Open main menu

Wikipedia β

DeepMind Technologies Limited is a British artificial intelligence company founded in September 2010.

DeepMind Technologies Limited
DeepMind logo.png
Type of business Subsidiary
Founded 23 September 2010; 7 years ago (2010-09-23) [1]
6 Pancras Square,[2]
London N1C 4AG, UK
CEO Demis Hassabis
Industry Artificial Intelligence
Employees 700 (as of Dec 2017)[3]
Parent Independent (2010–2014)
Google Inc. (2014–present)
Alphabet Inc. (2015–present)

Acquired by Google in 2014, the company has created a neural network that learns how to play video games in a fashion similar to that of humans,[4] as well as a Neural Turing machine,[5] or a neural network that may be able to access an external memory like a conventional Turing machine, resulting in a computer that mimics the short-term memory of the human brain.[6][7]

The company made headlines in 2016 after its AlphaGo program beat a human professional Go player for the first time in October 2015[8] and again when AlphaGo beat Lee Sedol the world champion in a five-game match, which was the subject of a documentary film.[9]

A more generic program, AlphaZero, beat the most powerful programs playing go, chess and shogi (Japanese chess) after a few hours of play against itself using reinforcement learning.[10]



The start-up was founded by Demis Hassabis, Shane Legg and Mustafa Suleyman in 2010.[11][12] Hassabis and Legg first met at University College London's Gatsby Computational Neuroscience Unit.[13] On 26 January 2014, Google announced the company had acquired DeepMind for $500 million,[14][15][16][17][18][19] and that it had agreed to take over DeepMind Technologies.

Since then major venture capital firms Horizons Ventures and Founders Fund have invested in the company,[20] as well as entrepreneurs Scott Banister[21] and Elon Musk.[22] Jaan Tallinn was an early investor and an adviser to the company.[23] The sale to Google took place after Facebook reportedly ended negotiations with DeepMind Technologies in 2013.[24] The company was afterwards renamed Google DeepMind and kept that name for about two years.[2]

In 2014, DeepMind received the "Company of the Year" award by Cambridge Computer Laboratory.[25]

In September 2015, DeepMind and the Royal Free NHS Trust signed their initial Information Sharing Agreement (ISA) to co-develop a clinical task management app, Streams.[26]

After Google's acquisition the company established an artificial intelligence ethics board.[27] The ethics board for AI research remains a mystery, with both Google and DeepMind declining to reveal who sits on the board.[28] DeepMind, together with Amazon, Google, Facebook, IBM, and Microsoft, is a founding member of Partnership on AI, an organization devoted to the society-AI interface.[29] DeepMind has opened a new unit called DeepMind Ethics and Society and focused on the ethical and societal questions raised by artificial intelligence featuring prominent transhumanist Nick Bostrom as advisor.[30] In October 2017, Deepmind launched new 'ethics and society' research team to investigate AI ethics.[31][32]

Machine learningEdit

DeepMind Technologies' goal is to "solve intelligence",[33] which they are trying to achieve by combining "the best techniques from machine learning and systems neuroscience to build powerful general-purpose learning algorithms".[33] They are trying to formalize intelligence[34] in order to not only implement it into machines, but also understand the human brain, as Demis Hassabis explains:

[...] attempting to distil intelligence into an algorithmic construct may prove to be the best path to understanding some of the enduring mysteries of our minds.[35]

Google Research has released a paper in 2016 regarding AI Safety and avoiding undesirable behaviour during the AI learning process.[36] Deepmind has also released several publications via their website.[37] In 2017 DeepMind released GridWorld, an open-source testbed for evaluating whether an algorithm learns to disable its kill switch or otherwise exhibits certain undesirable behaviors.[38][39]

To date, the company has published research on computer systems that are able to play games, and developing these systems, ranging from strategy games such as Go[40] to arcade games. According to Shane Legg human-level machine intelligence can be achieved "when a machine can learn to play a really wide range of games from perceptual stream input and output, and transfer understanding across games[...]."[41] Research describing an AI playing seven different Atari 2600 video games (the Pong game in Video Olympics, Breakout, Space Invaders, Seaquest, Beamrider, Enduro, and Q*bert) reportedly led to their acquisition by Google.[4] Hassabis has mentioned the popular e-sport game StarCraft as a possible future challenge, since it requires a high level of strategic thinking and handling imperfect information.[42]

Deep reinforcement learningEdit

As opposed to other AIs, such as IBM's Deep Blue or Watson, which were developed for a pre-defined purpose and only function within its scope, DeepMind claims that their system is not pre-programmed: it learns from experience, using only raw pixels as data input. Technically it uses deep learning on a convolutional neural network, with a novel form of Q-learning, a form of model-free reinforcement learning.[2][43] They test the system on video games, notably early arcade games, such as Space Invaders or Breakout.[43][44] Without altering the code, the AI begins to understand how to play the game, and after some time plays, for a few games (most notably Breakout), a more efficient game than any human ever could.[44]

As of 2014, DeepMind played below the current World Record for most games, for example Space Invaders, Ms Pac-Man and Q*Bert. DeepMind's AI had been applied to video games made in the 1970s and 1980s; work was ongoing for more complex 3D games such as Doom, which first appeared in the early 1990s.[44]


In October 2015, a computer Go program called AlphaGo, developed by DeepMind, beat the European Go champion Fan Hui, a 2 dan (out of 9 dan possible) professional, five to zero.[45] This is the first time an artificial intelligence (AI) defeated a professional Go player.[8] Previously, computers were only known to have played Go at "amateur" level.[45][46] Go is considered much more difficult for computers to win compared to other games like chess, due to the much larger number of possibilities, making it prohibitively difficult for traditional AI methods such as brute-force.[45][46] In March 2016 it beat Lee Sedol—a 9th dan Go player and one of the highest ranked players in the world—with 4-1 in a five-game match. In the 2017 Future of Go Summit, AlphaGo won a three-game match with Ke Jie, who at the time continuously held the world No. 1 ranking for two years.[47][48] It used a supervised learning protocol, studying large numbers of games played by humans against each other.[49]

In 2017, an improved version, AlphaGo Zero, defeated AlphaGo 100 games to 0. AlphaGo Zero's strategies were self-taught. AlphaGo Zero was able to beat its predecessor after just three days with less processing power than AlphaZero; in comparison, the original AlphaGo needed months to learn how to play.[50]

Later that year, AlphaZero, a modified version of AlphaGo Zero, gained superhuman abilities at chess and shogi solely. Like AlphaGo Zero, AlphaZero learned through self-play.


AlphaGo used two deep neural networks: a policy network to evaluate move probabilities and a value network to assess positions. The policy network trained via supervised learning, and was subsequently refined by policy-gradient reinforcement learning. The value network learned to predict winners of games played by the policy network against itself. After training these networks employed a lookahead Monte Carlo tree search (MCTS), using the policy network to identify candidate high-probability moves, while the value network (in conjunction with Monte Carlo rollouts using a fast rollout policy) evaluated tree positions.[51]

Zero trained using reinforcement learning in which the system played millions of games against itself. Its only guide was to increase its win rate. It did so without learning from games played by humans. Its only input features are the black and white stones from the board. It uses a single neural network, rather than separate policy and value networks. Its simplified tree search relies upon this neural network to evaluate positions and sample moves, without Monte Carlo rollouts. A new reinforcement learning algorithm incorporates lookahead search inside the training loop.[51] AlphaGo Zero employed around 15 people and millions in computing resources.[52] Ultimately, it needed much less computing power than AlphaGo, running on four specialized AI processors (Google TPUs), instead of AlphaGo's 48.[53]


WaveNet is DeepMind's deep generative model of raw audio waveforms. WaveNet was originally too computationally intensive for use in consumer products when it debuted in 2016; however, in late 2017, it became ready for use in consumer applications such as Google Assistant.[54][55]


In July 2016, a collaboration between DeepMind and Moorfields Eye Hospital was announced.[56] DeepMind would be applied to the analysis of anonymised eye scans, searching for early signs of diseases leading to blindness.

In August 2016, a research programme with University College London Hospital was announced with the aim of developing an algorithm that can automatically differentiate between healthy and cancerous tissues in head and neck areas.[57]

There are also projects with the Royal Free London NHS Foundation Trust and Imperial College Healthcare NHS Trust to develop new clinical mobile apps linked to electronic patient records.[58] Staff at the Royal Free Hospital were reported as saying in December 2017 that access to patient data through the app had saved a ‘huge amount of time’ and made a ‘phenomenal’ difference to the management of patients with acute kidney injury. Test result data is sent to staff’s mobile phones and alerts them to change in the patient's condition. It also enables staff to see if someone else has responded, and to show patients their results in visual form.[59][unreliable source?]

NHS data-sharing controversyEdit

In April 2016, New Scientist obtained a copy of a data-sharing agreement between DeepMind and the Royal Free London NHS Foundation Trust. The latter operates the three London hospitals where an estimated 1.6 million patients are treated annually. The revelation has exposed the ease with which private companies can obtain highly sensitive medical information without patient consent. The agreement shows DeepMind Health had access to admissions, discharge and transfer data, accident and emergency, pathology and radiology, and critical care at these hospitals. This included personal details such as whether patients had been diagnosed with HIV, suffered from depression or had ever undergone an abortion in order to conduct research to seek better outcomes in various health conditions.[60][61] The agreement is seen as controversial and its legality has been questioned.[28]

The concerns were widely reported and have led to a complaint to the Information Commissioner's Office (ICO), arguing that the data should be pseudonymised and encrypted.[62]

In May 2016, New Scientist published a further article claiming that the project had failed to secure approval from the Confidentiality Advisory Group of the Medicines and Healthcare Products Regulatory Agency.[63]

In May 2017, Sky News published a leaked letter from the National Data Guardian, Dame Fiona Caldicott, revealing that in her "considered opinion" the data sharing agreement between DeepMind and the Royal Free took place on an "inappropriate legal basis".[64]

The Information Commissioner’s Office ruled in July 2017 that London’s Royal Free hospital failed to comply with the Data Protection Act when it handed over personal data of 1.6 million patients to DeepMind. [65]

DeepMind ethics and societyEdit

As of October 2017, the DeepMind team has expanded their focus to also include AI ethics. With the former Google UK and EU policy manager Sean Legassick leading this new team, their goal is to fund external research of the following themes: privacy transparency and fairness; economic impacts; governance and accountability; managing AI risk; AI morality and values; and how AI can address the world’s challenges. As a result, the team hopes to further understand the ethical implications of AI and aid society to seeing AI can be beneficial.[66]

This new subdivision of DeepMind is a completely separate unit from the large partnership of major tech companies of the name Partnership on Artificial Intelligence to Benefit People and Society to which DeepMind is also a part of.[67]

See alsoEdit


  1. ^ "DEEPMIND TECHNOLOGIES LIMITED – Overview (free company information from Companies House)". Companies House. Retrieved 2016-03-13. 
  2. ^ a b c Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David (26 February 2015). "Human-level control through deep reinforcement learning". Nature. 518 (7540): 529–33. Bibcode:2015Natur.518..529M. doi:10.1038/nature14236. PMID 25719670. Retrieved 25 February 2015. 
  3. ^ "DeepMind's CEO told Prince Harry his AI lab now employs 700 staff". 
  4. ^ a b "The Last AI Breakthrough DeepMind Made Before Google Bought It". The Physics arXiv Blog. Retrieved 12 October 2014. 
  5. ^ Graves, Alex; Wayne, Greg; Danihelka, Ivo (2014). "Neural Turing Machines". arXiv:1410.5401  [cs.NE]. 
  6. ^ Best of 2014: Google's Secretive DeepMind Startup Unveils a "Neural Turing Machine", MIT Technology Review
  7. ^ Graves, Alex; Wayne, Greg; Reynolds, Malcolm; Harley, Tim; Danihelka, Ivo; Grabska-Barwińska, Agnieszka; Colmenarejo, Sergio Gómez; Grefenstette, Edward; Ramalho, Tiago (2016-10-12). "Hybrid computing using a neural network with dynamic external memory". Nature. 538: 471–476. doi:10.1038/nature20101. ISSN 1476-4687. PMID 27732574. 
  8. ^ a b "Première défaite d'un professionnel du go contre une intelligence artificielle". Le Monde (in French). 27 January 2016. 
  9. ^ Kohs, Greg (2017-09-29), AlphaGo, Ioannis Antonoglou, Lucas Baker, Nick Bostrom, retrieved 2018-01-09 
  10. ^ Silver, David; Hubert, Thomas; Schrittwieser, Julian; Antonoglou, Ioannis; Lai, Matthew; Guez, Arthur; Lanctot, Marc; Sifre, Laurent; Kumaran, Dharshan; Graepel, Thore; Lillicrap, Timothy; Simonyan, Karen; Hassabis, Demis (5 December 2017). "Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm". arXiv:1712.01815  [cs.AI]. 
  11. ^ "Google Buys U.K. Artificial Intelligence Company DeepMind". Bloomberg. 27 January 2014. Retrieved 13 November 2014. 
  12. ^ "Google makes £400m move in quest for artificial intelligence". Financial Times. 27 January 2014. Retrieved 13 November 2014. 
  13. ^ "Demis Hassabis: 15 facts about the DeepMind Technologies founder". The Guardian. Retrieved 12 October 2014. 
  14. ^ "Google to buy artificial intelligence company DeepMind". Reuters. 26 January 2014. Retrieved 12 October 2014. 
  15. ^ "Google Acquires UK AI startup Deepmind". The Guardian. Retrieved 27 January 2014. 
  16. ^ "Report of Acquisition, TechCrunch". TechCrunch. Retrieved 27 January 2014. 
  17. ^ Oreskovic, Alexei. "Reuters Report". Reuters. Retrieved 27 January 2014. 
  18. ^ "Google Acquires Artificial Intelligence Start-Up DeepMind". The Verge. Retrieved 27 January 2014. 
  19. ^ "Google acquires AI pioneer DeepMind Technologies". Ars Technica. Retrieved 27 January 2014. 
  20. ^ "DeepMind buy heralds rise of the machines". Financial Times. Retrieved 14 October 2014. 
  21. ^ "DeepMind Technologies Investors". Retrieved 12 October 2014. 
  22. ^ Cuthbertson, Anthony. "Elon Musk: Artificial Intelligence 'Potentially More Dangerous Than Nukes'". International Business Times UK. 
  23. ^ " – DeepMind Technologies Acquisition". Retrieved 27 January 2014. 
  24. ^ "Google beats Facebook for Acquisition of DeepMind Technologies". Retrieved 27 January 2014. 
  25. ^ "Hall of Fame Awards: To celebrate the success of companies founded by Computer Laboratory graduates". University of Cambridge. Retrieved 12 October 2014. 
  26. ^ Lomas, Natasha. "Documents detail DeepMind's plan to apply AI to NHS data in 2015". TechCrunch. Retrieved 2017-09-26. 
  27. ^ "Inside Google's Mysterious Ethics Board". Forbes. 3 February 2014. Retrieved 12 October 2014. 
  28. ^ a b Ramesh, Randeep (2016-05-04). "Google's DeepMind shouldn't suck up our NHS records in secret". The Guardian. Archived from the original on 2016-10-13. Retrieved 19 October 2016. 
  29. ^ "Home/ Partnership on Artificial Intelligence to Benefit People and Society". 2016. Retrieved 15 October 2016. 
  30. ^ Hern, Alex (4 October 2017). "DeepMind announces ethics group to focus on problems of AI" – via 
  31. ^ "DeepMind has launched a new 'ethics and society' research team". Business Insider. Retrieved 2017-10-25. 
  32. ^ "DeepMind launches new research team to investigate AI ethics". The Verge. Retrieved 2017-10-25. 
  33. ^ a b "DeepMind Technologies Website". DeepMind Technologies. Retrieved 11 October 2014. 
  34. ^ Legg, Shane; Veness, Joel (29 September 2011). "An Approximation of the Universal Intelligence Measure". arXiv:1109.5951  [cs.AI]. 
  35. ^ Hassabis, Demis (23 February 2012). "Model the brain's algorithms" (PDF). Nature. Retrieved 12 October 2014. 
  36. ^ Amodei, Dario; Olah, Chris; Steinhardt, Jacob; Christiano, Paul; Schulman, John; Mané, Dan (2016-06-21). "Concrete Problems in AI Safety". arXiv:1606.06565  [cs.AI]. 
  37. ^ "Publications | DeepMind". DeepMind. Retrieved 2016-09-11. 
  38. ^ "DeepMind Has Simple Tests That Might Prevent Elon Musk's AI Apocalypse". 11 December 2017. Retrieved 8 January 2018. 
  39. ^ "Alphabet's DeepMind Is Using Games to Discover If Artificial Intelligence Can Break Free and Kill Us All". Fortune. Retrieved 8 January 2018. 
  40. ^ Huang, Shih-Chieh; Müller, Martin (12 July 2014). "Investigating the Limits of Monte-Carlo Tree Search Methods in Computer Go". Lecture Notes in Computer Science. Lecture Notes in Computer Science. Springer. 8427: 39–48. doi:10.1007/978-3-319-09165-5_4. ISBN 978-3-319-09164-8. 
  41. ^ "Q&A with Shane Legg on risks from AI". 17 June 2011. Retrieved 12 October 2014. 
  42. ^ "DeepMind founder Demis Hassabis on how AI will shape the future". The Verge. 10 March 2016. 
  43. ^ a b Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Graves, Alex; Antonoglou, Ioannis; Wierstra, Daan; Riedmiller, Martin (12 December 2013). "Playing Atari with Deep Reinforcement Learning". arXiv:1312.5602  [cs.LG]. 
  44. ^ a b c Deepmind artificial intelligence @ FDOT14. 19 April 2014. 
  45. ^ a b c "Google achieves AI 'breakthrough' by beating Go champion". BBC News. 27 January 2016. 
  46. ^ a b "Research Blog: AlphaGo: Mastering the ancient game of Go with Machine Learning". Google Research Blog. 27 January 2016. 
  47. ^ "World's Go Player Ratings". May 2017. 
  48. ^ "柯洁迎19岁生日 雄踞人类世界排名第一已两年" (in Chinese). May 2017. 
  49. ^ "The latest AI can work things out without being taught". The Economist. Retrieved 2017-10-19. 
  50. ^ Cellan-Jones, Rory (2017-10-18). "Google DeepMind: AI becomes more alien". BBC News. Retrieved 2017-12-03. 
  51. ^ a b Silver, David; Schrittwieser, Julian; Simonyan, Karen; Antonoglou, Ioannis; Huang, Aja; Guez, Arthur; Hubert, Thomas; Baker, Lucas; Lai, Matthew; Bolton, Adrian; Chen, Yutian; Lillicrap, Timothy; Fan, Hui; Sifre, Laurent; Driessche, George van den; Graepel, Thore; Hassabis, Demis (19 October 2017). "Mastering the game of Go without human knowledge". Nature. 550 (7676): 354–359. doi:10.1038/nature24270. ISSN 0028-0836. Retrieved 11 December 2017.  
  52. ^ Knight, Will. "The world's smartest game-playing AI—DeepMind's AlphaGo—just got way smarter". MIT Technology Review. Retrieved 2017-10-19. 
  53. ^ Vincent, James (October 18, 2017). "DeepMind's Go-playing AI doesn't need human help to beat us anymore". The Verge. Retrieved 2017-10-19. 
  54. ^ "Here's Why Google's Assistant Sounds More Realistic Than Ever Before". Fortune. 5 October 2017. Retrieved 20 January 2018. 
  55. ^ Gershgorn, Dave. "Google's voice-generating AI is now indistinguishable from humans". Quartz. Retrieved 20 January 2018. 
  56. ^ Baraniuk, Chris (6 July 2016). "Google's DeepMind to peek at NHS eye scans for disease analysis". BBC. Retrieved 6 July 2016. 
  57. ^ Baraniuk, Chris (31 August 2016). "Google DeepMind targets NHS head and neck cancer treatment". BBC. Retrieved 5 September 2016. 
  58. ^ "DeepMind announces second NHS partnership". IR Pro. 23 December 2016. Retrieved 23 December 2016. 
  59. ^ "Google DeepMind's Streams technology branded 'phenomenal'". Digital Health. 4 December 2017. Retrieved 23 December 2017. 
  60. ^ Hodson, Hal (29 April 2016). "Revealed: Google AI has access to huge haul of NHS patient data". New Scientist. 
  61. ^ "Leader: If Google has nothing to hide about NHS data, why so secretive?". New Scientist. 4 May 2016. 
  62. ^ Donnelly, Caroline (12 May 2016). "ICO probes Google DeepMind patient data-sharing deal with NHS Hospital Trust". Computer Weekly. 
  63. ^ Hodson, Hal (25 May 2016). "Did Google's NHS patient data deal need ethical approval?". New Scientist. Retrieved 28 May 2016. 
  64. ^ Martin, Alexander J (15 May 2017). "Google received 1.6 million NHS patients' data on an 'inappropriate legal basis'". Sky News. Retrieved 16 May 2017. 
  65. ^ Hern, Alex (3 July 2017). "Royal Free breached UK data law in 1.6m patient deal with Google's DeepMind" – via 
  66. ^ Temperton, James. "DeepMind's new AI ethics unit is the company's next big move". Wired (UK). Retrieved 2017-12-03. 
  67. ^ Hern, Alex (4 October 2017). "DeepMind announces ethics group to focus on problems of AI". The Guardian. Retrieved 8 December 2017. 

External linksEdit