Open main menu

Wikipedia β

The Energy Portal
Crystal energy.svg

Welcome to Wikipedia's energy portal, your gateway to the subject of energy and its effects on the world around us. This portal is aimed at educating you about energy and all its uses.

Main page   Explore topics & categories   Tasks & announcements


Page contents: IntroductionEnergy newsSelected articleSelected pictureSelected biographyDid you know?QuotationsRelated portalsWikiprojectsAssociated WikimediaHelp

edit  watch  

Introduction

Energy is a property of objects and systems of objects to act against a force (to do work), explored in branches of physics such as thermodynamics. Popularly the term is most often used in the context of energy as a public technology: energy resources, their consumption, development, depletion, and conservation. Biologically, bodies rely on food for energy in the same sense as industry relies on fuels to continue functioning. Since economic activities such as manufacturing and transportation can be energy intensive, energy efficiency, energy dependence, energy security and price are key concerns. Increased awareness of the effects of global warming has led to global debate and action for the reduction of greenhouse gases emissions; like many previous energy use patterns, it is changing not due to depletion or supply constraints but due to problems with waste, extraction, or geopolitical scenarios.

First, somehow there is a movement. There happened to be a burst of motion first. Motion implies and embraces energy, includes energy in itself. That first movement is a systematic one. The energy is the “ability of that system to perform work.” After that first movement we have the energy to play with. The universe is the result of the work systematically performed by that burst of motion. Motion can be transferred, transformed and converted into different forms. Whenever we see or sense a work done that means a visible energy. From here on radiation of energy, electromagnetic radiation and so on is easy to follow.

In the context of natural science, energy can take several different forms: thermal, chemical, electrical, radiant, nuclear, etc. These are often grouped as being either kinetic energy or potential energy. Many of these forms can be readily transformed into another with the help of a device - from chemical energy to electrical energy using a battery, for example. Most energy available for human use ultimately comes from the sun, which generates it with nuclear fusion. The enormous potential for fusion and other basic nuclear reactions is expressed by the equation E = mc2.

The concepts of energy and its transformations are useful in explaining natural processes on larger scales: Meteorological phenomena like wind, rain, lightning and tornadoes all result from energy transformations brought about by solar energy on the planet. Life itself is critically dependent on biological energy transformations; organic chemical bonds are constantly broken and made to make the exchange and transformation of energy possible. Read more...


edit  watch  

Selected article

Potlatch gas Crop1.jpg
The 1973 oil crisis began in earnest on October 17, 1973, when the members of Organization of Arab Petroleum Exporting Countries announced, as a result of the ongoing Yom Kippur War, that they would no longer ship petroleum to nations that had supported Israel in its conflict with Syria and Egypt (i.e., to the United States and its allies in Western Europe).

At about the same time, OPEC members agreed to use their leverage over the world price-setting mechanism for oil in order to quadruple world oil prices, after attempts at negotiation failed. Due to the dependence of the industrialized world on OPEC oil, these price increases were dramatically inflationary to the economies of the targeted countries, while at the same time suppressive of economic activity.

This increase in the price of oil had a dramatic effect on oil exporting nations, for the countries of the Middle East who had long been dominated by the industrial powers were seen to have acquired control of a vital commodity. The traditional flow of capital reversed as the oil exporting nations accumulated vast wealth. Meanwhile, the shock produced chaos in the West, and shares on the New York Stock Exchange lost $97 billion in value in six weeks. Read more...


edit  watch  

Selected picture

Wind Turbines and Power Lines, East Sussex, England - April 2009.jpg

Photo credit: Diliff
An electrical grid is an interconnected network for delivering electricity from generation facilities such as wind farms to consumers.


edit  watch  

Did you know?

  • Despite projections of producing four times as much power as it used in heating, the Riggatron fusion reactor was never built due to a lack of funding?

edit  watch  

Selected biography

Ben-122.JPG

Benjamin K. Sovacool is Director of the Danish Center for Energy Technology at AU Herning and a Professor of Social Sciences at Aarhus University in Denmark. He is also Associate Professor at Vermont Law School and Director of the Energy Security and Justice Program at their Institute for Energy and the Environment. Sovacool's research interests include energy policy, environmental issues, and science and technology policy, and his research has taken him to 50 countries. He is the author or editor of sixteen books and 250 peer reviewed academic articles. Sovacool's work has been referred to in academic publications such as Science, Nature, and Scientific American. He has written opinion editorials for the Wall Street Journal and the San Francisco Chronicle. Sovacool is a Intergovernmental Panel on Climate Change Contributing Author. Read More...

edit  watch  

Energy news


Wikinews on energy
Renewable energy news


edit  watch  

Quotations

  • "My administration is committed to a leadership role on the issue of climate change. We recognize our responsibility and will meet it - at home, in our hemisphere, and in the world." – George W. Bush, 2001
  • "While the Kyoto Protocol is a crucial step forward, that step is far too small. And as we consider how to go further still, there remains a frightening lack of leadership." – Kofi Annan, 2006
  • "It is going to be very difficult to keep temperature increases down to between 2 and 3 degrees centigrade [3.6 - 5.4°F]. We should work very hard to do that." – Nicholas Stern, 2006
  • "Halting global warming requires urgent, unprecedented international cooperation, but the needed actions are feasible and have additional benefits for human health, agriculture and the environment." – James E. Hansen, 2004

edit  watch  

Related portals

edit  watch  

WikiProjects

edit  watch  

Help

Torchlight help icon.svg

Puzzled by energy?
Can't answer your question?
Don't understand the answer?


For further ideas, to leave a comment, or to learn how you can help improve and update this portal, see the talk page.

edit  watch  

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Wikibooks
Books

Commons
Media

Wikinews 
News

Wikiquote 
Quotations

Wikisource 
Texts

Wikiversity
Learning resources

Wikivoyage 
Travel guides

Wiktionary 
Definitions

Wikidata 
Database

Wikispecies 
Species