Open main menu

Wikipedia β

The Technology poortal

A steam turbine with the case opened. Such turbines produce most of the electricity used today. Electricity consumption and living standards are highly correlated. Electrification is believed to be the most important engineering achievement of the 20th century.

Technology ("science of craft", from Greek τέχνη, techne, "art, skill, cunning of hand"; and -λογία, -logia) is first robustly defined by Jacob Bigelow in 1829 as: "...principles, processes, and nomenclatures of the more conspicuous arts, particularly those which involve applications of science, and which may be considered useful, by promoting the benefit of society, together with the emolument [compensation ] of those who pursue them".

  • Principle is a term defined current-day by Merriam-Webster as: "a comprehensive and fundamental law, doctrine, or assumption", "a primary source", "the laws or facts of nature underlying the working of an artificial device", "an ingredient (such as a chemical) that exhibits or imparts a characteristic quality".
  • Process is a term defined current-day by the United States Patent Laws (United States Code Title 34 - Patents) published by the United States Patent and Trade Office (USPTO) as follows: "The term 'process' means process, art, or method, and includes a new use of a known process, machine, manufacture, composition of matter, or material."
  • Nomenclature is term defined by Merriam-Webster as: "name, designation", "the act or process or an instance of naming", "a system or set of terms or symbols especially in a particular science, discipline, or art".
  • Application of Science is a term defined current-day by the United States' National Academies of Sciences, Engineering, and Medicine as: "...any use of scientific knowledge for a specific purpose, whether to do more science; to design a product, process, or medical treatment; to develop a new technology; or to predict the impacts of human actions."

The simplest form of technology is the development and use of basic tools. The prehistoric discovery of how to control fire and the later Neolithic Revolution increased the available sources of food, and the invention of the wheel helped humans to travel in and control their environment. Developments in historic times, including the printing press, the telephone, and the Internet, have lessened physical barriers to communication and allowed humans to interact freely on a global scale.

Technology has many effects. It has helped develop more advanced economies (including today's global economy) and has allowed the rise of a leisure class. Many technological processes produce unwanted by-products known as pollution and deplete natural resources to the detriment of Earth's environment. Innovations have always influenced the values of a society and raised new questions of the ethics of technology. Examples include the rise of the notion of efficiency in terms of human productivity, and the challenges of bioethics.

Philosophical debates have arisen over the use of technology, with disagreements over whether technology improves the human condition or worsens it. Neo-Luddism, anarcho-primitivism, and similar reactionary movements criticize the pervasiveness of technology, arguing that it harms the environment and alienates people; proponents of ideologies such as transhumanism and techno-progressivism view continued technological progress as beneficial to society and the human condition.

Selected article

Science and technology of the Han Dynasty
The Han dynasty (206 BCE – 220 CE) of ancient China, divided between the eras of Western Han (206 BCE – 9 CE, when the capital was at Chang'an), Xin dynasty of Wang Mang (r. 9–23 CE), and Eastern Han (25–220 CE, when the capital was at Luoyang, and after 196 CE at Xuchang), witnessed some of the most significant advancements in premodern Chinese science and technology. There were great innovations in metallurgy. In addition to Zhou-dynasty China's (c. 1050 BCE – 256 BCE) previous inventions of the blast furnace and cupola furnace to make pig iron and cast iron, respectively, the Han period saw the development of steel and wrought iron by use of the finery forge and puddling process. With the drilling of deep boreholes into the earth, the Chinese used not only derricks to lift brine up to the surface to be boiled into salt, but also set up bamboo-crafted pipeline transport systems which brought natural gas as fuel to the furnaces. Smelting techniques were enhanced with inventions such as the waterwheel-powered bellows; the resulting widespread distribution of iron tools facilitated the growth of agriculture. For tilling the soil and planting straight rows of crops, the improved heavy-moldboard plough with three iron plowshares and sturdy multiple-tube iron seed drill were invented in the Han, which greatly enhanced production yields and thus sustained population growth. The method of supplying irrigation ditches with water was improved with the invention of the mechanical chain pump powered by the rotation of a waterwheel or draft animals, which could transport irrigation water up elevated terrains. The waterwheel was also used for operating trip hammers in pounding grain and in rotating the metal rings of the mechanical-driven astronomical armillary sphere representing the celestial sphere around the Earth.

In this month

Ford Model T

Did you know...

Linimo train moving on its track

Featured biography

Johannes Kepler
Johannes Kepler was a German Lutheran mathematician, astronomer and astrologer, and a key figure in the 17th century astronomical revolution. He is best known for his eponymous laws of planetary motion, codified by later astronomers based on his works Astronomia nova, Harmonices Mundi, and Epitome of Copernican Astronomy. Before Kepler, planets' paths were computed by combinations of the circular motions of the celestial orbs. After Kepler, astronomers shifted their attention from orbs to orbits—paths that could be represented mathematically as an ellipse. Kepler's laws also provided one of the foundations for Isaac Newton's theory of universal gravitation. During his career Kepler was a mathematics teacher at a Graz seminary school, an assistant to Tycho Brahe, the court mathematician to Emperor Rudolf II, a mathematics teacher in Linz, Austria, and an adviser to General Wallenstein. He also did fundamental work in the field of optics and helped to legitimize the telescopic discoveries of his contemporary Galileo Galilei.


Selected quote

Stephen Hawking in 1999
Stephen Hawking, "A Brief History of Relativity" (1999)

Selected image

ISS March 2009.jpg
Credit: NASA

The International Space Station (ISS) is a habitable artificial satellite in low Earth orbit. A joint effort by NASA, the Russian Federal Space Agency, JAXA, ESA, and CSA, it is the ninth space station to be inhabited.


Technology categories

Main topics


Technological aspect of idea concepts and issues – Appropriate technology • Clean technology • Diffusion of innovations in science • Doomsday device • Ecotechnology • Environmental technology • High technology • History of science and technology • History of technology • Industry • Innovation • Knowledge economy • Persuasion technology • Pollution • Posthumanism • Precautionary principle • Research and development • Science, technology, and society • Strategy of technology • Superpowers • Sustainable technology • Technocapitalism • Technocriticism • Techno-progressivism • Technological convergence • Technological evolution • Technological determinism • Technological diffusion • Technological singularity • Technology acceptance model • Technology assessment • Technology lifecycle • Technology transfer • Technology Tree • Technorealism • Timeline of invention • Transhumanism

Technologies and applied sciences – Aerospace • Agriculture, Agricultural science & Agronomy • Architecture • Artificial intelligence • Automation • Automobile • Big Science • Biotechnology • Cartography • Chemical engineering • Communication • Computing (Computer science, List of open problems in computer science, Programming, Software engineering, Information technology, Computer engineering) • Construction • Design • Electronics • Energy development • Energy storage • Engineering • Ergonomics • Firefighting • Forensics • Forestry • Free software • Health sciences • Health Informatics • Industry • Information science • Internet • Library and information science • Machines • Management • Manufacturing • Mass communication • Mass production • Medicine (Unsolved problems in neuroscience) • Military science • Military technology and equipment • Mining • Nanotechnology • Nuclear technology • Packaging and labeling • Processes • Robotics • Space exploration • Technology forecasting • Telecommunications • Tools • Transport • Vehicles • Weapons


Things you can do

Related portals

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:






Learning resources



Wikipedia's portals