Portal:Evolutionary biology

The Evolutionary Biology Portal


Tree of life.svg

Evolutionary biology is the subfield of biology that studies the evolutionary processes (natural selection, common descent, speciation) that produced the diversity of life on Earth. Simply, it is also defined as the study of the history of life forms on Earth. Evolution is based on the theory that all species are related and they gradually change over time. In a population, the genetic variations affect the physical characteristics i.e. phenotypes of an organism. These changes in the phenotypes will be an advantage to some organisms, which will then be passed onto their offspring. Peppered Moth and Flightless birds are some examples of evolution in species over many generations. In the 1930s, the discipline of evolutionary biology emerged through what Julian Huxley called the modern synthesis of understanding, from previously unrelated fields of biological research, such as genetics and ecology, systematics, and paleontology. A person who studies Evolutionary biology is called an Evolutionary biologist. The importance of studying Evolutionary biology is mainly to understand the principles behind the origin and extinction of species.

The investigational range of current research widened to encompass the genetic architecture of adaptation, molecular evolution, and the different forces that contribute to evolution, such as sexual selection, genetic drift, and biogeography. Moreover, the newer field of evolutionary developmental biology ("evo-devo") investigates how embryogenesis, the development of the embryo, is controlled, thus yielding a wider synthesis that integrates developmental biology with the fields of study covered by the earlier evolutionary synthesis. (Full article...)

Selected article - show another

A toy animal with wheels
A wheeled animal represented by a toy, from pre-Columbian Mexico

Several organisms are capable of rolling locomotion. However, true wheels and propellers—despite their utility in human vehicles—do not seem to play a significant role in the movement of living things (with the exception of certain flagella, which work like corkscrews). Biologists have offered several explanations for the apparent absence of biological wheels, and wheeled creatures have appeared often in speculative fiction.

Given the ubiquity of the wheel in human technology, and the existence of biological analogues of many other technologies (such as wings and lenses), the lack of wheels in the natural world would seem to demand explanation—and the phenomenon is broadly explained by two main factors. First, there are several developmental and evolutionary obstacles to the advent of a wheel by natural selection, addressing the question "Why can't life evolve wheels?" Secondly, wheels are often at a competitive disadvantage when compared with other means of propulsion (such as walking, running, or slithering) in natural environments, addressing the question "If wheels could evolve, why might they be rare nonetheless?" This environment-specific disadvantage also explains why at least one historical civilization abandoned the wheel as a mode of transport. (Full article...)

General images - load new batch

The following are images from various evolutionary biology-related articles on Wikipedia.

Selected picture - show another

Ectopistes migratoriusMCN2P28CA.jpg
Credit: Wikimedia Commons

The passenger pigeon, one of several species of extinct birds, was hunted to extinction over the course of a few decades.

Did you know... - show different entries



Category puzzle
Select [►] to view subcategories

Related portals

Tasks you can do

Related topics


Associated Wikimedia


Purge server cache