β-Fructofuranosidase is an enzyme that catalyzes the hydrolysis (breakdown) of the table sugar sucrose into fructose and glucose.[1][2] Alternative names for β-fructofuranosidase EC 3.2.1.26 include invertase, saccharase, glucosucrase, β-fructosidase, invertin, sucrase, fructosylinvertase, alkaline invertase, acid invertase, and the systematic name: β-fructofuranosidase. The resulting mixture of fructose and glucose is called inverted sugar syrup. Related to invertases are sucrases. Invertases and sucrases hydrolyze sucrose to give the same mixture of glucose and fructose. Invertase is a glycoprotein that hydrolyses (cleaves) the non-reducing terminal β-fructofuranoside residues. Invertases cleave the O-C(fructose) bond, whereas the sucrases cleave the O-C(glucose) bond.[3] Invertase cleaves the α-1,2-glycosidic bond of sucrose.

Invertase
Identifiers
EC no.3.2.1.26
CAS no.9001-57-4
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Search
PMCarticles
PubMedarticles
NCBIproteins

For industrial use, invertase is usually derived from yeast. It is also synthesized by bees, which use it to make honey from nectar. Optimal temperature at which the rate of reaction is at its greatest is 60 °C and an optimum pH of 4.5. Typically, sugar is inverted with sulfuric acid.[3]

Invertase is produced by various organisms like yeast, fungi, bacteria, higher plants, and animals. For example: Saccharomyces cerevisiae, Saccharomyces carlsbergensis, S. pombe, Aspergillus spp, Penicillium chrysogenum, Azotobacter spp, Lactobacillus spp, Pseudomonas spp etc.

Applications and examples Edit

Invertase is used to produce inverted sugar syrup.

Invertase is expensive, so it may be preferable to make fructose from glucose using glucose isomerase, instead. Chocolate-covered candies, other cordials, and fondant candies include invertase, which liquefies the sugar.[4]

Inhibition Edit

Urea acts as a pure non-competitive inhibitor of invertase, presumably by breaking the intramolecular hydrogen bonds contributing to the tertiary structure of the enzyme.[5]

See also Edit

References Edit

  1. ^ Myrbäck K (1960). "Invertases". In Boyer PD, Lardy H, Myrbäck K (eds.). The Enzymes. Vol. 4 (2nd ed.). New York: Academic Press. pp. 379–396.
  2. ^ Neumann NP, Lampen JO (February 1967). "Purification and properties of yeast invertase". Biochemistry. 6 (2): 468–75. doi:10.1021/bi00854a015. PMID 4963242.
  3. ^ a b Schiweck, Hubert; Clarke, Margaret; Pollach, Günter (2007). "Sugar". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a25_345.pub2. ISBN 978-3527306732.
  4. ^ Kotwal, S. M.; Shankar, V. (2009). "Immobilized invertase". Biotechnol. Adv. 27 (4): 311–322. doi:10.1016/j.biotechadv.2009.01.009. PMID 19472508.
  5. ^ Chase, Aurin M.; Von Meier, Hildegard C.; Menna, Vincent J. (February 1962). "The Non-Competitive Inhibition and Irreversible Inactivation of Yeast Invertase by Urea". Journal of Cellular and Comparative Physiology. 59 (1): 1–13. doi:10.1002/jcp.1030590102. ISSN 0095-9898. PMID 13878348.

External links Edit