Timeline of biotechnology

  (Redirected from 2021 in biotechnology)

The historical application of biotechnology throughout time is provided below in chronological order.

These discoveries, inventions and modifications are evidence of the application of biotechnology since before the common era and describe notable events in the research, development and regulation of biotechnology.

Before Common EraEdit

Pre-20th CenturyEdit

20th centuryEdit

21st centuryEdit


8 July: Researchers report that they succeeded in using a genetically altered variant of R. sulfidophilum to produce spidroins, the main proteins in spider silk.[67]
  • 18 September – Researchers report the development of two active guide RNA-only elements that, according to their study, may enable halting or deleting gene drives introduced into populations in the wild with CRISPR-Cas9 gene editing. The paper's senior author cautions that the two neutralizing systems they demonstrated in cage trials "should not be used with a false sense of security for field-implemented gene drives".[79][80]
10 November: Scientists show that microorganisms could be employed to mine useful elements from basalt rocks in space.[85]
25 November: The development of a biotechnology for microbial reactors capable of producing oxygen as well as hydrogen is reported.[89]
30 November: The 50-year problem of protein structure prediction is reported to be largely solved with an AI algorithm.[91]


Researchers present a bioprinting method to produce steak-like cultured meat.
  • 0 Researchers present a bioprinting method to produce steak-like cultured meat, composed of three types of bovine cell fibers.[140][141]
  • Bioengineers report the development of a viable CRISPR-Cas gene-editing system, "CasMINI", that is about twice as compact as the commonly used Cas9 and Cas12a.[142][143]
  • Media outlets report that the world's first cultured coffee product has been created, still awaiting regulatory approval for near-term commercialization. It was also reported that another biotechnology company produced and sold "molecular coffee" without clear details of the molecular composition or similarity to cultured coffee except having compounds that are in green coffee and that a third company is working on the development of a similar product made from extracted molecules.[144][145][146] Such products, for which multiple companies' R&D have acquired substantial funding, may have equal or highly similar effects, composition and taste as natural products but use less water, generate less carbon emissions, require less and relocated labor[145] and cause no deforestation.[144]
The first CRISPR-edited food, tomatoes, goes on public sale.
  • Researchers report the world's first artificial synthesis of starch. The material essential for many products and the most common carbohydrate in human diets was made from CO2 in a cell-free process and could reduce land, pesticide and water use as well as greenhouse gas emissions while increasing food security.[147][148]
  • Media outlets report that in Japan the first CRISPR-edited food has gone on public sale. Tomatoes were genetically modified for around five times the normal amount of possibly calming[149] GABA.[150] CRISPR was first applied in tomatoes in 2014.[151]
  • Biomedical researchers demonstrate a switchable Yamanaka factors-reprogramming-based approach for regeneration of damaged heart without tumor-formation with success in mice if the intervention is done immediately before or after a heart attack.[152][153]
  • Bionanoengineers report a novel therapy for spinal cord injury – an injectable gel of nanofibers that contain moving molecules that cause cellular repair signaling and mimic the matrix around cells. The therapy enabled paralyzed mice to walk again.[161][162][163]
  • Scientists report the development of a vaccine of mRNAs for the body build 19 proteins in tick saliva which, by enabling quick development of erythema (itchy redness) at the bite site, protects guinea pigs against Lyme disease from ticks.[166][167]
  • Sri Lanka announces that it will lift its import ban on pesticides and herbicides, explained by both a lack of sudden changes to widely applied practices or education systems and contemporary economics and, by extension, food security, protests and high food costs. The effort for the first transition to a completely organic farming nation was challenged by effects of the COVID-19 pandemic.[168][169]
  • A team of scientists reports a new form of biological reproduction in the, <1 mm sized, xenobots that are made up of and are emersed in frog cells.[170][171]

See alsoEdit


  1. ^ a b "Highlights in the History of Biotechnology" (PDF). St Louis Science Center. Archived from the original (PDF) on 23 January 2013. Retrieved 27 December 2012.
  2. ^ "Agriculture in Ancient Greece". World History Encyclopedia. Archived from the original on 30 December 2012. Retrieved 27 December 2012.
  3. ^ "Biotechnology Timeline". Biotechnology Institute of Washington DC. Retrieved 27 December 2012.[permanent dead link]
  4. ^ "1973_Boyer". Genome News Network. Archived from the original on 20 September 2020. Retrieved 19 August 2015.
  5. ^ C A Hutchison, 3rd, S Phillips, M H Edgell, S Gillam, P Jahnke and M Smith (1978). "Mutagenesis at a specific position in a DNA sequence". J Biol Chem. 253 (18): 6551–6560. doi:10.1016/S0021-9258(19)46967-6. PMID 681366.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Fingas, Jon (16 April 2019). "CRISPR gene editing has been used on humans in the US". Engadget. Archived from the original on 16 April 2019. Retrieved 16 April 2019.
  7. ^ Staff (17 April 2019). "CRISPR has been used to treat US cancer patients for the first time". MIT Technology Review. Archived from the original on 17 April 2019. Retrieved 17 April 2019.
  8. ^ Anzalone, Andrew V.; Randolph, Peyton B.; Davis, Jessie R.; Sousa, Alexander A.; Koblan, Luke W.; Levy, Jonathan M.; Chen, Peter J.; Wilson, Christopher; Newby, Gregory A.; Raguram, Aditya; Liu, David R. (21 October 2019). "Search-and-replace genome editing without double-strand breaks or donor DNA". Nature. 576 (7785): 149–157. Bibcode:2019Natur.576..149A. doi:10.1038/s41586-019-1711-4. PMC 6907074. PMID 31634902.
  9. ^ Gallagher, James (2019-10-21). "Prime editing: DNA tool could correct 89% of genetic defects". BBC News. Archived from the original on 2019-10-21. Retrieved 21 October 2019.
  10. ^ "Scientists Create New, More Powerful Technique To Edit Genes". NPR.org. Archived from the original on 21 October 2019. Retrieved 21 October 2019.
  11. ^ "Nanoparticle chomps away plaques that cause heart attacks". Michigan State University. 27 January 2020. Archived from the original on 29 January 2020. Retrieved 31 January 2020.
  12. ^ "Nanoparticle helps eat away deadly arterial plaque". New Atlas. 28 January 2020. Archived from the original on 1 March 2020. Retrieved 13 April 2020.
  13. ^ Flores, Alyssa M.; Hosseini-Nassab, Niloufar; Jarr, Kai-Uwe; Ye, Jianqin; Zhu, Xingjun; Wirka, Robert; Koh, Ai Leen; Tsantilas, Pavlos; Wang, Ying; Nanda, Vivek; Kojima, Yoko; Zeng, Yitian; Lotfi, Mozhgan; Sinclair, Robert; Weissman, Irving L.; Ingelsson, Erik; Smith, Bryan Ronain; Leeper, Nicholas J. (February 2020). "Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis". Nature Nanotechnology. 15 (2): 154–161. Bibcode:2020NatNa..15..154F. doi:10.1038/s41565-019-0619-3. PMC 7254969. PMID 31988506.
  14. ^ "Fundamental beliefs about atherosclerosis overturned: Complications of artery-hardening condition are number one killer worldwide". ScienceDaily. Archived from the original on 2020-06-29. Retrieved 2020-07-12.
  15. ^ "The top 10 causes of death". www.who.int. Archived from the original on 2020-06-05. Retrieved 2020-01-26.
  16. ^ "New CRISPR-based tool can probe and control several genetic circuits at once". phys.org (in American English). Archived from the original on 2 March 2020. Retrieved 8 March 2020.
  17. ^ Kempton, Hannah R.; Goudy, Laine E.; Love, Kasey S.; Qi, Lei S. (5 February 2020). "Multiple Input Sensing and Signal Integration Using a Split Cas12a System". Molecular Cell. 78 (1): 184–191.e3. doi:10.1016/j.molcel.2020.01.016. ISSN 1097-2765. PMID 32027839.
  18. ^ AFP. "US Trial Shows 3 Cancer Patients Had Their Genomes Altered Safely by CRISPR". ScienceAlert (in British English). Archived from the original on 2020-02-08. Retrieved 2020-02-09.
  19. ^ "CRISPR-edited immune cells for fighting cancer passed a safety test". Science News. 6 February 2020. Archived from the original on 25 July 2020. Retrieved 13 July 2020.
  20. ^ "CRISPR-Edited Immune Cells Can Survive and Thrive After Infusion into Cancer Patients – PR News". www.pennmedicine.org. Archived from the original on 13 July 2020. Retrieved 13 July 2020.
  21. ^ Stadtmauer, Edward A.; Fraietta, Joseph A.; Davis, Megan M.; Cohen, Adam D.; Weber, Kristy L.; Lancaster, Eric; Mangan, Patricia A.; Kulikovskaya, Irina; Gupta, Minnal; Chen, Fang; Tian, Lifeng; Gonzalez, Vanessa E.; Xu, Jun; Jung, In-young; Melenhorst, J. Joseph; Plesa, Gabriela; Shea, Joanne; Matlawski, Tina; Cervini, Amanda; Gaymon, Avery L.; Desjardins, Stephanie; Lamontagne, Anne; Salas-Mckee, January; Fesnak, Andrew; Siegel, Donald L.; Levine, Bruce L.; Jadlowsky, Julie K.; Young, Regina M.; Chew, Anne; Hwang, Wei-Ting; Hexner, Elizabeth O.; Carreno, Beatriz M.; Nobles, Christopher L.; Bushman, Frederic D.; Parker, Kevin R.; Qi, Yanyan; Satpathy, Ansuman T.; Chang, Howard Y.; Zhao, Yangbing; Lacey, Simon F.; June, Carl H. (28 February 2020). "CRISPR-engineered T cells in patients with refractory cancer". Science. 367 (6481): eaba7365. doi:10.1126/science.aba7365. ISSN 0036-8075. PMID 32029687. S2CID 211048335.
  22. ^ "Biomaterial discovery enables 3-D printing of tissue-like vascular structures". phys.org (in American English). Archived from the original on 6 April 2020. Retrieved 5 April 2020.
  23. ^ Wu, Yuanhao; Okesola, Babatunde O.; Xu, Jing; Korotkin, Ivan; Berardo, Alice; Corridori, Ilaria; di Brocchetti, Francesco Luigi Pellerej; Kanczler, Janos; Feng, Jingyu; Li, Weiqi; Shi, Yejiao; Farafonov, Vladimir; Wang, Yiqiang; Thompson, Rebecca F.; Titirici, Maria-Magdalena; Nerukh, Dmitry; Karabasov, Sergey; Oreffo, Richard O. C.; Carlos Rodriguez-Cabello, Jose; Vozzi, Giovanni; Azevedo, Helena S.; Pugno, Nicola M.; Wang, Wen; Mata, Alvaro (4 March 2020). "Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices". Nature Communications. 11 (1): 1182. Bibcode:2020NatCo..11.1182W. doi:10.1038/s41467-020-14716-z. ISSN 2041-1723. PMC 7055247. PMID 32132534.
  24. ^ "Doctors use gene editing tool Crispr inside body for first time". the Guardian. 4 March 2020. Archived from the original on 12 April 2020. Retrieved 6 April 2020.
  25. ^ "Doctors use CRISPR gene editing inside a person's body for first time". NBC News. Archived from the original on 6 March 2020. Retrieved 6 April 2020.
  26. ^ "Doctors try 1st CRISPR editing in the body for blindness". AP NEWS. 4 March 2020. Archived from the original on 6 April 2020. Retrieved 6 April 2020.
  27. ^ White, Franny. "OHSU performs first-ever CRISPR gene editing within human body". OHSU News. Retrieved 12 April 2020.
  28. ^ "Researchers establish new viable CRISPR-Cas12b system for plant genome engineering". phys.org (in American English). Archived from the original on 6 April 2020. Retrieved 6 April 2020.
  29. ^ Ming, Meiling; Ren, Qiurong; Pan, Changtian; He, Yao; Zhang, Yingxiao; Liu, Shishi; Zhong, Zhaohui; Wang, Jiaheng; Malzahn, Aimee A.; Wu, Jun; Zheng, Xuelian; Zhang, Yong; Qi, Yiping (March 2020). "CRISPR–Cas12b enables efficient plant genome engineering". Nature Plants. 6 (3): 202–208. doi:10.1038/s41477-020-0614-6. PMID 32170285. S2CID 212643374.
  30. ^ Levy, Steven. "Could Crispr Be Humanity's Next Virus Killer?". Wired. Archived from the original on 24 March 2020. Retrieved 25 March 2020.
  31. ^ "Biochemist Explains How CRISPR Can Be Used to Fight COVID-19". Amanpour & Company. Archived from the original on 30 April 2020. Retrieved 3 April 2020.
  32. ^ "Can Crispr technology attack the coronavirus? | Bioengineering". bioengineering.stanford.edu. Archived from the original on 14 July 2020. Retrieved 3 April 2020.
  33. ^ Abbott, Timothy R.; Dhamdhere, Girija; Liu, Yanxia; Lin, Xueqiu; Goudy, Laine; Zeng, Leiping; Chemparathy, Augustine; Chmura, Stephen; Heaton, Nicholas S.; Debs, Robert; Pande, Tara; Endy, Drew; Russa, Marie La; Lewis, David B.; Qi, Lei S. (14 March 2020). "Development of CRISPR as a prophylactic strategy to combat novel coronavirus and influenza". bioRxiv: 2020.03.13.991307. doi:10.1101/2020.03.13.991307.
  34. ^ "Scientists aim gene-targeting breakthrough against COVID-19". phys.org. Archived from the original on 17 June 2020. Retrieved 13 June 2020.
  35. ^ Abbott, Timothy R.; Dhamdhere, Girija; Liu, Yanxia; Lin, Xueqiu; Goudy, Laine; Zeng, Leiping; Chemparathy, Augustine; Chmura, Stephen; Heaton, Nicholas S.; Debs, Robert; Pande, Tara; Endy, Drew; Russa, Marie F. La; Lewis, David B.; Qi, Lei S. (14 May 2020). "Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza". Cell. 181 (4): 865–876.e12. doi:10.1016/j.cell.2020.04.020. ISSN 0092-8674. PMC 7189862. PMID 32353252.
  36. ^ "New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus". phys.org (in American English). Archived from the original on 5 April 2020. Retrieved 3 April 2020.
  37. ^ Wessels, Hans-Hermann; Méndez-Mancilla, Alejandro; Guo, Xinyi; Legut, Mateusz; Daniloski, Zharko; Sanjana, Neville E. (16 March 2020). "Massively parallel Cas13 screens reveal principles for guide RNA design". Nature Biotechnology. 38 (6): 722–727. doi:10.1038/s41587-020-0456-9. PMC 7294996. PMID 32518401.
  38. ^ "Scientists can now edit multiple genome fragments at a time". phys.org (in American English). Archived from the original on 7 April 2020. Retrieved 7 April 2020.
  39. ^ Gonatopoulos-Pournatzis, Thomas; Aregger, Michael; Brown, Kevin R.; Farhangmehr, Shaghayegh; Braunschweig, Ulrich; Ward, Henry N.; Ha, Kevin C. H.; Weiss, Alexander; Billmann, Maximilian; Durbic, Tanja; Myers, Chad L.; Blencowe, Benjamin J.; Moffat, Jason (16 March 2020). "Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9–Cas12a platform". Nature Biotechnology. 38 (5): 638–648. doi:10.1038/s41587-020-0437-z. PMID 32249828. S2CID 212731918.
  40. ^ "Researchers achieve remote control of hormone release using magnetic nanoparticles". phys.org. Archived from the original on 24 April 2020. Retrieved 16 May 2020.
  41. ^ Rosenfeld, Dekel; Senko, Alexander W.; Moon, Junsang; Yick, Isabel; Varnavides, Georgios; Gregureć, Danijela; Koehler, Florian; Chiang, Po-Han; Christiansen, Michael G.; Maeng, Lisa Y.; Widge, Alik S.; Anikeeva, Polina (1 April 2020). "Transgene-free remote magnetothermal regulation of adrenal hormones". Science Advances. 6 (15): eaaz3734. Bibcode:2020SciA....6.3734R. doi:10.1126/sciadv.aaz3734. PMC 7148104. PMID 32300655.
  42. ^ "Predicting the evolution of genetic mutations". phys.org. Archived from the original on 26 April 2020. Retrieved 16 May 2020.
  43. ^ Zhou, Juannan; McCandlish, David M. (14 April 2020). "Minimum epistasis interpolation for sequence-function relationships". Nature Communications. 11 (1): 1782. Bibcode:2020NatCo..11.1782Z. doi:10.1038/s41467-020-15512-5. PMC 7156698. PMID 32286265.
  44. ^ "Bactericidal nanomachine: Researchers reveal the mechanisms behind a natural bacteria killer". phys.org. Archived from the original on 29 April 2020. Retrieved 17 May 2020.
  45. ^ Ge, Peng; Scholl, Dean; Prokhorov, Nikolai S.; Avaylon, Jaycob; Shneider, Mikhail M.; Browning, Christopher; Buth, Sergey A.; Plattner, Michel; Chakraborty, Urmi; Ding, Ke; Leiman, Petr G.; Miller, Jeff F.; Zhou, Z. Hong (April 2020). "Action of a minimal contractile bactericidal nanomachine". Nature. 580 (7805): 658–662. Bibcode:2020Natur.580..658G. doi:10.1038/s41586-020-2186-z. PMC 7513463. PMID 32350467.
  46. ^ "Scientists create tiny devices that work like the human brain". The Independent. 20 April 2020. Archived from the original on 24 April 2020. Retrieved 17 May 2020.
  47. ^ "Researchers unveil electronics that mimic the human brain in efficient learning". phys.org. Archived from the original on 28 May 2020. Retrieved 17 May 2020.
  48. ^ Fu, Tianda; Liu, Xiaomeng; Gao, Hongyan; Ward, Joy E.; Liu, Xiaorong; Yin, Bing; Wang, Zhongrui; Zhuo, Ye; Walker, David J. F.; Joshua Yang, J.; Chen, Jianhan; Lovley, Derek R.; Yao, Jun (20 April 2020). "Bioinspired bio-voltage memristors". Nature Communications. 11 (1): 1861. Bibcode:2020NatCo..11.1861F. doi:10.1038/s41467-020-15759-y. PMC 7171104. PMID 32313096.
  49. ^ "Sustainable light achieved in living plants". phys.org. Archived from the original on 27 May 2020. Retrieved 18 May 2020.
  50. ^ "Scientists use mushroom DNA to produce permanently-glowing plants". New Atlas. 28 April 2020. Archived from the original on 9 May 2020. Retrieved 18 May 2020.
  51. ^ "Scientists create glowing plants using mushroom genes". the Guardian. 27 April 2020. Archived from the original on 10 May 2020. Retrieved 18 May 2020.
  52. ^ Wehner, Mike (29 April 2020). "Scientists use bioluminescent mushrooms to create glow-in-the-dark plants". New York Post. Archived from the original on 24 May 2020. Retrieved 18 May 2020.
  53. ^ Woodyatt, Amy. "Scientists create glow-in-the-dark plants". CNN. Archived from the original on 20 May 2020. Retrieved 23 May 2020.
  54. ^ Mitiouchkina, Tatiana; Mishin, Alexander S.; Somermeyer, Louisa Gonzalez; Markina, Nadezhda M.; Chepurnyh, Tatiana V.; Guglya, Elena B.; Karataeva, Tatiana A.; Palkina, Kseniia A.; Shakhova, Ekaterina S.; Fakhranurova, Liliia I.; Chekova, Sofia V.; Tsarkova, Aleksandra S.; Golubev, Yaroslav V.; Negrebetsky, Vadim V.; Dolgushin, Sergey A.; Shalaev, Pavel V.; Shlykov, Dmitry; Melnik, Olesya A.; Shipunova, Victoria O.; Deyev, Sergey M.; Bubyrev, Andrey I.; Pushin, Alexander S.; Choob, Vladimir V.; Dolgov, Sergey V.; Kondrashov, Fyodor A.; Yampolsky, Ilia V.; Sarkisyan, Karen S. (27 April 2020). "Plants with genetically encoded autoluminescence". Nature Biotechnology. 38 (8): 944–946. doi:10.1038/s41587-020-0500-9. PMC 7610436. PMID 32341562. S2CID 216559981.
  55. ^ "New technique makes thousands of semi-synthetic photosynthesis cells". New Atlas. 11 May 2020. Archived from the original on 25 May 2020. Retrieved 12 June 2020.
  56. ^ Barras, Colin (7 May 2020). "Cyber-spinach turns sunlight into sugar". Nature. doi:10.1038/d41586-020-01396-4. PMID 32393873. S2CID 218598753.
  57. ^ "Researchers develop an artificial chloroplast". phys.org. Archived from the original on 12 June 2020. Retrieved 12 June 2020.
  58. ^ Miller, Tarryn E.; Beneyton, Thomas; Schwander, Thomas; Diehl, Christoph; Girault, Mathias; McLean, Richard; Chotel, Tanguy; Claus, Peter; Cortina, Niña Socorro; Baret, Jean-Christophe; Erb, Tobias J. (8 May 2020). "Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts" (PDF). Science. 368 (6491): 649–654. Bibcode:2020Sci...368..649M. doi:10.1126/science.aaz6802. PMC 7610767. PMID 32381722. S2CID 218552008.
  59. ^ "Synthetic red blood cells mimic natural ones, and have new abilities". phys.org. Archived from the original on 13 June 2020. Retrieved 13 June 2020.
  60. ^ Guo, Jimin; Agola, Jacob Ongudi; Serda, Rita; Franco, Stefan; Lei, Qi; Wang, Lu; Minster, Joshua; Croissant, Jonas G.; Butler, Kimberly S.; Zhu, Wei; Brinker, C. Jeffrey (11 May 2020). "Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components". ACS Nano. 14 (7): 7847–7859. doi:10.1021/acsnano.9b08714. OSTI 1639054. PMID 32391687. S2CID 218584795.
  61. ^ Page, Michael Le. "Three people with inherited diseases successfully treated with CRISPR". New Scientist. Archived from the original on 26 June 2020. Retrieved 1 July 2020.
  62. ^ "More early data revealed from landmark CRISPR gene editing human trial". New Atlas. 17 June 2020. Archived from the original on 23 June 2020. Retrieved 1 July 2020.
  63. ^ "A Year In, 1st Patient To Get Gene Editing For Sickle Cell Disease Is Thriving". NPR.org. Archived from the original on 30 June 2020. Retrieved 1 July 2020.
  64. ^ "CRISPR Therapeutics and Vertex Announce New Clinical Data for Investigational Gene-Editing Therapy CTX001™ in Severe Hemoglobinopathies at the 25th Annual European Hematology Association (EHA) Congress | CRISPR Therapeutics". crisprtx.gcs-web.com. Archived from the original on 28 June 2020. Retrieved 1 July 2020.
  65. ^ "The powerhouses inside cells have been gene-edited for the first time". New Scientist. 8 July 2020. Archived from the original on 14 July 2020. Retrieved 12 July 2020.
  66. ^ Mok, Beverly Y.; de Moraes, Marcos H.; Zeng, Jun; Bosch, Dustin E.; Kotrys, Anna V.; Raguram, Aditya; Hsu, FoSheng; Radey, Matthew C.; Peterson, S. Brook; Mootha, Vamsi K.; Mougous, Joseph D.; Liu, David R. (July 2020). "A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing". Nature. 583 (7817): 631–637. Bibcode:2020Natur.583..631M. doi:10.1038/s41586-020-2477-4. ISSN 1476-4687. PMC 7381381. PMID 32641830.
  67. ^ a b "Spider silk made by photosynthetic bacteria". phys.org. Archived from the original on 7 August 2020. Retrieved 16 August 2020.
  68. ^ Foong, Choon Pin; Higuchi-Takeuchi, Mieko; Malay, Ali D.; Oktaviani, Nur Alia; Thagun, Chonprakun; Numata, Keiji (2020-07-08). "A marine photosynthetic microbial cell factory as a platform for spider silk production". Communications Biology. Springer Science and Business Media LLC. 3 (1): 357. doi:10.1038/s42003-020-1099-6. ISSN 2399-3642. PMC 7343832. PMID 32641733.   Text and images are available under a Creative Commons Attribution 4.0 International License Archived 2017-10-16 at the Wayback Machine.
  69. ^ "Brain benefits of exercise can be gained with a single protein". medicalxpress.com. Archived from the original on 20 August 2020. Retrieved 18 August 2020.
  70. ^ Horowitz, Alana M.; Fan, Xuelai; Bieri, Gregor; Smith, Lucas K.; Sanchez-Diaz, Cesar I.; Schroer, Adam B.; Gontier, Geraldine; Casaletto, Kaitlin B.; Kramer, Joel H.; Williams, Katherine E.; Villeda, Saul A. (10 July 2020). "Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain". Science. 369 (6500): 167–173. Bibcode:2020Sci...369..167H. doi:10.1126/science.aaw2622. ISSN 0036-8075. PMC 7879650. PMID 32646997. S2CID 220428681.
  71. ^ "Researchers discover 2 paths of aging and new insights on promoting healthspan". phys.org. Archived from the original on 13 August 2020. Retrieved 17 August 2020.
  72. ^ Li, Yang; Jiang, Yanfei; Paxman, Julie; o'Laughlin, Richard; Klepin, Stephen; Zhu, Yuelian; Pillus, Lorraine; Tsimring, Lev S.; Hasty, Jeff; Hao, Nan (2020). "A programmable fate decision landscape underliessingle-cell aging in yeast". Science. 369 (6501): 325–329. Bibcode:2020Sci...369..325L. doi:10.1126/science.aax9552. PMC 7437498. PMID 32675375.
  73. ^ "Machine learning reveals recipe for building artificial proteins". phys.org. Archived from the original on 3 August 2020. Retrieved 17 August 2020.
  74. ^ Russ, William P.; Figliuzzi, Matteo; Stocker, Christian; Barrat-Charlaix, Pierre; Socolich, Michael; Kast, Peter; Hilvert, Donald; Monasson, Remi; Cocco, Simona; Weigt, Martin; Ranganathan, Rama (2020). "An evolution-based model for designing chorismatemutase enzymes". Science. 369 (6502): 440–445. Bibcode:2020Sci...369..440R. doi:10.1126/science.aba3304. PMID 32703877. S2CID 220714458.
  75. ^ "Quest - Article - UPDATE: ACE-031 Clinical Trials in Duchenne MD". Muscular Dystrophy Association. 6 January 2016. Archived from the original on 21 September 2020. Retrieved 16 October 2020.
  76. ^ Attie, Kenneth M.; Borgstein, Niels G.; Yang, Yijun; Condon, Carolyn H.; Wilson, Dawn M.; Pearsall, Amelia E.; Kumar, Ravi; Willins, Debbie A.; Seehra, Jas S.; Sherman, Matthew L. (2013). "A single ascending-dose study of muscle regulator ace-031 in healthy volunteers". Muscle & Nerve. 47 (3): 416–423. doi:10.1002/mus.23539. ISSN 1097-4598. PMID 23169607. S2CID 19956237. Retrieved 16 October 2020.
  77. ^ "'Mighty mice' stay musclebound in space, boon for astronauts". phys.org. Archived from the original on 1 October 2020. Retrieved 8 October 2020.
  78. ^ Lee, Se-Jin; Lehar, Adam; Meir, Jessica U.; Koch, Christina; Morgan, Andrew; Warren, Lara E.; Rydzik, Renata; Youngstrom, Daniel W.; Chandok, Harshpreet; George, Joshy; Gogain, Joseph; Michaud, Michael; Stoklasek, Thomas A.; Liu, Yewei; Germain-Lee, Emily L. (22 September 2020). "Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight". Proceedings of the National Academy of Sciences. 117 (38): 23942–23951. doi:10.1073/pnas.2014716117. ISSN 0027-8424. PMC 7519220. PMID 32900939.
  79. ^ "Biologists create new genetic systems to neutralize gene drives". phys.org. Archived from the original on 9 October 2020. Retrieved 8 October 2020.
  80. ^ Xu, Xiang-Ru Shannon; Bulger, Emily A.; Gantz, Valentino M.; Klanseck, Carissa; Heimler, Stephanie R.; Auradkar, Ankush; Bennett, Jared B.; Miller, Lauren Ashley; Leahy, Sarah; Juste, Sara Sanz; Buchman, Anna; Akbari, Omar S.; Marshall, John M.; Bier, Ethan (18 September 2020). "Active Genetic Neutralizing Elements for Halting or Deleting Gene Drives". Molecular Cell. 80 (2): 246–262.e4. doi:10.1016/j.molcel.2020.09.003. ISSN 1097-2765. PMID 32949493. S2CID 221806864. Archived from the original on 14 October 2020. Retrieved 8 October 2020.
  81. ^ Carrington, Damian (28 September 2020). "New super-enzyme eats plastic bottles six times faster". The Guardian. Archived from the original on 12 October 2020. Retrieved 12 October 2020.
  82. ^ "Plastic-eating enzyme 'cocktail' heralds new hope for plastic waste". phys.org. Archived from the original on 11 October 2020. Retrieved 12 October 2020.
  83. ^ Knott, Brandon C.; Erickson, Erika; Allen, Mark D.; Gado, Japheth E.; Graham, Rosie; Kearns, Fiona L.; Pardo, Isabel; Topuzlu, Ece; Anderson, Jared J.; Austin, Harry P.; Dominick, Graham; Johnson, Christopher W.; Rorrer, Nicholas A.; Szostkiewicz, Caralyn J.; Copié, Valérie; Payne, Christina M.; Woodcock, H. Lee; Donohoe, Bryon S.; Beckham, Gregg T.; McGeehan, John E. (24 September 2020). "Characterization and engineering of a two-enzyme system for plastics depolymerization". Proceedings of the National Academy of Sciences. 117 (41): 25476–25485. doi:10.1073/pnas.2006753117. ISSN 0027-8424. PMC 7568301. PMID 32989159.   Text and images are available under a Creative Commons Attribution 4.0 International License Archived 2017-10-16 at the Wayback Machine.
  84. ^ Wu, Katherine J.; Peltier, Elian (7 October 2020). "Nobel Prize in Chemistry Awarded to 2 Scientists for Work on Genome Editing - Emmanuelle Charpentier and Jennifer A. Doudna developed the Crispr tool, which can alter the DNA of animals, plants and microorganisms with high precision". The New York Times. Archived from the original on 8 October 2020. Retrieved 7 October 2020.
  85. ^ a b Cockell, Charles S.; Santomartino, Rosa; Finster, Kai; Waajen, Annemiek C.; Eades, Lorna J.; Moeller, Ralf; Rettberg, Petra; Fuchs, Felix M.; Van Houdt, Rob; Leys, Natalie; Coninx, Ilse; Hatton, Jason; Parmitano, Luca; Krause, Jutta; Koehler, Andrea; Caplin, Nicol; Zuijderduijn, Lobke; Mariani, Alessandro; Pellari, Stefano S.; Carubia, Fabrizio; Luciani, Giacomo; Balsamo, Michele; Zolesi, Valfredo; Nicholson, Natasha; Loudon, Claire-Marie; Doswald-Winkler, Jeannine; Herová, Magdalena; Rattenbacher, Bernd; Wadsworth, Jennifer; Craig Everroad, R.; Demets, René (10 November 2020). "Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity". Nature Communications. 11 (1): 5523. Bibcode:2020NatCo..11.5523C. doi:10.1038/s41467-020-19276-w. ISSN 2041-1723. PMC 7656455. PMID 33173035.   Available under CC BY 4.0 Archived 2017-10-16 at the Wayback Machine.
  86. ^ Crane, Leah. "Asteroid-munching microbes could mine materials from space rocks". New Scientist. Archived from the original on 7 December 2020. Retrieved 9 December 2020.
  87. ^ "TAU breakthrough may increase life expectancy in brain and ovarian cancers". Tel Aviv University. 18 November 2020. Archived from the original on 22 November 2020. Retrieved 23 November 2020.
  88. ^ Rosenblum, Daniel; Gutkin, Anna; Kedmi, Ranit; Ramishetti, Srinivas; Veiga, Nuphar; Jacobi, Ashley M.; Schubert, Mollie S.; Friedmann-Morvinski, Dinorah; Cohen, Zvi R.; Behlke, Mark A.; Lieberman, Judy; Peer, Dan (1 November 2020). "CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy". Science Advances. 6 (47): eabc9450. Bibcode:2020SciA....6.9450R. doi:10.1126/sciadv.abc9450. ISSN 2375-2548. PMC 7673804. PMID 33208369. S2CID 227068531.
  89. ^ a b "Research creates hydrogen-producing living droplets, paving way for alternative future energy source". phys.org. Archived from the original on 16 December 2020. Retrieved 9 December 2020.
  90. ^ Xu, Zhijun; Wang, Shengliang; Zhao, Chunyu; Li, Shangsong; Liu, Xiaoman; Wang, Lei; Li, Mei; Huang, Xin; Mann, Stephen (25 November 2020). "Photosynthetic hydrogen production by droplet-based microbial micro-reactors under aerobic conditions". Nature Communications. 11 (1): 5985. doi:10.1038/s41467-020-19823-5. ISSN 2041-1723. PMC 7689460. PMID 33239636.   Available under CC BY 4.0 Archived 2017-10-16 at the Wayback Machine.
  91. ^ a b "One of biology's biggest mysteries 'largely solved' by AI". BBC News. 30 November 2020. Archived from the original on 30 November 2020. Retrieved 30 November 2020.
  92. ^ "DeepMind AI cracks 50-year-old problem of protein folding". The Guardian. 30 November 2020. Archived from the original on 30 November 2020. Retrieved 30 November 2020.
  93. ^ "AlphaFold: a solution to a 50-year-old grand challenge in biology". DeepMind. 30 November 2020. Archived from the original on 30 November 2020. Retrieved 30 November 2020.
  94. ^ Shanker, Deena (October 22, 2019). "These $50 Chicken Nuggets Were Grown in a Lab". Bloomberg.com. Archived from the original on February 25, 2020. Retrieved February 27, 2020.
  95. ^ Corbyn, Zoë (January 19, 2020). "Out of the lab and into your frying pan: the advance of cultured meat". the Guardian. Archived from the original on February 11, 2020. Retrieved February 27, 2020.
  96. ^ Ives, Mike (2 December 2020). "Singapore Approves a Lab-Grown Meat Product, a Global First". The New York Times. Archived from the original on 22 January 2021. Retrieved 16 January 2021.
  97. ^ "Scientists build whole functioning thymus from human cells". Francis Crick Institute. 11 December 2020. Archived from the original on 14 December 2020. Retrieved 14 December 2020.
  98. ^ Campinoti, Sara; Gjinovci, Asllan; Ragazzini, Roberta; Zanieri, Luca; Ariza-McNaughton, Linda; Catucci, Marco; Boeing, Stefan; Park, Jong-Eun; Hutchinson, John C.; Muñoz-Ruiz, Miguel; Manti, Pierluigi G.; Vozza, Gianluca; Villa, Carlo E.; Phylactopoulos, Demetra-Ellie; Maurer, Constance; Testa, Giuseppe; Stauss, Hans J.; Teichmann, Sarah A.; Sebire, Neil J.; Hayday, Adrian C.; Bonnet, Dominique; Bonfanti, Paola (11 December 2020). "Reconstitution of a functional human thymus by postnatal stromal progenitor cells and natural whole-organ scaffolds". Nature Communications. 11 (1): 6372. Bibcode:2020NatCo..11.6372C. doi:10.1038/s41467-020-20082-7. ISSN 2041-1723. PMC 7732825. PMID 33311516.   Available under CC BY 4.0 Archived 2017-10-16 at the Wayback Machine.
  99. ^ "Gene-editing produces tenfold increase in superbug slaying antibiotics". EurekAlert!. 12 January 2021. Archived from the original on 13 January 2021. Retrieved 13 January 2021.
  100. ^ Devine, Rebecca; McDonald, Hannah P.; Qin, Zhiwei; Arnold, Corinne J.; Noble, Katie; Chandra, Govind; Wilkinson, Barrie; Hutchings, Matthew I. (12 January 2021). "Re-wiring the regulation of the formicamycin biosynthetic gene cluster to enable the development of promising antibacterial compounds". Cell Chemical Biology. 28 (4): 515–523.e5. doi:10.1016/j.chembiol.2020.12.011. ISSN 2451-9456. PMC 8062789. PMID 33440167.
  101. ^ "Scientists use lipid nanoparticles to precisely target gene editing to the liver". EurekAlert!. 1 March 2021. Retrieved 2 March 2021.
  102. ^ Qiu, Min; Glass, Zachary; Chen, Jinjin; Haas, Mary; Jin, Xin; Zhao, Xuewei; Rui, Xuehui; Ye, Zhongfeng; Li, Yamin; Zhang, Feng; Xu, Qiaobing (9 March 2021). "Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3". Proceedings of the National Academy of Sciences. 118 (10): e2020401118. doi:10.1073/pnas.2020401118. ISSN 0027-8424. PMC 7958351. PMID 33649229.
  103. ^ "Unique CRISPR gene therapy offers opioid-free chronic pain treatment". New Atlas. 11 March 2021. Retrieved 18 April 2021.
  104. ^ Moreno, Ana M.; Alemán, Fernando; Catroli, Glaucilene F.; Hunt, Matthew; Hu, Michael; Dailamy, Amir; Pla, Andrew; Woller, Sarah A.; Palmer, Nathan; Parekh, Udit; McDonald, Daniella; Roberts, Amanda J.; Goodwill, Vanessa; Dryden, Ian; Hevner, Robert F.; Delay, Lauriane; Santos, Gilson Gonçalves dos; Yaksh, Tony L.; Mali, Prashant (10 March 2021). "Long-lasting analgesia via targeted in situ repression of NaV1.7 in mice". Science Translational Medicine. 13 (584): eaay9056. doi:10.1126/scitranslmed.aay9056. ISSN 1946-6234. PMID 33692134. S2CID 232170826. Retrieved 18 April 2021.
  105. ^ Bowler, Jacinta (16 March 2021). "Microbes Unknown to Science Discovered on The International Space Station". ScienceAlert. Retrieved 16 March 2021.
  106. ^ Bijlani, Swati; Singh, Nitin K.; Eedara, V. V. Ramprasad; Podile, Appa Rao; Mason, Christopher E.; Wang, Clay C. C.; Venkateswaran, Kasthuri (2021). "Methylobacterium ajmalii sp. nov., Isolated From the International Space Station". Frontiers in Microbiology. 12: 639396. doi:10.3389/fmicb.2021.639396. ISSN 1664-302X. PMC 8005752. PMID 33790880.   Available under CC BY 4.0.
  107. ^ Lewis, Tanya. "Slovakia Offers a Lesson in How Rapid Testing Can Fight COVID". Scientific American. Retrieved 19 April 2021.
  108. ^ Pavelka, Martin; Van-Zandvoort, Kevin; Abbott, Sam; Sherratt, Katharine; Majdan, Marek; Group5, CMMID COVID-19 working; Analýz, Inštitút Zdravotných; Jarčuška, Pavol; Krajčí, Marek; Flasche, Stefan; Funk, Sebastian (23 March 2021). "The impact of population-wide rapid antigen testing on SARS-CoV-2 prevalence in Slovakia". Science. 372 (6542): 635–641. Bibcode:2021Sci...372..635P. doi:10.1126/science.abf9648. ISSN 0036-8075. PMC 8139426. PMID 33758017.
  109. ^ "A third of global farmland at 'high' pesticide pollution risk". phys.org. Retrieved 22 April 2021.
  110. ^ Tang, Fiona H. M.; Lenzen, Manfred; McBratney, Alexander; Maggi, Federico (April 2021). "Risk of pesticide pollution at the global scale". Nature Geoscience. 14 (4): 206–210. Bibcode:2021NatGe..14..206T. doi:10.1038/s41561-021-00712-5. ISSN 1752-0908.
  111. ^ "New, reversible CRISPR method can control gene expression while leaving underlying DNA sequence unchanged". phys.org. Retrieved 10 May 2021.
  112. ^ Nuñez, James K.; Chen, Jin; Pommier, Greg C.; Cogan, J. Zachery; Replogle, Joseph M.; Adriaens, Carmen; Ramadoss, Gokul N.; Shi, Quanming; Hung, King L.; Samelson, Avi J.; Pogson, Angela N.; Kim, James Y. S.; Chung, Amanda; Leonetti, Manuel D.; Chang, Howard Y.; Kampmann, Martin; Bernstein, Bradley E.; Hovestadt, Volker; Gilbert, Luke A.; Weissman, Jonathan S. (29 April 2021). "Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing". Cell. 184 (9): 2503–2519.e17. doi:10.1016/j.cell.2021.03.025. ISSN 0092-8674. PMC 8376083. PMID 33838111. Retrieved 10 May 2021.
  113. ^ Subbaraman, Nidhi (15 April 2021). "First monkey–human embryos reignite debate over hybrid animals - The chimaeras lived up to 19 days — but some scientists question the need for such research". Nature. Retrieved 16 April 2021.
  114. ^ Wells, Sarah (15 April 2021). "Researchers Generate Human-Monkey Chimeric Embryos - Don't worry, there are not human-monkey babies — yet". Inverse. Retrieved 16 April 2021.
  115. ^ Tan, Tao; et al. (15 April 2021). "Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo". cell. 184 (8): 2020–2032.e14. doi:10.1016/j.cell.2021.03.020. ISSN 0092-8674. PMID 33861963. S2CID 233247345. Retrieved 16 April 2021.
  116. ^ "Malaria vaccine hailed as potential breakthrough". BBC News. April 23, 2021. Retrieved April 23, 2021.
  117. ^ Datoo, Mehreen S.; Natama, Magloire H.; Somé, Athanase; Traoré, Ousmane; Rouamba, Toussaint; Bellamy, Duncan; Yameogo, Prisca; Valia, Daniel; Tegneri, Moubarak; Ouedraogo, Florence; Soma, Rachidatou; Sawadogo, Seydou; Sorgho, Faizatou; Derra, Karim; Rouamba, Eli; Orindi, Benedict; Lopez, Fernando Ramos; Flaxman, Amy; Cappuccini, Federica; Kailath, Reshma; Elias, Sean; Mukhopadhyay, Ekta; Noe, Andres; Cairns, Matthew; Lawrie, Alison; Roberts, Rachel; Valéa, Innocent; Sorgho, Hermann; Williams, Nicola; Glenn, Gregory; Fries, Louis; Reimer, Jenny; Ewer, Katie J.; Shaligram, Umesh; Hill, Adrian V. S.; Tinto, Halidou (5 May 2021). "Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial". The Lancet. 397 (10287): 1809–1818. doi:10.1016/S0140-6736(21)00943-0. ISSN 0140-6736. PMC 8121760. PMID 33964223.   Available under CC BY 4.0.
  118. ^ "Scientists Gene-Hacked Monkeys to Fix Their Cholesterol". Futurism. Retrieved 13 June 2021.
  119. ^ Musunuru, Kiran; et al. (May 2021). "In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates". Nature. 593 (7859): 429–434. Bibcode:2021Natur.593..429M. doi:10.1038/s41586-021-03534-y. ISSN 1476-4687. PMID 34012082. S2CID 234790939. Retrieved 13 June 2021.
  120. ^ Zimmer, Carl (2021-05-24). "Scientists Partially Restored a Blind Man's Sight With New Gene Therapy". The New York Times. Retrieved 13 June 2021.
  121. ^ Sahel, José-Alain; Boulanger-Scemama, Elise; Pagot, Chloé; Arleo, Angelo; Galluppi, Francesco; Martel, Joseph N.; Esposti, Simona Degli; Delaux, Alexandre; de Saint Aubert, Jean-Baptiste; de Montleau, Caroline; Gutman, Emmanuel; Audo, Isabelle; Duebel, Jens; Picaud, Serge; Dalkara, Deniz; Blouin, Laure; Taiel, Magali; Roska, Botond (2021-05-24). "Partial recovery of visual function in a blind patient after optogenetic therapy". Nature Medicine. 27 (7): 1223–1229. doi:10.1038/s41591-021-01351-4. ISSN 1546-170X. PMID 34031601.
  122. ^ "Resetting the biological clock by flipping a switch". phys.org. Retrieved 14 June 2021.
  123. ^ Kolarski, Dušan; Miró-Vinyals, Carla; Sugiyama, Akiko; Srivastava, Ashutosh; Ono, Daisuke; Nagai, Yoshiko; Iida, Mui; Itami, Kenichiro; Tama, Florence; Szymanski, Wiktor; Hirota, Tsuyoshi; Feringa, Ben L. (2021-05-26). "Reversible modulation of circadian time with chronophotopharmacology". Nature Communications. 12 (1): 3164. Bibcode:2021NatCo..12.3164K. doi:10.1038/s41467-021-23301-x. ISSN 2041-1723. PMC 8155176. PMID 34039965.   Available under CC BY 4.0.
  124. ^ Baylor College of Medicine (29 May 2021). "Biologists Construct a "Periodic Table" for Cell Nuclei – And Discover Something Strange, Baffling and Unexpected". ScioTechDaily. Retrieved 29 May 2021.
  125. ^ Hoencamp, Claire; et al. (28 May 2021). "3D genomics across the tree of life reveals condensin II as a determinant of architecture type". Science. 372 (6545): 984–989. doi:10.1126/science.abe2218. PMC 8172041. PMID 34045355. Retrieved 29 May 2021.
  126. ^ "'Vegan spider silk' provides sustainable alternative to single-use plastics". phys.org. Retrieved 11 July 2021.
  127. ^ Kamada, Ayaka; Rodriguez-Garcia, Marc; Ruggeri, Francesco Simone; Shen, Yi; Levin, Aviad; Knowles, Tuomas P. J. (10 June 2021). "Controlled self-assembly of plant proteins into high-performance multifunctional nanostructured films". Nature Communications. 12 (1): 3529. Bibcode:2021NatCo..12.3529K. doi:10.1038/s41467-021-23813-6. ISSN 2041-1723. PMC 8192951. PMID 34112802.
  128. ^ KaiserJun. 26, Jocelyn (26 June 2021). "CRISPR injected into the blood treats a genetic disease for first time". Science | AAAS. Retrieved 11 July 2021.
  129. ^ Gillmore, Julian D.; Gane, Ed; Taubel, Jorg; Kao, Justin; Fontana, Marianna; Maitland, Michael L.; Seitzer, Jessica; O’Connell, Daniel; Walsh, Kathryn R.; Wood, Kristy; Phillips, Jonathan; Xu, Yuanxin; Amaral, Adam; Boyd, Adam P.; Cehelsky, Jeffrey E.; McKee, Mark D.; Schiermeier, Andrew; Harari, Olivier; Murphy, Andrew; Kyratsous, Christos A.; Zambrowicz, Brian; Soltys, Randy; Gutstein, David E.; Leonard, John; Sepp-Lorenzino, Laura; Lebwohl, David (26 June 2021). "CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis". New England Journal of Medicine. 385 (6): 493–502. doi:10.1056/NEJMoa2107454. PMID 34215024. S2CID 235722446. Retrieved 11 July 2021.
  130. ^ "Face masks that can diagnose COVID-19". medicalxpress.com. Retrieved 11 July 2021.
  131. ^ Nguyen, Peter Q.; Soenksen, Luis R.; Donghia, Nina M.; Angenent-Mari, Nicolaas M.; de Puig, Helena; Huang, Ally; Lee, Rose; Slomovic, Shimyn; Galbersanini, Tommaso; Lansberry, Geoffrey; Sallum, Hani M.; Zhao, Evan M.; Niemi, James B.; Collins, James J. (28 June 2021). "Wearable materials with embedded synthetic biology sensors for biomolecule detection". Nature Biotechnology. 39 (11): 1366–1374. doi:10.1038/s41587-021-00950-3. ISSN 1546-1696. PMID 34183860. S2CID 235673261.
  132. ^ "Growing food with air and solar power: More efficient than planting crops". phys.org. Retrieved 11 July 2021.
  133. ^ Leger, Dorian; Matassa, Silvio; Noor, Elad; Shepon, Alon; Milo, Ron; Bar-Even, Arren (29 June 2021). "Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops". Proceedings of the National Academy of Sciences. 118 (26): e2015025118. doi:10.1073/pnas.2015025118. ISSN 0027-8424. PMC 8255800. PMID 34155098. S2CID 235595143.
  134. ^ Spary, Sara. "Cows' stomachs can break down plastic, study finds". CNN. Retrieved 14 August 2021.
  135. ^ Quartinello, Felice; Kremser, Klemens; Schoen, Herta; Tesei, Donatella; Ploszczanski, Leon; Nagler, Magdalena; Podmirseg, Sabine M.; Insam, Heribert; Piñar, Guadalupe; Sterflingler, Katja; Ribitsch, Doris; Guebitz, Georg M. (2021). "Together Is Better: The Rumen Microbial Community as Biological Toolbox for Degradation of Synthetic Polyesters". Frontiers in Bioengineering and Biotechnology. 9. doi:10.3389/fbioe.2021.684459. ISSN 2296-4185.
  136. ^ "Scientists developing contraceptive that stops sperm in its tracks". ScienceDaily. Retrieved 21 September 2021.
  137. ^ Shrestha, Bhawana; Schaefer, Alison; Zhu, Yong; Saada, Jamal; Jacobs, Timothy M.; Chavez, Elizabeth C.; Omsted, Stuart S.; Cruz-Teran, Carlos A.; Vaca, Gabriela Baldeon; Vincent, Kathleen; Moench, Thomas R.; Lai, Samuel K. (11 August 2021). "Engineering sperm-binding IgG antibodies for the development of an effective nonhormonal female contraception". Science Translational Medicine. 13 (606). doi:10.1126/scitranslmed.abd5219. PMID 34380769. S2CID 236979903.
  138. ^ "Probiotics help lab corals survive deadly heat stress". Science News. 13 August 2021. Retrieved 22 September 2021.
  139. ^ Santoro, Erika P.; Borges, Ricardo M.; Espinoza, Josh L.; Freire, Marcelo; Messias, Camila S. M. A.; Villela, Helena D. M.; Pereira, Leandro M.; Vilela, Caren L. S.; Rosado, João G.; Cardoso, Pedro M.; Rosado, Phillipe M.; Assis, Juliana M.; Duarte, Gustavo A. S.; Perna, Gabriela; Rosado, Alexandre S.; Macrae, Andrew; Dupont, Christopher L.; Nelson, Karen E.; Sweet, Michael J.; Voolstra, Christian R.; Peixoto, Raquel S. (August 2021). "Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality". Science Advances. 7 (33). Bibcode:2021SciA....7.3088S. doi:10.1126/sciadv.abg3088. hdl:10754/670602. PMC 8363143. PMID 34389536.
  140. ^ "Japanese scientists produce first 3D-bioprinted, marbled Wagyu beef". New Atlas. 25 August 2021. Retrieved 21 September 2021.
  141. ^ Kang, Dong-Hee; Louis, Fiona; Liu, Hao; Shimoda, Hiroshi; Nishiyama, Yasutaka; Nozawa, Hajime; Kakitani, Makoto; Takagi, Daisuke; Kasa, Daijiro; Nagamori, Eiji; Irie, Shinji; Kitano, Shiro; Matsusaki, Michiya (24 August 2021). "Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting". Nature Communications. 12 (1): 5059. Bibcode:2021NatCo..12.5059K. doi:10.1038/s41467-021-25236-9. ISSN 2041-1723. PMC 8385070. PMID 34429413.
  142. ^ "Researchers develop an engineered 'mini' CRISPR genome editing system". phys.org. Retrieved 18 October 2021.
  143. ^ Xu, Xiaoshu; Chemparathy, Augustine; Zeng, Leiping; Kempton, Hannah R.; Shang, Stephen; Nakamura, Muneaki; Qi, Lei S. (3 September 2021). "Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing". Molecular Cell. 81 (20): 4333–4345.e4. doi:10.1016/j.molcel.2021.08.008. ISSN 1097-2765. PMID 34480847. S2CID 237417317.
  144. ^ a b Lavars, Nick (20 September 2021). "Lab-grown coffee cuts out the beans and deforestation". New Atlas. Retrieved 18 October 2021.
  145. ^ a b "Eco-friendly, lab-grown coffee is on the way, but it comes with a catch". The Guardian. 16 October 2021. Retrieved 21 November 2021.
  146. ^ "Sustainable coffee grown in Finland – | VTT News". www.vttresearch.com. Retrieved 18 October 2021.
  147. ^ "World-first artificial synthesis of starch from CO2 outperforms nature". New Atlas. 28 September 2021. Retrieved 18 October 2021.
  148. ^ Cai, Tao; Sun, Hongbing; Qiao, Jing; Zhu, Leilei; Zhang, Fan; Zhang, Jie; Tang, Zijing; Wei, Xinlei; Yang, Jiangang; Yuan, Qianqian; Wang, Wangyin; Yang, Xue; Chu, Huanyu; Wang, Qian; You, Chun; Ma, Hongwu; Sun, Yuanxia; Li, Yin; Li, Can; Jiang, Huifeng; Wang, Qinhong; Ma, Yanhe (24 September 2021). "Cell-free chemoenzymatic starch synthesis from carbon dioxide". Science. 373 (6562): 1523–1527. Bibcode:2021Sci...373.1523C. doi:10.1126/science.abh4049. PMID 34554807. S2CID 237615280.
  149. ^ Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S.; Alkemade, Anneke; Forstmann, Birte U.; Nieuwenhuis, Sander (6 October 2015). "Neurotransmitters as food supplements: the effects of GABA on brain and behavior". Frontiers in Psychology. 6: 1520. doi:10.3389/fpsyg.2015.01520. PMC 4594160. PMID 26500584.
  150. ^ "Tomato In Japan Is First CRISPR-Edited Food In The World To Go On Sale". IFLScience. Retrieved 18 October 2021.
  151. ^ Wang, Tian; Zhang, Hongyan; Zhu, Hongliang (15 June 2019). "CRISPR technology is revolutionizing the improvement of tomato and other fruit crops". Horticulture Research. 6 (1): 77. doi:10.1038/s41438-019-0159-x. ISSN 2052-7276. PMC 6570646. PMID 31240102.
  152. ^ Yirka, Bob. "Reprogramming heart muscle cells to repair damage from heart attacks". medicalxpress.com. Retrieved 20 October 2021.
  153. ^ Chen, Yanpu; Lüttmann, Felipe F.; Schoger, Eric; Schöler, Hans R.; Zelarayán, Laura C.; Kim, Kee-Pyo; Haigh, Jody J.; Kim, Johnny; Braun, Thomas (24 September 2021). "Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice". Science. 373 (6562): 1537–1540. Bibcode:2021Sci...373.1537C. doi:10.1126/science.abg5159. ISSN 0036-8075. PMID 34554778. S2CID 237617229.
  154. ^ "WHO endorses use of world's first malaria vaccine in Africa". The Guardian. 2021-10-08. Retrieved 2021-10-14.
  155. ^ "New, environmentally friendly method to extract and separate rare earth elements". Penn State. 2021-10-08. Retrieved 2021-10-14.
  156. ^ Dong, Ziye; Mattocks, Joseph A.; Deblonde, Gauthier J.-P.; Hu, Dehong; Jiao, Yongqin; Cotruvo, Joseph A.; Park, Dan M. (8 October 2021). "Bridging Hydrometallurgy and Biochemistry: A Protein-Based Process for Recovery and Separation of Rare Earth Elements". ACS Central Science. 7 (11): 1798–1808. doi:10.1021/acscentsci.1c00724. ISSN 2374-7943. PMC 8614107. PMID 34841054.
  157. ^ "What does the first successful test of a pig-to-human kidney transplant mean?". Science News. 22 October 2021. Retrieved 15 November 2021.
  158. ^ "Progress in Xenotransplantation Opens Door to New Supply of Critically Needed Organs". NYU Langone News. Retrieved 15 November 2021.
  159. ^ "A chewing gum that could reduce SARS-CoV-2 transmission". University of Pennsylvania. Retrieved 13 December 2021.
  160. ^ Daniell, Henry; Nair, Smruti K.; Esmaeili, Nardana; Wakade, Geetanjali; Shahid, Naila; Ganesan, Prem Kumar; Islam, Md Reyazul; Shepley-McTaggart, Ariel; Feng, Sheng; Gary, Ebony N.; Ali, Ali R.; Nuth, Manunya; Cruz, Selene Nunez; Graham-Wooten, Jevon; Streatfield, Stephen J.; Montoya-Lopez, Ruben; Kaznica, Paul; Mawson, Margaret; Green, Brian J.; Ricciardi, Robert; Milone, Michael; Harty, Ronald N.; Wang, Ping; Weiner, David B.; Margulies, Kenneth B.; Collman, Ronald G. (10 November 2021). "Debulking SARS-CoV-2 in saliva using angiotensin converting enzyme 2 in chewing gum to decrease oral virus transmission and infection". Molecular Therapy. doi:10.1016/j.ymthe.2021.11.008. ISSN 1525-0016. PMC 8580552. PMID 34774754.
  161. ^ "Therapy used on mice may transform spinal injury treatments, say scientists". The Guardian. 11 November 2021. Retrieved 11 December 2021.
  162. ^ University. "'Dancing molecules' successfully repair severe spinal cord injuries in mice". Northwestern University. Retrieved 11 December 2021.
  163. ^ Álvarez, Z.; Kolberg-Edelbrock, A. N.; Sasselli, I. R.; Ortega, J. A.; Qiu, R.; Syrgiannis, Z.; Mirau, P. A.; Chen, F.; Chin, S. M.; Weigand, S.; Kiskinis, E.; Stupp, S. I. (12 November 2021). "Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury". Science. 374 (6569): 848–856. Bibcode:2021Sci...374..848A. doi:10.1126/science.abh3602. ISSN 0036-8075. PMID 34762454. S2CID 244039388.
  164. ^ "Antibiotic resistance outwitted by supercomputers". University of Portsmouth. Retrieved 13 December 2021.
  165. ^ König, Gerhard; Sokkar, Pandian; Pryk, Niclas; Heinrich, Sascha; Möller, David; Cimicata, Giuseppe; Matzov, Donna; Dietze, Pascal; Thiel, Walter; Bashan, Anat; Bandow, Julia Elisabeth; Zuegg, Johannes; Yonath, Ada; Schulz, Frank; Sanchez-Garcia, Elsa (16 November 2021). "Rational prioritization strategy allows the design of macrolide derivatives that overcome antibiotic resistance". Proceedings of the National Academy of Sciences. 118 (46): e2113632118. doi:10.1073/pnas.2113632118. ISSN 0027-8424. PMC 8609559. PMID 34750269.
  166. ^ Hathaway, Bill. "Novel Lyme vaccine shows promise". Yale University. Retrieved 13 December 2021. Compared to non-immunized guinea pigs, vaccinated animals exposed to infected ticks quickly developed redness at the tick bite site. None of the immunized animals developed Lyme disease if ticks were removed when redness developed. In contrast, about half of the control group became infected with B. burgdorferi after tick removal. When a single infected tick was attached to immunized guinea pigs and not removed, none of vaccinated animals were infected compared to 60 percent of control animals. However, protection waned in immunized guinea pigs if three ticks remained attached to the animal. Ticks in immunized animals were unable to feed aggressively and dislodged more quickly than those on guinea pigs in the control group.
  167. ^ Sajid, Andaleeb; Matias, Jaqueline; Arora, Gunjan; Kurokawa, Cheyne; DePonte, Kathleen; Tang, Xiaotian; Lynn, Geoffrey; Wu, Ming-Jie; Pal, Utpal; Strank, Norma Olivares; Pardi, Norbert; Narasimhan, Sukanya; Weissman, Drew; Fikrig, Erol (2021). "mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent". Science Translational Medicine. 13 (620): eabj9827. doi:10.1126/scitranslmed.abj9827. PMID 34788080. S2CID 244375227.
  168. ^ Wipulasena, Aanya; Mashal, Mujib (7 December 2021). "Sri Lanka's Plunge Into Organic Farming Brings Disaster". The New York Times. Retrieved 13 December 2021.
  169. ^ "Sri Lanka ends farm chemical ban as organic drive fails". phys.org. Retrieved 13 December 2021.
  170. ^ "Team Builds First Living Robots That Can Reproduce". November 29, 2021. Retrieved December 1, 2021.
  171. ^ Kriegman, Sam; Blackiston, Douglas; Levin, Michael; Bongard, Josh (7 December 2021). "Kinematic self-replication in reconfigurable organisms". Proceedings of the National Academy of Sciences. 118 (49): e2112672118. doi:10.1073/pnas.2112672118. ISSN 0027-8424. PMID 34845026. S2CID 244769761.