; Judy A. Elliott; David A. Elliott (2020). "Osteology of the wide-hipped titanosaurian sauropod dinosaur Savannasaurus elliottorum from the Upper Cretaceous Winton Formation of Queensland, Australia". Journal of Vertebrate Paleontology. 40 (3): e1786836. doi:10.1080/02724634.2020.1786836. S2CID 224850234.
  174. ^ Ariana Paulina-Carabajal; Leonardo Filippi; Fabien Knoll (2020). "Neuroanatomy of the titanosaurian sauropod Narambuenatitan palomoi from the Upper Cretaceous of Patagonia, Argentina". Publicación Electrónica de la Asociación Paleontológica Argentina. 20 (2): 1–9. doi:10.5710/PEAPA.21.05.2020.298. S2CID 229274752.
  175. ^ Kristyn K. Voegele; Paul V. Ullmann; Matthew C. Lamanna; Kenneth J. Lacovara (2020). "Appendicular myological reconstruction of the forelimb of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani". Journal of Anatomy. 237 (1): 133–154. doi:10.1111/joa.13176. PMC 7309294. PMID 32141103.
  176. ^ Kristyn K. Voegele; Paul V. Ullmann; Matthew C. Lamanna; Kenneth J. Lacovara (2020). "Myological reconstruction of the pelvic girdle and hind limb of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani". Journal of Anatomy. 238 (3): 576–597. doi:10.1111/joa.13334. PMC 7855065. PMID 33084085.
  177. ^ Alejandro Otero; José L. Carballido; Agustín Pérez Moreno (2020). "The appendicular osteology of Patagotitan mayorum (Dinosauria, Sauropoda)". Journal of Vertebrate Paleontology. 40 (4): e1793158. doi:10.1080/02724634.2020.1793158. S2CID 225012747.
  178. ^ Rodrigo Temp Müller; Maurício Silva Garcia (2020). "A paraphyletic 'Silesauridae' as an alternative hypothesis for the initial radiation of ornithischian dinosaurs". Biology Letters. 16 (8): Article ID 20200417. doi:10.1098/rsbl.2020.0417. PMC 7480155. PMID 32842895. S2CID 221298572.
  179. ^ Marcos G. Becerra; Diego Pol (2020). "The enamel microstructure of Manidens condorensis: New hypotheses on the ancestral state and evolution of enamel in Ornithischia". Acta Palaeontologica Polonica. 65 (1): 59–70. doi:10.4202/app.00658.2019. S2CID 212699867.
  180. ^ Marcos G. Becerra; Diego Pol; John A. Whitlock; Laura B. Porro (2020). "Tooth replacement in Manidens condorensis: baseline study to address the replacement pattern in dentitions of early ornithischians". Papers in Palaeontology. 7 (2): 1167–1193. doi:10.1002/spp2.1337. hdl:11336/143687. ISSN 2056-2799. S2CID 224937914.
  181. ^ Benjamin T. Breeden III; Timothy B. Rowe (2020). "New specimens of Scutellosaurus lawleri Colbert, 1981, from the Lower Jurassic Kayenta Formation in Arizona elucidate the early evolution of thyreophoran dinosaurs". Journal of Vertebrate Paleontology. 40 (4): e1791894. doi:10.1080/02724634.2020.1791894. S2CID 224961326.
  182. ^ David B. Norman (2020). "Scelidosaurus harrisonii from the Early Jurassic of Dorset, England: the dermal skeleton". Zoological Journal of the Linnean Society. 190 (1): 1–53. doi:10.1093/zoolinnean/zlz085.
  183. ^ David B. Norman (2020). "Scelidosaurus harrisonii (Dinosauria: Ornithischia) from the Early Jurassic of Dorset, England: biology and phylogenetic relationships". Zoological Journal of the Linnean Society. 191 (1): 1–86. doi:10.1093/zoolinnean/zlaa061.
  184. ^ Peter M. Galton (2020). "Dermal armor of plated ornithischian dinosaur Stegosaurus from Morrison Formation (Upper Jurassic) of Colorado and Wyoming (based mostly on bones collected in 1877-1889 for O. C. Marsh), and Utah". Revue de Paléobiologie, Genève. 39 (2): 311–370. doi:10.5281/zenodo.4460690.
  185. ^ Felix J. Augustin; Andreas T. Matzke; Michael W. Maisch; Hans-Ulrich Pfretzschner (2020). "First evidence of an ankylosaur (Dinosauria, Ornithischia) from the Jurassic Qigu Formation (Junggar Basin, NW China) and the early fossil record of Ankylosauria". Geobios. 61: 1–10. doi:10.1016/j.geobios.2020.06.005. S2CID 225545154.
  186. ^ Gábor Botfalvai; Edina Prondvai; Attila Ősi (2020). "Living alone or moving in herds? A holistic approach highlights complexity in the social lifestyle of Cretaceous ankylosaurs" (PDF). Cretaceous Research. 118: Article 104633. doi:10.1016/j.cretres.2020.104633. S2CID 225164568.
  187. ^ Thomas J. Raven; Paul M. Barrett; Stuart B. Pond; Susannah C. R. Maidment (2020). "Osteology and Taxonomy of British Wealden Supergroup (Berriasian–Aptian) Ankylosaurs (Ornithischia, Ankylosauria)". Journal of Vertebrate Paleontology. 40 (4): e1826956. doi:10.1080/02724634.2020.1826956. S2CID 227249280.
  188. ^ Caleb M. Brown; David R. Greenwood; Jessica E. Kalyniuk; Dennis R. Braman; Donald M. Henderson; Cathy L. Greenwood; James F. Basinger (2020). "Dietary palaeoecology of an Early Cretaceous armoured dinosaur (Ornithischia; Nodosauridae) based on floral analysis of stomach contents". Royal Society Open Science. 7 (6): Article ID: 200305. Bibcode:2020RSOS....700305B. doi:10.1098/rsos.200305. PMC 7353971. PMID 32742695.
  189. ^ Ivan Kuzmin; Ivan Petrov; Alexander Averianov; Elizaveta Boitsova; Pavel Skutschas; Hans-Dieter Sues (2020). "The braincase of Bissektipelta archibaldi — new insights into endocranial osteology, vasculature, and paleoneurobiology of ankylosaurian dinosaurs". Biological Communications. 65 (2): 85–156. doi:10.21638/spbu03.2020.201. S2CID 219909120.
  190. ^ P.-E. Dieudonné; P. Cruzado-Caballero; P. Godefroit; T. Tortosa (2020). "A new phylogeny of cerapodan dinosaurs". Historical Biology. 33 (10): 2335–2355. doi:10.1080/08912963.2020.1793979. S2CID 221854017.
  191. ^ Fenglu Han; Qi Zhao; Josef Stiegler; Xing Xu (2020). "Bone histology of the non-iguanodontian ornithopod Jeholosaurus shangyuanensis and its implications for dinosaur skeletochronology and development". Journal of Vertebrate Paleontology. 40 (2): e1768538. doi:10.1080/02724634.2020.1768538. S2CID 222211183.
  192. ^ Jordi A. Garcia-Marsà; Mauricio A. Cerroni; Sebastián Rozadilla Fowler; Ignacio A. Cerda; Marcelo A. Reguero; Rodolfo A. Coria; Fernando E. Novas (2020). "Biological implications of the bone microstructure of the Antarctic ornithopods Trinisaura and Morrosaurus (Dinosauria, Ornithischia)". Cretaceous Research. 116: Article 104605. doi:10.1016/j.cretres.2020.104605. S2CID 225028518.
  193. ^ Paul M. Barrett; Joseph A. Bonsor (2020). "A revision of the non-avian dinosaurs 'Eucercosaurus tanyspondylus' and 'Syngonosaurus macrocercus' from the Cambridge Greensand, UK". Cretaceous Research. 118: Article 104638. doi:10.1016/j.cretres.2020.104638. S2CID 225289654.
  194. ^ Justyna Słowiak; Tomasz Szczygielski; Michał Ginter; Łucja Fostowicz‐Frelik (2020). "Uninterrupted growth in a non‐polar hadrosaur explains the gigantism among duck‐billed dinosaurs". Palaeontology. 63 (4): 579–599. doi:10.1111/pala.12473. S2CID 213247742.
  195. ^ Chase Doran Brownstein (2020). "Osteology and phylogeny of small-bodied hadrosauromorphs from an end-Cretaceous marine assemblage". Zoological Journal of the Linnean Society. 191 (1): 180–200. doi:10.1093/zoolinnean/zlaa085.
  196. ^ Fabio Marco Dalla Vecchia (2020). "The unusual tail of Tethyshadros insularis (Dinosauria, Hadrosauroidea) from the Adriatic island of the European archipelago". Rivista Italiana di Paleontologia e Stratigrafia. 126 (3): 583–628. doi:10.13130/2039-4942/14075.
  197. ^ Bruce M. Rothschild; Darren Tanke; Frank Rühli; Ariel Pokhojaev; Hila May (2020). "Suggested case of Langerhans Cell Histiocytosis in a Cretaceous dinosaur". Scientific Reports. 10 (1): Article number 2203. Bibcode:2020NatSR..10.2203R. doi:10.1038/s41598-020-59192-z. PMC 7010826. PMID 32042034.
  198. ^ Bruce M. Rothschild; Robert A. Depalma; David A. Burnham; Larry Martin (2020). "Anatomy of a dinosaur—Clarification of vertebrae in vertebrate anatomy". Anatomia, Histologia, Embryologia. 49 (4): 571–574. doi:10.1111/ahe.12573. PMID 32468658. S2CID 218984934.
  199. ^ David F. Terrill; Charles M. Henderson; Jason S. Anderson (2020). "New application of strontium isotopes reveals evidence of limited migratory behaviour in Late Cretaceous hadrosaurs". Biology Letters. 16 (3): Article ID 20190930. doi:10.1098/rsbl.2019.0930. PMC 7115185. PMID 32126185.
  200. ^ Mateusz Wosik; Kentaro Chiba; François Therrien; David C. Evans (2020). "Testing size–frequency distributions as a method of ontogenetic aging: a life-history assessment of hadrosaurid dinosaurs from the Dinosaur Park Formation of Alberta, Canada, with implications for hadrosaurid paleoecology". Paleobiology. 46 (3): 379–404. doi:10.1017/pab.2020.2. S2CID 221666530.
  201. ^ Chase Doran Brownstein; Immanuel Bissell (2020). "An elongate hadrosaurid forelimb with biological traces informs the biogeography of the Lambeosaurinae". Journal of Paleontology. 95 (2): 367–375. doi:10.1017/jpa.2020.83. S2CID 225114976.
  202. ^ Ryuji Takasaki; Anthony R. Fiorillo; Ronald S. Tykoski; Yoshitsugu Kobayashi (2020). "Re-examination of the cranial osteology of the Arctic Alaskan hadrosaurine with implications for its taxonomic status". PLOS ONE. 15 (5): e0232410. Bibcode:2020PLoSO..1532410T. doi:10.1371/journal.pone.0232410. PMC 7202651. PMID 32374777.
  203. ^ Bethania C.T. Siviero; Elizabeth Rega; William K. Hayes; Allen M. Cooper; Leonard R. Brand; Art V. Chadwick (2020). "Skeletal trauma with implications for intratail mobility in Edmontosaurus annectens from a monodominant bonebed, Lance Formation (Maastrichtian), Wyoming USA". PALAIOS. 35 (4): 201–214. Bibcode:2020Palai..35..201S. doi:10.2110/palo.2019.079. S2CID 218503493.
  204. ^ Keith Snyder; Matthew McLain; Jared Wood; Arthur Chadwick (2020). "Over 13,000 elements from a single bonebed help elucidate disarticulation and transport of an Edmontosaurus thanatocoenosis". PLOS ONE. 15 (5): e0233182. Bibcode:2020PLoSO..1533182S. doi:10.1371/journal.pone.0233182. PMC 7241792. PMID 32437394.
  205. ^ Jialiang Zhang; Xiaolin Wang; Shunxing Jiang; Guobiao Li (2020). "Internal morphology of nasal spine of Tsintaosaurus spinorhinus (Ornithischia: Lambeosaurinae) from the upper cretaceous of Shandong, China". Historical Biology. 33 (9): 1697–1704. doi:10.1080/08912963.2020.1731804. S2CID 216422257.
  206. ^ Jesús F. Serrano; Albert G. Sellés; Bernat Vila; Àngel Galobart; Albert Prieto-Márquez (2020). "The osteohistology of new remains of Pararhabdodon isonensis sheds light into the life history and paleoecology of this enigmatic European lambeosaurine dinosaur". Cretaceous Research. 118: Article 104677. doi:10.1016/j.cretres.2020.104677. ISSN 0195-6671. S2CID 225110719.
  207. ^ Filippo Bertozzo; Fabio Manucci; Matthew Dempsey; Darren H. Tanke; David C. Evans; Alastair Ruffell; Eileen Murphy (2020). "Description and etiology of paleopathological lesions in the type specimen of Parasaurolophus walkeri (Dinosauria: Hadrosauridae), with proposed reconstructions of the nuchal ligament". Journal of Anatomy. 238 (5): 1055–1069. doi:10.1111/joa.13363. PMC 8053592. PMID 33289113.
  208. ^ Alida M. Bailleul; Wenxia Zheng; John R. Horner; Brian K. Hall; Casey M. Holliday; Mary H. Schweitzer (2020). "Evidence of proteins, chromosomes and chemical markers of DNA in exceptionally preserved dinosaur cartilage". National Science Review. 7 (4): 815–822. doi:10.1093/nsr/nwz206. PMC 8289162. PMID 34692099.
  209. ^ Albert Prieto‐Márquez; Joan Garcia‐Porta; Shantanu H. Joshi; Mark A. Norell; Peter J. Makovicky (2020). "Modularity and heterochrony in the evolution of the ceratopsian dinosaur frill". Ecology and Evolution. 10 (13): 6288–6309. doi:10.1002/ece3.6361. PMC 7381594. PMID 32724514.
  210. ^ Łukasz Czepiński (2020). "New protoceratopsid specimens improve the age correlation of the Upper Cretaceous Gobi Desert strata". Acta Palaeontologica Polonica. 65 (3): 481–497. doi:10.4202/app.00701.2019. S2CID 218948729.
  211. ^ Seper Ekhtiari; Kentaro Chiba; Snezana Popovic; Rhianne Crowther; Gregory Wohl; Andy Kin On Wong; Darren H. Tanke; Danielle M. Dufault; Olivia D. Geen; Naveen Parasu; Mark A. Crowther; David C. Evans (2020). "First case of osteosarcoma in a dinosaur: a multimodal diagnosis". The Lancet Oncology. 21 (8): 1021–1022. doi:10.1016/S1470-2045(20)30171-6. PMID 32758461. S2CID 225473251.
  212. ^ Caleb M. Brown; Robert B. Holmes; Phillip J. Currie (2020). "A subadult individual of Styracosaurus albertensis (Ornithischia: Ceratopsidae) with comments on ontogeny and intraspecific variation in Styracosaurus and Centrosaurus". Vertebrate Anatomy Morphology Palaeontology. 8: 67–95. doi:10.18435/vamp29361. S2CID 218945057.
  213. ^ Rina Sakagami; Soichiro Kawabe (2020). "Endocranial anatomy of the ceratopsid dinosaur Triceratops and interpretations of sensory and motor function". PeerJ. 8: e9888. doi:10.7717/peerj.9888. PMC 7505063. PMID 32999761.
  214. ^ Alexander O. Averianov; Alexey V. Lopatin (2020). "An unusual new sauropod dinosaur from the Late Cretaceous of Mongolia". Journal of Systematic Palaeontology. 18 (12): 1009–1032. doi:10.1080/14772019.2020.1716402. S2CID 214244529.
  215. ^ Susannah C.R. Maidment; Thomas J. Raven; Driss Ouarhache; Paul M. Barrett (2020). "North Africa's first stegosaur: Implications for Gondwanan thyreophoran dinosaur diversity". Gondwana Research. 77: 82–97. Bibcode:2020GondR..77...82M. doi:10.1016/j.gr.2019.07.007. hdl:10141/622706. S2CID 202188261.
  216. ^ Nicholas R. Longrich; Xabier Pereda Suberbiola; R. Alexander Pyron; Nour-Eddine Jalil (2020). "The first duckbill dinosaur (Hadrosauridae: Lambeosaurinae) from Africa and the role of oceanic dispersal in dinosaur biogeography". Cretaceous Research. 120: Article 104678. doi:10.1016/j.cretres.2020.104678. S2CID 228807024.
  217. ^ Daniel J. Chure; Mark A. Loewen (2020). "Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America". PeerJ. 8: e7803. doi:10.7717/peerj.7803. PMC 6984342. PMID 32002317.
  218. ^ Daniela Schwarz; Philip D. Mannion; Oliver Wings; Christian A. Meyer (2020). "Re-description of the sauropod dinosaur Amanzia ("Ornithopsis/Cetiosauriscus") greppini n. gen. and other vertebrate remains from the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, Switzerland". Swiss Journal of Geosciences. 113 (1): Article number 2. doi:10.1186/s00015-020-00355-5. S2CID 211265622.
  219. ^ Xin-Xin Ren; Toru Sekiya; Tao Wang; Zhi-Wen Yang; Hai-Lu You (2020). "A revision of the referred specimen of Chuanjiesaurus anaensis Fang et al., 2000: a new early branching mamenchisaurid sauropod from the Middle Jurassic of China". Historical Biology. 33 (9): 1872–1887. doi:10.1080/08912963.2020.1747450. S2CID 216283529.
  220. ^ Xin-Xin Ren; Jian-Dong Huang; Hai-Lu You (2020). "The second mamenchisaurid dinosaur from the Middle Jurassic of Eastern China". Historical Biology. 32 (5): 602–610. doi:10.1080/08912963.2018.1515935. S2CID 91927243.
  221. ^ Juliana Manso Sayão; Antônio Álamo Feitosa Saraiva; Arthur Souza Brum; Renan Alfredo Machado Bantim; Rafael Cesar Lima Pedroso de Andrade; Xin Cheng; Flaviana Jorge de Lima; Helder de Paula Silva; Alexander W. A. Kellner (2020). "The first theropod dinosaur (Coelurosauria, Theropoda) from the base of the Romualdo Formation (Albian), Araripe Basin, Northeast Brazil". Scientific Reports. 10 (1): Article number 10892. Bibcode:2020NatSR..1010892S. doi:10.1038/s41598-020-67822-9. PMC 7351750. PMID 32651406.
  222. ^ Juliana Manso Sayão; Antônio Álamo Feitosa Saraiva; Arthur Souza Brum; Renan Alfredo Machado Bantim; Rafael Cesar Lima Pedroso de Andrade; Xin Cheng; Flaviana Jorge de Lima; Helder de Paula Silva; Alexander W. A. Kellner (2020). "Author Correction: The first theropod dinosaur (Coelurosauria, Theropoda) from the base of the Romualdo Formation (Albian), Araripe Basin, Northeast Brazil". Scientific Reports. 10 (1): Article number 13464. Bibcode:2020NatSR..1013464S. doi:10.1038/s41598-020-70349-8. PMC 7403328. PMID 32753698.
  223. ^ D. Pol; J. Ramezani; K. Gomez; J. L. Carballido; A. Paulina Carabajal; O. W. M. Rauhut; I. H. Escapa; N. R. Cúneo (2020). "Extinction of herbivorous dinosaurs linked to Early Jurassic global warming event". Proceedings of the Royal Society B: Biological Sciences. 287 (1939): Article ID 20202310. doi:10.1098/rspb.2020.2310. PMC 7739499. PMID 33203331. S2CID 226982302.
  224. ^ Congyu Yu; Albert Prieto-Marquez; Tsogtbaatar Chinzorig; Zorigt Badamkhatan; Mark Norell (2020). "A neoceratopsian dinosaur from the Early Cretaceous of Mongolia and the early evolution of Ceratopsia". Communications Biology. 3 (1): Article number 499. doi:10.1038/s42003-020-01222-7. PMC 7484756. PMID 32913206.
  225. ^ a b E. Martín Hechenleitner; Léa Leuzinger; Agustín G. Martinelli; Sebastián Rocher; Lucas E. Fiorelli; Jeremías R. A. Taborda; Leonardo Salgado (2020). "Two Late Cretaceous sauropods reveal titanosaurian dispersal across South America". Communications Biology. 3 (1): Article number 622. doi:10.1038/s42003-020-01338-w. PMC 7591563. PMID 33110212.
  226. ^ Yang, Y.; Wu, W.; Dieudonné, P.; Godefroit, P. (2020). "A new basal ornithopod dinosaur from the Lower Cretaceous of China". PeerJ. 8: e9832. doi:10.7717/peerj.9832. PMC 7485509. PMID 33194351.
  227. ^ Funston, Gregory (2020-07-27). "Caenagnathids of the Dinosaur Park Formation (Campanian) of Alberta, Canada: anatomy, osteohistology, taxonomy, and evolution". Vertebrate Anatomy Morphology Palaeontology. 8: 105–153. doi:10.18435/vamp29362. ISSN 2292-1389. S2CID 221067979.
  228. ^ Steven E. Jasinski; Robert M. Sullivan; Peter Dodson (2020). "New dromaeosaurid dinosaur (Theropoda, Dromaeosauridae) from New Mexico and biodiversity of dromaeosaurids at the end of the Cretaceous". Scientific Reports. 10 (1): Article number 5105. Bibcode:2020NatSR..10.5105J. doi:10.1038/s41598-020-61480-7. PMC 7099077. PMID 32218481.
  229. ^ Rodrigo T. Müller (2021). "A new theropod dinosaur from a peculiar Late Triassic assemblage of southern Brazil". Journal of South American Earth Sciences. 107: Article 103026. Bibcode:2021JSAES.10703026M. doi:10.1016/j.jsames.2020.103026. ISSN 0895-9811. S2CID 229432076.
  230. ^ Verónica Díez Díaz; Géraldine Garcia; Xabier Pereda Suberbiola; Benjamin Jentgen-Ceschino; Koen Stein; Pascal Godefroit; Xavier Valentin (2020). "A new titanosaur (Dinosauria: Sauropoda) from the Upper Cretaceous of Velaux-La-Bastide Neuve (southern France)". Historical Biology. 33 (11): 2998–3017. doi:10.1080/08912963.2020.1841184. S2CID 234404741.
  231. ^ Mattia A. Baiano; Rodolfo A. Coria; Andrea Cau (2020). "A new abelisauroid (Dinosauria: Theropoda) from the Huincul formation (lower upper Cretaceous, Neuquén Basin) of Patagonia, Argentina". Cretaceous Research. 110: Article 104408. doi:10.1016/j.cretres.2020.104408. S2CID 214118853.
  232. ^ Claire Peyre de Fabrègues; Shundong Bi; Hongqing Li; Gang Li; Lei Yang; Xing Xu (2020). "A new species of early-diverging Sauropodiformes from the Lower Jurassic Fengjiahe Formation of Yunnan Province, China". Scientific Reports. 10 (1): Article number 10961. Bibcode:2020NatSR..1010961P. doi:10.1038/s41598-020-67754-4. PMC 7335049. PMID 32620800.
  233. ^ Claire Peyre de Fabrègues; Shundong Bi; Hongqing Li; Gang Li; Lei Yang; Xing Xu (2020). "Author Correction: A new species of early-diverging Sauropodiformes from the Lower Jurassic Fengjiahe Formation of Yunnan Province, China". Scientific Reports. 10 (1): Article number 17086. doi:10.1038/s41598-020-74208-4. PMC 7542162. PMID 33028950.
  234. ^ Wu Xiao-chun; Shi Jian-Ru; Dong Li-Yang; Thomas D. Carr; Yi Jian; Xu Shi-Chao (2020). "A new tyrannosauroid from the Upper Cretaceous of Shanxi, China". Cretaceous Research. 108: Article 104357. doi:10.1016/j.cretres.2019.104357. S2CID 214354354.
  235. ^ Claire Peyre de Fabrègues; Ronan Allain (2020). "Kholumolumo ellenbergerorum, gen. et sp. nov., a new early sauropodomorph from the lower Elliot Formation (Upper Triassic) of Maphutseng, Lesotho". Journal of Vertebrate Paleontology. 39 (6): e1732996. doi:10.1080/02724634.2019.1732996. S2CID 218779841.
  236. ^ Rodolfo A. Coria; Philip J. Currie; Francisco Ortega; Mattia A. Baiano (2020). "An Early Cretaceous, medium-sized carcharodontosaurid theropod (Dinosauria, Saurischia) from the Mulichinco Formation (upper Valanginian), Neuquén Province, Patagonia, Argentina". Cretaceous Research. 111: Article 104319. doi:10.1016/j.cretres.2019.104319. hdl:11336/122794. S2CID 214475057.
  237. ^ Elisabete Malafaia; Pedro Mocho; Fernando Escaso; Francisco Ortega (2020). "A new carcharodontosaurian theropod from the Lusitanian Basin: evidence of allosauroid sympatry in the European Late Jurassic". Journal of Vertebrate Paleontology. 40 (1): e1768106. doi:10.1080/02724634.2020.1768106. S2CID 221749214.
  238. ^ Rafael Royo-Torres; Alberto Cobos; Pedro Mocho; Luis Alcalá (2020). "Origin and evolution of turiasaur dinosaurs set by means of a new 'rosetta' specimen from Spain". Zoological Journal of the Linnean Society. 191 (1): 201–227. doi:10.1093/zoolinnean/zlaa091.
  239. ^ a b Denver W. Fowler; Elizabeth A. Freedman Fowler (2020). "Transitional evolutionary forms in chasmosaurine ceratopsid dinosaurs: evidence from the Campanian of New Mexico". PeerJ. 8: e9251. doi:10.7717/peerj.9251. PMC 7278894. PMID 32547873.
  240. ^ Mauro Aranciaga Rolando; Mauricio A. Cerroni; Jordi A. Garcia Marsà; Federico L. Agnolín; Matías J. Motta; Sebastián Rozadilla; Federico Brisson Eglí; Fernando E. Novas (2020). "A new medium-sized abelisaurid (Theropoda, Dinosauria) from the Late Cretaceous (Maastrichtian) Allen Formation of Northern Patagonia, Argentina". Journal of South American Earth Sciences. 105: Article 102915. doi:10.1016/j.jsames.2020.102915. hdl:11336/150468. S2CID 225123133.
  241. ^ Gregory F. Funston; Tsogtbaatar Chinzorig; Khishigjav Tsogtbaatar; Yoshitsugu Kobayashi; Corwin Sullivan; Philip J. Currie (2020). "A new two-fingered dinosaur sheds light on the radiation of Oviraptorosauria". Royal Society Open Science. 7 (10): Article ID 201184. Bibcode:2020RSOS....701184F. doi:10.1098/rsos.201184. PMC 7657903. PMID 33204472.
  242. ^ Chao Tan; Ming Xiao; Hui Dai; Xu-Feng Hu; Ning Li; Qing-Yu Ma; Zhao-Ying Wei; Hai-Dong Yu; Can Xiong; Guang-Zhao Peng; Shan Jiang; Xin-Xin Ren; Hai-Lu You (2020). "A new species of Omeisaurus (Dinosauria: Sauropoda) from the Middle Jurassic of Yunyang, Chongqing, China fauna". Historical Biology. 33 (9): 1817–1829. doi:10.1080/08912963.2020.1743286. S2CID 216282369.
  243. ^ Matías J. Motta; Federico L. Agnolín; Federico Brissón Egli; Fernando E. Novas (2020). "New theropod dinosaur from the Upper Cretaceous of Patagonia sheds light on the paravian radiation in Gondwana". The Science of Nature. 107 (3): Article number 24. Bibcode:2020SciNa.107...24M. doi:10.1007/s00114-020-01682-1. hdl:11336/135530. PMID 32468191. S2CID 218913199.
  244. ^ Claudia Inés Serrano-Brañas; Belinda Espinosa-Chávez; S. Augusta Maccracken; Cirene Gutiérrez-Blando; Claudio de León-Dávila; José Flores Ventura (2020). "Paraxenisaurus normalensis, a large deinocheirid ornithomimosaur from the Cerro del Pueblo Formation (Upper Cretaceous), Coahuila, Mexico". Journal of South American Earth Sciences. 101: Article 102610. Bibcode:2020JSAES.10102610S. doi:10.1016/j.jsames.2020.102610. S2CID 218968100.
  245. ^ Lopatin, A.V.; Averianov, A.O. (2020). "Riabininohadros, a New Genus for the Ornithischian Dinosaur Orthomerus weberae (Ornithopoda, Iguanodontia) from the Late Cretaceous of Crimea". Paleontological Journal. 54 (3): 320–322. doi:10.1134/S0031030120030089. S2CID 219958457.
  246. ^ Oliver W. M. Rauhut; Femke M. Holwerda; Heinz Furrer (2020). "A derived sauropodiform dinosaur and other sauropodomorph material from the Late Triassic of Canton Schaffhausen, Switzerland". Swiss Journal of Geosciences. 113 (1): Article number 8. doi:10.1186/s00015-020-00360-8. S2CID 220294939.
  247. ^ Wang, K. B.; Zhang, Y. X.; Chen, J.; Chen, S. Q.; Wang, P. Y. (2020). "A new ankylosaurian from the Late Cretaceous strata of Zhucheng, Shandong Province". Geological Bulletin of China (in Chinese). 39 (7): 958–962.
  248. ^ John A. Whitlock; Jeffrey A. Wilson Mantilla (2020). "The Late Jurassic sauropod dinosaur 'Morosaurus' agilis Marsh, 1889 reexamined and reinterpreted as a dicraeosaurid". Journal of Vertebrate Paleontology. 40 (6): e1780600. doi:10.1080/02724634.2020.1780600. S2CID 234424022.
  249. ^ Hussam Zaher; Diego Pol; Bruno Albert Navarro; Rafael Delcourt; Alberto Barbosa Carvalho (2020). "An Early Cretaceous theropod dinosaur from Brazil sheds light on the cranial evolution of the Abelisauridae". Comptes Rendus Palevol. 19 (6): 101–115. doi:10.5852/cr-palevol2020v19a6. S2CID 225149330.
  250. ^ John P. Wilson; Michael J. Ryan; David C. Evans (2020). "A new, transitional centrosaurine ceratopsid from the Upper Cretaceous Two Medicine Formation of Montana and the evolution of the 'Styracosaurus-line' dinosaurs". Royal Society Open Science. 7 (4): Article ID: 200284. Bibcode:2020RSOS....700284W. doi:10.1098/rsos.200284. PMC 7211873. PMID 32431910.
  251. ^ Jared T. Voris; François Therrien; Darla K. Zelenitsky; Caleb M. Brown (2020). "A new tyrannosaurine (Theropoda:Tyrannosauridae) from the Campanian Foremost Formation of Alberta, Canada, provides insight into the evolution and biogeography of tyrannosaurids". Cretaceous Research. 110: Article 104388. doi:10.1016/j.cretres.2020.104388. S2CID 213838772.
  252. ^ Rafael Delcourt; Fabiano Vidoi Iori (2020). "A new Abelisauridae (Dinosauria: Theropoda) from São José do Rio Preto Formation, Upper Cretaceous of Brazil and comments on the Bauru Group fauna". Historical Biology. 32 (7): 917–924. doi:10.1080/08912963.2018.1546700. S2CID 92754354.
  253. ^ M.A. Cerroni; M.J. Motta; F.L. Agnolín; A.M. Aranciaga Rolando; F. Brissón Egli; F.E. Novas (2020). "A new abelisaurid from the Huincul Formation (Cenomanian-Turonian; Upper Cretaceous) of Río Negro province, Argentina". Journal of South American Earth Sciences. 98: Article 102445. Bibcode:2020JSAES..9802445C. doi:10.1016/j.jsames.2019.102445. S2CID 213781725.
  254. ^ Denver W. Fowler; John P. Wilson; Elizabeth A. Freedman Fowler; Christopher R. Noto; Daniel Anduza; John R. Horner (2020). "Trierarchuncus prairiensis gen. et sp. nov., the last alvarezsaurid: Hell Creek Formation (uppermost Maastrichtian), Montana". Cretaceous Research. 116: Article 104560. doi:10.1016/j.cretres.2020.104560. S2CID 225630913.
  255. ^ William J. Freimuth; John P. Wilson (2020). "New manual unguals of Trierarchuncus prairiensis from the Hell Creek Formation, Montana, and the ontogenetic development of the functional alvarezsaurid hand claw". Cretaceous Research. 119: Article 104698. doi:10.1016/j.cretres.2020.104698. S2CID 228830237.
  256. ^ Elisabete Malafaia; José Miguel Gasulla; Fernando Escaso; Iván Narváez; José Luis Sanz; Francisco Ortega (2020). "A new spinosaurid theropod (Dinosauria: Megalosauroidea) from the late Barremian of Vallibona, Spain: Implications for spinosaurid diversity in the Early Cretaceous of the Iberian Peninsula". Cretaceous Research. 106: Article 104221. doi:10.1016/j.cretres.2019.104221. S2CID 202189246.
  257. ^ Chris T. Barker; Darren Naish; Claire E. Clarkin; Paul Farrell; Gabriel Hullmann; James Lockyer; Philipp Schneider; Robin K. C. Ward; Neil J. Gostling (2020). "A highly pneumatic middle Cretaceous theropod from the British Lower Greensand". Papers in Palaeontology. 6 (4): 661–679. doi:10.1002/spp2.1338. S2CID 225281618.
  258. ^ Ashley W. Poust; Chunling Gao; David J. Varricchio; Jianlin Wu; Fengjiao Zhang (2020). "A new microraptorine theropod from the Jehol Biota and growth in early dromaeosaurids". The Anatomical Record. 303 (4): 963–987. doi:10.1002/ar.24343. PMID 31943887. S2CID 210334980.
  259. ^ Lida Xing; Tetsuto Miyashita; Donghao Wang; Kechung Niu; Philip J. Currie (2020). "A new compsognathid theropod dinosaur from the oldest assemblage of the Jehol Biota in the Lower Cretaceous Huajiying Formation, northeastern China". Cretaceous Research. 107: Article 104285. doi:10.1016/j.cretres.2019.104285. S2CID 210615455.
  260. ^ S. Apesteguía; J.E. Soto Luzuriaga; P.A. Gallina; J. Tamay Granda; G.A. Guamán Jaramillo (2020). "The first dinosaur remains from the Cretaceous of Ecuador". Cretaceous Research. 108: Article 104345. doi:10.1016/j.cretres.2019.104345. S2CID 213645743.
  261. ^ Hui Dai; Roger Benson; Xufeng Hu; Qingyu Ma; Chao Tan; Ning Li; Ming Xiao; Haiqian Hu; Yuxuan Zhou; Zhaoying Wei; Feng Zhang; Shan Jiang; Deliang Li; Guangzhao Peng; Yilun Yu; Xing Xu (2020). "A new possible megalosauroid theropod from the Middle Jurassic Xintiangou Formation of Chongqing, People's Republic of China and its implication for early tetanuran evolution". Scientific Reports. 10 (1): Article number 139. Bibcode:2020NatSR..10..139D. doi:10.1038/s41598-019-56959-x. PMC 6954265. PMID 31924836.
  262. ^ Ryan N. Felice; Akinobu Watanabe; Andrew R. Cuff; Michael Hanson; Bhart-Anjan S. Bhullar; Emily R. Rayfield; Lawrence M. Witmer; Mark A. Norell; Anjali Goswami (2020). "Decelerated dinosaur skull evolution with the origin of birds". PLOS Biology. 18 (8): e3000801. doi:10.1371/journal.pbio.3000801. PMC 7437466. PMID 32810126.
  263. ^ Daniel T. Ksepka; Amy M. Balanoff; N. Adam Smith; Gabriel S. Bever; Bhart-Anjan S. Bhullar; Estelle Bourdon; Edward L. Braun; J. Gordon Burleigh; Julia A. Clarke; Matthew W. Colbert; Jeremy R. Corfield; Federico J. Degrange; Vanesa L. De Pietri; Catherine M. Early; Daniel J. Field; Paul M. Gignac; Maria Eugenia Leone Gold; Rebecca T. Kimball; Soichiro Kawabe; Louis Lefebvre; Jesús Marugán-Lobón; Carrie S. Mongle; Ashley Morhardt; Mark A. Norell; Ryan C. Ridgely; Ryan S. Rothman; R. Paul Scofield; Claudia P. Tambussi; Christopher R. Torres; Marcel van Tuinen; Stig A. Walsh; Akinobu Watanabe; Lawrence M. Witmer; Alexandra K. Wright; Lindsay E. Zanno; Erich D. Jarvis; Jeroen B. Smaers (2020). "Tempo and pattern of avian brain size evolution". Current Biology. 30 (11): 2026–2036.e3. doi:10.1016/j.cub.2020.03.060. PMID 32330422. S2CID 216095924.
  264. ^ Catherine M. Early; Ryan C. Ridgely; Lawrence M. Witmer (2020). "Beyond endocasts: using predicted brain-structure volumes of extinct birds to assess neuroanatomical and behavioral inferences". Diversity. 12 (1): Article 34. doi:10.3390/d12010034.
  265. ^ Thomas G. Kaye; Michael Pittman; Gerald Mayr; Daniela Schwarz; Xing Xu (2019). "Detection of lost calamus challenges identity of isolated Archaeopteryx feather". Scientific Reports. 9 (1): Article number 1182. Bibcode:2019NatSR...9.1182K. doi:10.1038/s41598-018-37343-7. PMC 6362147. PMID 30718905.
  266. ^ Ryan M. Carney; Helmut Tischlinger; Matthew D. Shawkey (2020). "Evidence corroborates identity of isolated fossil feather as a wing covert of Archaeopteryx". Scientific Reports. 10 (1): Article number 15593. Bibcode:2020NatSR..1015593C. doi:10.1038/s41598-020-65336-y. PMC 7528088. PMID 32999314.
  267. ^ Thomas G. Kaye; Michael Pittman; William R. Wahl (2020). "Archaeopteryx feather sheaths reveal sequential center-out flight-related molting strategy". Communications Biology. 3 (1): Article number 745. doi:10.1038/s42003-020-01467-2. PMC 7722847. PMID 33293660.
  268. ^ Yosef Kiat; Peter Pyle; Amir Balaban; Jingmai K. O'Connor (2021). "Reinterpretation of purported molting evidence in the Thermopolis Archaeopteryx". Communications Biology. 4 (1): Article number 837. doi:10.1038/s42003-021-02349-x. PMC 8257594. PMID 34226661.
  269. ^ Thomas G. Kaye; Michael Pittman (2021). "Reply to: Reinterpretation of purported molting evidence in the Thermopolis Archaeopteryx". Communications Biology. 4 (1): Article number 839. doi:10.1038/s42003-021-02367-9. PMC 8257677. PMID 34226634.
  270. ^ Xiaoting Zheng; Corwin Sullivan; Jingmai K. O’Connor; Xiaoli Wang; Yan Wang; Xiaomei Zhang; Zhonghe Zhou (2020). "Structure and possible ventilatory function of unusual, expanded sternal ribs in the Early Cretaceous bird Jeholornis". Cretaceous Research. 116: Article 104597. doi:10.1016/j.cretres.2020.104597. S2CID 225019577.
  271. ^ Xiaoting Zheng; Jingmai O’Connor; Yan Wang; Xiaoli Wang; Yin Xuwei; Xiaomei Zhang; Zhonghe Zhou (2020). "New information on the keratinous beak of Confuciusornis (Aves: Pygostylia) from two new specimens". Frontiers in Earth Science. 8: Article 367. Bibcode:2020FrEaS...8..367Z. doi:10.3389/feart.2020.00367. S2CID 221713024.
  272. ^ Case Vincent Miller; Michael Pittman; Thomas G. Kaye; Xiaoli Wang; Jen A. Bright; Xiaoting Zheng (2020). "Disassociated rhamphotheca of fossil bird Confuciusornis informs early beak reconstruction, stress regime, and developmental patterns". Communications Biology. 3 (1): Article number 519. doi:10.1038/s42003-020-01252-1. PMC 7506531. PMID 32958793.
  273. ^ Qian Wu; Jingmai O'Connor; Zhi-Heng Li; Alida M. Bailleul (2020). "Cartilage on the furculae of living birds and the extinct bird Confuciusornis: a preliminary analysis and implications for flight style inferences in Mesozoic birds". Vertebrata PalAsiatica. 59 (2): 106–124. doi:10.19615/j.cnki.1000-3118.201222.
  274. ^ Han Hu; Jingmai K. O’Connor; Paul G. McDonald; Stephen Wroe (2020). "Cranial osteology of the Early Cretaceous Sapeornis chaoyangensis (Aves: Pygostylia)". Cretaceous Research. 113: Article 104496. doi:10.1016/j.cretres.2020.104496. S2CID 219470455.
  275. ^ Han Hu; Jingmai K. O’Connor; Min Wang; Stephen Wroe; Paul G. McDonald (2020). "New anatomical information on the bohaiornithid Longusunguis and the presence of a plesiomorphic diapsid skull in Enantiornithes". Journal of Systematic Palaeontology. 18 (18): 1481–1495. doi:10.1080/14772019.2020.1748133. S2CID 219081409.
  276. ^ Lida Xing; Pierre Cockx; Jingmai K. O'Connor; Ryan C. McKellar (2020). "A newly discovered enantiornithine foot preserved in mid-Cretaceous Burmese amber". Palaeoentomology. 3 (2): 212–219. doi:10.11646/palaeoentomology.3.2.11. S2CID 219014899.
  277. ^ Lida Xing; Jingmai K. O’Connor; Kecheng Niu; Pierre Cockx; Huijuan Mai; Ryan C. McKellar (2020). "A new enantiornithine (Aves) preserved in mid-Cretaceous Burmese amber contributes to growing diversity of Cretaceous plumage patterns". Frontiers in Earth Science. 8: Article 264. Bibcode:2020FrEaS...8..264X. doi:10.3389/feart.2020.00264. S2CID 220526808.
  278. ^ Alida M. Bailleul; Jingmai O’Connor; Zhiheng Li; Qian Wu; Tao Zhao; Mario A. Martinez Monleon; Min Wang; Xiaoting Zheng (2020). "Confirmation of ovarian follicles in an enantiornithine (Aves) from the Jehol biota using soft tissue analyses". Communications Biology. 3 (1): Article number 399. doi:10.1038/s42003-020-01131-9. PMC 7387556. PMID 32724075.
  279. ^ Gerald Mayr; Thomas G. Kaye; Michael Pittman; Evan T. Saitta; Christian Pott (2020). "Reanalysis of putative ovarian follicles suggests that Early Cretaceous birds were feeding not breeding". Scientific Reports. 10 (1): Article number 19035. doi:10.1038/s41598-020-76078-2. PMC 7643104. PMID 33149245.
  280. ^ Jingmai K. O’Connor; Xiaoting Zheng; Yanhong Pan; Xiaoli Wang; Yan Wang; Xiaomei Zhang; Zhonghe Zhou (2020). "New information on the plumage of Protopteryx (Aves: Enantiornithes) from a new specimen". Cretaceous Research. 116: Article 104577. doi:10.1016/j.cretres.2020.104577. S2CID 225021585.
  281. ^ Min Wang; Zhonghe Zhou (2020). "Anatomy of a new specimen of Piscivorenantiornis inusitatus (Aves: Enantiornithes) from the Lower Cretaceous Jehol Biota". Journal of Vertebrate Paleontology. 40 (3): e1783278. doi:10.1080/02724634.2020.1783278. S2CID 225188555.
  282. ^ Pierre Cockx; Ryan McKellar; Ralf Tappert; Matthew Vavrek; Karlis Muehlenbachs (2020). "Bonebed amber as a new source of paleontological data: The case of the Pipestone Creek deposit (Upper Cretaceous), Alberta, Canada". Gondwana Research. 81: 378–389. Bibcode:2020GondR..81..378C. doi:10.1016/j.gr.2019.12.005. S2CID 214000931.
  283. ^ Tomonori Tanaka; Yoshitsugu Kobayashi; Kenji Ikuno; Tadahiro Ikeda; Haruo Saegusa (2020). "A marine hesperornithiform (Avialae: Ornithuromorpha) from the Maastrichtian of Japan: implications for the paleoecological diversity of the earliest diving birds in the end of the Cretaceous". Cretaceous Research. 113: Article 104492. doi:10.1016/j.cretres.2020.104492. S2CID 219015002.
  284. ^ Alyssa Bell; Luis M. Chiappe (2020). "Anatomy of Parahesperornis: evolutionary mosaicism in the Cretaceous Hesperornithiformes (Aves)". Life. 10 (5): Article 62. doi:10.3390/life10050062. PMC 7281208. PMID 32422986.
  285. ^ Chad M. Eliason; Julia A. Clarke (2020). "Cassowary gloss and a novel form of structural color in birds". Science Advances. 6 (20): eaba0187. Bibcode:2020SciA....6A.187E. doi:10.1126/sciadv.aba0187. PMC 7220335. PMID 32426504.
  286. ^ C. J. du Toit; A. Chinsamy; S. J. Cunningham (2020). "Cretaceous origins of the vibrotactile bill-tip organ in birds". Proceedings of the Royal Society B: Biological Sciences. 287 (1940): Article ID 20202322. doi:10.1098/rspb.2020.2322. PMC 7739938. PMID 33259758. S2CID 227240681.
  287. ^ Anusuya Chinsamy; Delphine Angst; Aurore Canoville; Ursula B. Göhlich (2020). "Bone histology yields insights into the biology of the extinct elephant birds (Aepyornithidae) from Madagascar". Biological Journal of the Linnean Society. 130 (2): 268–295. doi:10.1093/biolinnean/blaa013.
  288. ^ Konstantin E. Mikhailov; Nikita Zelenkov (2020). "The late Cenozoic history of the ostriches (Aves: Struthionidae), as revealed by fossil eggshell and bone remains". Earth-Science Reviews. 208: Article 103270. Bibcode:2020ESRv..20803270M. doi:10.1016/j.earscirev.2020.103270. S2CID 225275210.
  289. ^ Peter A. Kloess; Ashley W. Poust; Thomas A. Stidham (2020). "Earliest fossils of giant-sized bony-toothed birds (Aves: Pelagornithidae) from the Eocene of Seymour Island, Antarctica". Scientific Reports. 10 (1): Article number 18286. doi:10.1038/s41598-020-75248-6. PMC 7588450. PMID 33106519.
  290. ^ Ivan Meza-Vélez (2020). "Reconstrucción alométrica de la capacidad de vuelo de Pelagornis chilensis Mayr & Rubilar-Rogers, 2010 (Aves: Pelagornithidae)". Spanish Journal of Palaeontology. 35 (2): 229–250. doi:10.7203/sjp.35.2.18485. S2CID 230604796.
  291. ^ N. V. Volkova; N. V. Zelenkov (2020). "On the diversity and morphology of Anserini (Aves: Anatidae) from the late Miocene of western Mongolia". Paleontological Journal. 54 (1): 73–80. doi:10.1134/S0031030120010128. S2CID 213168945.
  292. ^ Thomas A. Stidham; K.E. Beth Townsend; Patricia A. Holroyd (2020). "Evidence for wide dispersal in a stem galliform clade from a new small-sized middle Eocene pangalliform (Aves: Paraortygidae) from the Uinta Basin of Utah (USA)". Diversity. 12 (3): Article 90. doi:10.3390/d12030090.
  293. ^ N. V. Zelenkov; L. V. Gorobets (2020). "Revision of Plioperdix (Aves: Phasianidae) from the Plio-Pleistocene of Ukraine". Paleontological Journal. 54 (5): 531–541. doi:10.1134/S0031030120050159. S2CID 222181064.
  294. ^ Loukas Barton; Brittany Bingham; Krithivasan Sankaranarayanan; Cara Monroe; Ariane Thomas; Brian M. Kemp (2020). "The earliest farmers of northwest China exploited grain-fed pheasants not chickens". Scientific Reports. 10 (1): Article number 2556. Bibcode:2020NatSR..10.2556B. doi:10.1038/s41598-020-59316-5. PMC 7018827. PMID 32054913.
  295. ^ Lawal, R.A.; et al. (2020). "The wild species genome ancestry of domestic chickens". BMC Biology. 18 (13): 13. doi:10.1186/s12915-020-0738-1. PMC 7014787. PMID 32050971.
  296. ^ Ming-Shan Wang; Mukesh Thakur; Min-Sheng Peng; Yu Jiang; Laurent Alain François Frantz; Ming Li; Jin-Jin Zhang; Sheng Wang; Joris Peters; Newton Otieno Otecko; Chatmongkon Suwannapoom; Xing Guo; Zhu-Qing Zheng; Ali Esmailizadeh; Nalini Yasoda Hirimuthugoda; Hidayat Ashari; Sri Suladari; Moch Syamsul Arifin Zein; Szilvia Kusza; Saeed Sohrabi; Hamed Kharrati-Koopaee; Quan-Kuan Shen; Lin Zeng; Min-Min Yang; Ya-Jiang Wu; Xing-Yan Yang; Xue-Mei Lu; Xin-Zheng Jia; Qing-Hua Nie; Susan Joy Lamont; Emiliano Lasagna; Simone Ceccobelli; Humpita Gamaralalage Thilini Nisanka Gunwardana; Thilina Madusanka Senasige; Shao-Hong Feng; Jing-Fang Si; Hao Zhang; Jie-Qiong Jin; Ming-Li Li; Yan-Hu Liu; Hong-Man Chen; Cheng Ma; Shan-Shan Dai; Abul Kashem Fazlul Haque Bhuiyan; Muhammad Sajjad Khan; Gamamada Liyanage Lalanie Pradeepa Silva; Thi-Thuy Le; Okeyo Ally Mwai; Mohamed Nawaz Mohamed Ibrahim; Megan Supple; Beth Shapiro; Olivier Hanotte; Guojie Zhang; Greger Larson; Jian-Lin Han; Dong-Dong Wu; Ya-Ping Zhang (2020). "863 genomes reveal the origin and domestication of chicken". Cell Research. 30 (8): 693–701. doi:10.1038/s41422-020-0349-y. PMC 7395088. PMID 32581344.
  297. ^ Gerald Mayr; Thomas Lechner; Madelaine Böhme (2020). "A skull of a very large crane from the late Miocene of Southern Germany, with notes on the phylogenetic interrelationships of extant Gruinae". Journal of Ornithology. 161 (4): 923–933. doi:10.1007/s10336-020-01799-0. S2CID 220505689.
  298. ^ Gerald Mayr; James L. Goedert; Vanesa L. de Pietri; R. Paul Scofield (2020). "Comparative osteology of the penguin‐like mid‐Cenozoic Plotopteridae and the earliest true fossil penguins, with comments on the origins of wing‐propelled diving". Journal of Zoological Systematics and Evolutionary Research. 59 (1): 264–276. doi:10.1111/jzs.12400. S2CID 225727162.
  299. ^ E. Guilherme; L. G. D. Souza; T. S. Loboda; A. Ranzi; A. Adamy; J. Dos Santos Ferreira; J. P. Souza-Filho (2020). "New material of Anhingidae (Aves: Suliformes) from the upper Miocene of the Amazon, Brazil". Historical Biology. 33 (11): 3091–3100. doi:10.1080/08912963.2020.1850714. S2CID 230599234.
  300. ^ Martín Chávez-Hoffmeister (2020). "Bill disparity and feeding strategies among fossil and modern penguins". Paleobiology. 46 (2): 176–192. doi:10.1017/pab.2020.10. S2CID 216289741.
  301. ^ Gerald Mayr; Vanesa L. de Pietri; Leigh Love; Al A. Mannering; Joseph J. Bevitt; R. Paul Scofield (2020). "First complete wing of a stem group sphenisciform from the Paleocene of New Zealand sheds light on the evolution of the penguin flipper". Diversity. 12 (2): Article 46. doi:10.3390/d12020046.
  302. ^ Carolina Acosta Hospitaleche; Martín De Los Reyes; Sergio Santillana; Marcelo Reguero (2020). "First fossilized skin of a giant penguin from the Eocene of Antarctica". Lethaia. 53 (3): 409–420. doi:10.1111/let.12366. S2CID 213350615.
  303. ^ Ivan Meza-Vélez (2020). "Capacidad de nado del pingüino fósil Inkayacu paracasensis Clarke, 2010 (Aves: Spheniscidae) con la tasa metabólica basal o estándar". Spanish Journal of Palaeontology. 35 (2): 185–196. doi:10.7203/sjp.35.2.18482. S2CID 230594013.
  304. ^ Gerald Mayr; Thomas Lechner; Madelaine Böhme (2020). "The large-sized darter Anhinga pannonica (Aves, Anhingidae) from the late Miocene hominid Hammerschmiede locality in Southern Germany". PLOS ONE. 15 (5): e0232179. Bibcode:2020PLoSO..1532179M. doi:10.1371/journal.pone.0232179. PMC 7202596. PMID 32374733.
  305. ^ Sarah N. Davis; Christopher R. Torres; Grace M. Musser; James V. Proffitt; Nicholas M.A. Crouch; Ernest L. Lundelius; Matthew C. Lamanna; Julia A. Clarke (2020). "New mammalian and avian records from the late Eocene La Meseta and Submeseta formations of Seymour Island, Antarctica". PeerJ. 8: e8268. doi:10.7717/peerj.8268. PMC 6955110. PMID 31942255.
  306. ^ N. Adam Smith; Thomas A. Stidham; Jonathan S. Mitchell (2020). "The first fossil owl (Aves, Strigiformes) from the Paleogene of Africa". Diversity. 12 (4): Article 163. doi:10.3390/d12040163.
  307. ^ Ségolène Riamon; Martin Pickford; Brigitte Senut; Antoine Louchart (2020). "Bucerotidae from the early Miocene of Napak, Uganda (East Africa): The earliest hornbill with a modern‐type beak" (PDF). Ibis. 163 (2): 715–721. doi:10.1111/ibi.12907. S2CID 230632701.
  308. ^ Ségolène Riamon; Nicolas Tourment; Antoine Louchart (2020). "The earliest Tyrannida (Aves, Passeriformes), from the Oligocene of France". Scientific Reports. 10 (1): Article number 9776. Bibcode:2020NatSR..10.9776R. doi:10.1038/s41598-020-66149-9. PMC 7299954. PMID 32555197.
  309. ^ E. S. Palastrova; N. V. Zelenkov (2020). "A fossil species of Eremophila and other larks (Aves, Alaudidae) from the Upper Pliocene of the Selenga River valley (Central Asia)". Paleontological Journal. 54 (2): 187–204. doi:10.1134/S0031030120020124. S2CID 215741594.
  310. ^ Nicolas Dussex; David W. G. Stanton; Hanna Sigeman; Per G. P. Ericson; Jacquelyn Gill; Daniel C. Fisher; Albert V. Protopopov; Victoria L. Herridge; Valery Plotnikov; Bengt Hansson; Love Dalén (2020). "Biomolecular analyses reveal the age, sex and species identity of a near-intact Pleistocene bird carcass". Communications Biology. 3 (1): Article number 84. doi:10.1038/s42003-020-0806-7. PMC 7035339. PMID 32081985.
  311. ^ E. S. Palastrova; N. V. Zelenkov (2020). "A fossil bunting Emberiza shaamarica (Aves, Emberizidae) from the Upper Pliocene of Central Asia". Paleontological Journal. 54 (6): 652–661. doi:10.1134/S0031030120060076. S2CID 227133794.
  312. ^ Charles W. Helm; Martin G. Lockley; Hayley C. Cawthra; Jan C. De Vynck; Carina J.Z. Helm; Guy H.H. Thesen (2020). "Large Pleistocene avian tracks on the Cape south coast of South Africa". Ostrich. 91 (4): 275–291. doi:10.2989/00306525.2020.1789772. S2CID 225204354.
  313. ^ Katherine L. Long; Donald R. Prothero; Valerie J.P. Syverson (2020). "How do small birds evolve in response to climate change? Data from the long‐term record at La Brea tar pits". Integrative Zoology. 15 (4): 249–261. doi:10.1111/1749-4877.12426. PMID 31912657. S2CID 210086009.
  314. ^ Robert M. Zink; Sebastian Botero-Cañola; Helen Martinez; Katelyn M. Herzberg (2020). "Niche modeling reveals life history shifts in birds at La Brea over the last twenty millennia". PLOS ONE. 15 (1): e0227361. Bibcode:2020PLoSO..1527361Z. doi:10.1371/journal.pone.0227361. PMC 6964907. PMID 31945101.
  315. ^ Junya Watanabe; Akihiro Koizumi; Ryohei Nakagawa; Keiichi Takahashi; Takeshi Tanaka; Hiroshige Matsuoka (2020). "Seabirds (Aves) from the Pleistocene Kazusa and Shimosa groups, central Japan". Journal of Vertebrate Paleontology. 39 (5): e1697277. doi:10.1080/02724634.2019.1697277. S2CID 213253527.
  316. ^ David W. Steadman; Janet Franklin (2020). "Bird populations and species lost to Late Quaternary environmental change and human impact in the Bahamas". Proceedings of the National Academy of Sciences of the United States of America. 117 (43): 26833–26841. Bibcode:2020PNAS..11726833S. doi:10.1073/pnas.2013368117. PMC 7604420. PMID