Common year starting on Thursday

A common year starting on Thursday is any non-leap year (i.e. a year with 365 days) that begins on Thursday, 1 January, and ends on Thursday, 31 December. Its dominical letter hence is D. The most recent year of such kind was 2015 and the next one will be 2026 in the Gregorian calendar[1] or, likewise, 2010 and 2021 in the obsolete Julian calendar, see below for more.

This is the only common year with three occurrences of Friday the 13th: those three in this common year occur in February, March, and November. Leap years starting on Sunday share this characteristic and with the exception of skipped leap years, a leap year that begins on a Sunday falls exactly three years either side of two consecutive common years starting on Thursday - for example 2012 between 2009 and 2015. From February until March in this type of year is also the shortest period (one month) that runs between two instances of Friday the 13th.

In this common year, February is rectangular in calendar where weeks start on a Sunday, Martin Luther King Jr. Day is on January 19, Valentine’s Day is on a Saturday, President's Day is on February 17, Saint Patrick’s Day is on a Tuesday, Memorial Day is on its earliest possible date, May 25, U.S. Independence Day is on a Saturday, Labor Day is on its latest possible date, September 7, Halloween is on a Saturday, Veterans Day is on a Wednesday, Thanksgiving is on November 26, and Christmas is on a Friday. This common year is also the only one where Memorial Day and Labor Day are not 14 weeks (98 days) apart: they are 15 weeks (105 days) apart in this common year. Leap years starting on Wednesday share this characteristic. Interestingly, like leap years starting on Wednesday, this common year also has the shortest gap between Halloween (October 31) and the end of Daylight Saving Time in the US (November 1) by one day. Prior to 2007, this common year had the longest gap between the end of Daylight Saving Time in the US (October 25) and Halloween by 6 days.

The Election Day in the USA is on November 3rd, as well in leap years starting on Wednesday.

CalendarsEdit

Calendar for any common year starting on Thursday,
presented as common in many English-speaking areas

01 02 03
04 05 06 07 08 09 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
 
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
 
 
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31  
 
01 02 03 04
05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30  
 
01 02
03 04 05 06 07 08 09
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31  
01 02 03 04 05 06
07 08 09 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30  
 
01 02 03 04
05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  
 
01
02 03 04 05 06 07 08
09 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31  
01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30  
 
01 02 03
04 05 06 07 08 09 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
 
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30  
 
01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31  
 


ISO 8601-conformant calendar with week numbers for
any common year starting on Thursday (dominical letter D)

01 02 03 04
05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  
 
01
02 03 04 05 06 07 08
09 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28
 
01
02 03 04 05 06 07 08
09 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31  
01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30  
 
01 02 03
04 05 06 07 08 09 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
 
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30  
 
01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31  
 
01 02
03 04 05 06 07 08 09
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31  
01 02 03 04 05 06
07 08 09 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30  
 
01 02 03 04
05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  
 
01
02 03 04 05 06 07 08
09 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30  
01 02 03 04 05 06
07 08 09 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31  
 

Applicable yearsEdit

Gregorian CalendarEdit

In the (currently used) Gregorian calendar, alongside Tuesday, the fourteen types of year (seven common, seven leap) repeat in a 400-year cycle (20871 weeks). Forty-four common years per cycle or exactly 11% start on a Thursday. The 28-year sub-cycle only spans across century years divisible by 400, e.g. 1600, 2000, and 2400.

Gregorian common years starting on Thursday[1]
Decade 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
16th century prior to first adoption (proleptic) 1587 1598
17th century 1609 1615 1626 1637 1643 1654 1665 1671 1682 1693 1699
18th century 1705 1711 1722 1733 1739 1750 1761 1767 1778 1789 1795
19th century 1801 1807 1818 1829 1835 1846 1857 1863 1874 1885 1891
20th century 1903 1914 1925 1931 1942 1953 1959 1970 1981 1987 1998
21st century 2009 2015 2026 2037 2043 2054 2065 2071 2082 2093 2099
22nd century 2105 2111 2122 2133 2139 2150 2161 2167 2178 2189 2195
23rd century 2201 2207 2218 2229 2235 2246 2257 2263 2274 2285 2291
24th century 2303 2314 2325 2331 2342 2353 2359 2370 2381 2387 2398
25th century 2409 2415 To Be Announced

Julian CalendarEdit

In the now-obsolete Julian calendar, the fourteen types of year (seven common, seven leap) repeat in a 28-year cycle (1461 weeks). A leap year has two adjoining dominical letters (one for January and February and the other for March to December, as 29 February has no letter). This sequence occurs exactly once within a cycle, and every common letter thrice.

As the Julian calendar repeats after 28 years that means it will also repeat after 700 years, i.e. 25 cycles. The year's position in the cycle is given by the formula ((year + 8) mod 28) + 1). Years 3, 14 and 20 of the cycle are common years beginning on Thursday. 2017 is year 10 of the cycle. Approximately 10.71% of all years are common years beginning on Thursday.

Julian common years starting on Thursday
Decade 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
15th century 1405 1411 1422 1433 1439 1450 1461 1467 1478 1489 1495
16th century 1506 1517 1523 1534 1545 1551 1562 1573 1579 1590
17th century 1601 1607 1618 1629 1635 1646 1657 1683 1674 1685 1691
18th century 1702 1713 1719 1730 1741 1747 1758 1769 1775 1786 1797
19th century 1803 1814 1825 1831 1842 1853 1859 1870 1881 1887 1898
20th century 1909 1915 1926 1937 1943 1954 1965 1971 1982 1993 1999
21st century 2010 2021 2027 2038 2049 2055 2066 2077 2083 2094

ReferencesEdit

  1. ^ a b Robert van Gent (2017). "The Mathematics of the ISO 8601 Calendar". Utrecht University, Department of Mathematics. Retrieved 20 July 2017.
  2. ^ Robert van Gent (2017). "The Mathematics of the ISO 8601 Calendar". Utrecht University, Department of Mathematics. Retrieved 20 July 2017.