Open main menu

Wikipedia β

Electricity generation

  (Redirected from Power generation)
Diagram of an electric power system, generation system in red

Electricity generation is the process of generating electric power from sources of primary energy. For electric utilities in the electric power industry, it is the first stage in the delivery of electricity to end users, the other stages being transmission, distribution, energy storage and recovery, using pumped-storage methods.

A characteristic of electricity is that it is not a primary energy freely present in nature in remarkable amounts and it must be produced. Production is carried out in power plants. Electricity is most often generated at a power station by electromechanical generators, primarily driven by heat engines fueled by combustion or nuclear fission but also by other means such as the kinetic energy of flowing water and wind. Other energy sources include solar photovoltaics and geothermal power.

Contents

HistoryEdit

 
Electricity production in the World, 1980-2015

The fundamental principles of electricity generation were discovered in the 1820s and early 1830s by British scientist Michael Faraday. His method, still used today, is for electricity to be generated by the movement of a loop of wire, or disc of copper between the poles of a magnet. Central power stations became economically practical with the development of alternating current (AC) power transmission, using power transformers to transmit power at high voltage and with low loss.

In 1870, commercial electricity production started with the coupling of the dynamo to the hydraulic turbine. In 1870, the mechanical production of electric power began the Second Industrial Revolution and created inventions using the energy, whose major contributors were Thomas Alva Edison and Nikola Tesla. Previously the only way to produce electricity was by chemical reactions or using battery cells, and the only practical use of electricity was for the telegraph.

Electricity generation at central power stations started in 1882, when a steam engine driving a dynamo at Pearl Street Station produced a DC current that powered public lighting on Pearl Street, New York. The new technology was quickly adopted by many cities around the world, which adopted their gas fueled street lights to electric power, and soon after electric lights would be used in public buildings, in businesses, and to power public transport, such as trams and trains.

The first power plants used water power or coal;[1] and today a variety of energy sources are used, such as coal, nuclear, natural gas, hydroelectric, wind generators, and oil, as well as solar energy, tidal power, and geothermal sources. The use of power-lines and power-poles have been significantly important in the distribution of electricity.

Methods of generating electricityEdit

 
U.S. 2014 Electricity Generation By Type.[2]
 
Sources of electricity in France in 2006;[3] nuclear power was the main source.

Several fundamental methods exist to convert other forms of energy into electrical energy. The triboelectric effect, piezoelectric effect, and even direct capture of the energy of nuclear decay Betavoltaics are used in niche applications, as is direct conversion of heat to electric power in the thermoelectric effect. Utility-scale generation is done by rotating electric generators, or by photovoltaic systems. A very small proportion of electric power distributed by utilities is provided by batteries.

GeneratorsEdit

Electric generators transform kinetic energy into electricity. This is the most used form for generating electricity and is based on Faraday's law. It can be seen experimentally by rotating a magnet within closed loops of a conducting material (e.g. copper wire). Almost all commercial electrical generation is done using electromagnetic induction, in which mechanical energy forces a generator to rotate.

ElectrochemistryEdit

 
Large dams such as Hoover Dam can provide large amounts of hydroelectric power; it has 2.07 GW capability.

Electrochemistry is the direct transformation of chemical energy into electricity, as in a battery. Electrochemical electricity generation is important in portable and mobile applications. Currently, most electrochemical power comes from batteries.[4] Primary cells, such as the common zinc-carbon batteries, act as power sources directly, but many types of cells are used as storage systems rather than primary generation systems. Open electrochemical systems, known as fuel cells, can be used to extract power either from natural fuels or from synthesized fuels. Osmotic power is a possibility at places where salt and fresh water merges.

Photovoltaic effectEdit

The photovoltaic effect is the transformation of light into electrical energy, as in solar cells. Photovoltaic panels convert sunlight directly to electricity. Although sunlight is free and abundant, solar electricity is still usually more expensive to produce than large-scale mechanically generated power due to the cost of the panels. Low-efficiency silicon solar cells have been decreasing in cost and multijunction cells with close to 30% conversion efficiency are now commercially available. Over 40% efficiency has been demonstrated in experimental systems.[5] Until recently, photovoltaics were most commonly used in remote sites where there is no access to a commercial power grid, or as a supplemental electricity source for individual homes and businesses. Recent advances in manufacturing efficiency and photovoltaic technology, combined with subsidies driven by environmental concerns, have dramatically accelerated the deployment of solar panels. Installed capacity is growing by 40% per year led by increases in Germany, Japan, and the United States.

 
Wind turbines usually provide electrical generation in conjunction with other methods of producing power.

Economics of generation and production of electricityEdit

The selection of electricity production modes and their economic viability varies in accordance with demand and region. The economics vary considerably around the world, resulting in widespread selling prices, e.g. the price in Venezuela is 3 cents per kWh while in Denmark it is 40 cents per kWh. Hydroelectric plants, nuclear power plants, thermal power plants and renewable sources have their own pros and cons, and selection is based upon the local power requirement and the fluctuations in demand. All power grids have varying loads on them but the daily minimum is the base load, supplied by plants which run continuously. Nuclear, coal, oil and gas plants can supply base load.

Thermal energy is economical in areas of high industrial density, as the high demand cannot be met by renewable sources. The effect of localized pollution is also minimized as industries are usually located away from residential areas. These plants can also withstand variation in load and consumption by adding more units or temporarily decreasing the production of some units. Nuclear power plants can produce a huge amount of power from a single unit. However, recent disasters in Japan have raised concerns over the safety of nuclear power, and the capital cost of nuclear plants is very high. Hydroelectric power plants are located in areas where the potential energy from falling water can be harnessed for moving turbines and the generation of power. It is not an economically viable source of production where the load varies too much during the annual production cycle and the ability to store the flow of water is limited.

Due to advancements in technology, and with mass production, renewable sources other than hydroelectricity (solar power, wind energy, tidal power, etc.) experienced decreases in cost of production, and the energy is now in many cases cost-comparative with fossil fuels. Many governments around the world provide subsidies to offset the higher cost of any new power production, and to make the installation of renewable energy systems economically feasible. However, their use is frequently limited by their intermittent nature. If natural gas prices are below $3 per million British thermal units, generating electricity from natural gas is cheaper than generating power by burning coal.[6]

Generating equipmentEdit

TurbinesEdit

Almost all commercial electrical power on Earth is generated with a turbine, driven by wind, water, steam or burning gas. The turbine drives a generator, thus transforming its mechanical energy into electrical energy by electromagnetic induction. There are many different methods of developing mechanical energy, including heat engines, hydro, wind and tidal power. Most electric generation is driven by heat engines. The combustion of fossil fuels supplies most of the energy to these engines, with a significant fraction from nuclear fission and some from renewable sources. The modern steam turbine (invented by Sir Charles Parsons in 1884) currently generates about 80% of the electric power in the world using a variety of heat sources. Turbine types include:

Although turbines are most common in commercial power generation, smaller generators can be powered by gasoline or diesel engines. These may used for back up generation or isolated villages.

GeneratorsEdit

 
A large generator with the rotor removed

Electric generators were known in simple forms from the discovery of the magnetic induction of electric current in the 1830s. In general, some form of prime mover such as an engine or the turbines described above, drives a rotating magnetic field past stationary coils of wire thereby turning mechanical energy into electricity. A very large 2000 Mw(2,682,000 horsepower) unit designed by Siemens was built for unit 3 at the Olkiluoto Nuclear Power Plant.[8] The only commercial scale electricity production that does not employ a generator is solar PV.

ProductionEdit

The production of electricity in 2013 was 23,322TWh. Sources of electricity were coal and peat 41%, natural gas 22%, hydroelectric 16%, nuclear power 11%, oil 4%, biomass and waste 2% and other sources 4%. Other sources include wind, geothermal, solar photovoltaic, and solar thermal.[9]

Source of Electricity (World total year 2008)
- Coal Oil Natural
Gas
Nuclear Renewables other Total
Average electric power (TWh/year) 8,263 1,111 4,301 2,731 3,288 568 20,261
Average electric power (GW) 942.6 126.7 490.7 311.6 375.1 64.8 2311.4
Proportion 41% 5% 21% 13% 16% 3% 100%
data source IEA/OECD
 
Energy Flow of Power Plant

Total energy consumed at all power plants for the generation of electricity was 4,398,768 ktoe (kilo ton of oil equivalent) which was 36% of the total for primary energy sources (TPES) of 2008.
Electricity output (gross) was 1,735,579 ktoe (20,185 TWh), efficiency was 39%, and the balance of 61% was generated heat. A small part (145,141 ktoe, which was 3% of the input total) of the heat was utilized at co-generation heat and power plants. The in-house consumption of electricity and power transmission losses were 289,681 ktoe. The amount supplied to the final consumer was 1,445,285 ktoe (16,430 TWh) which was 33% of the total energy consumed at power plants and heat and power co-generation (CHP) plants.[10]

Historical results of production of electricityEdit

   

Production by countryEdit

The United States has long been the largest producer and consumer of electricity, with a global share in 2005 of at least 25%, followed by China, Japan, Russia, and India. As of Jan-2010, total electricity generation for the 2 largest generators was as follows: USA: 3992 billion kWh (3992 TWh) and China: 3715 billion kWh (3715 TWh).

List of countries with source of electricity 2008Edit

Data source of values (electric power generated) is IEA/OECD.[11] Listed countries are top 20 by population or top 20 by GDP (PPP) and Saudi Arabia based on CIA World Factbook 2009.[12]

Composition of Electricity by Resource (TWh per year 2008)
Country's electricity sector Fossil Fuel Nuclear rank Renewable Bio
other*
total rank
Coal Oil Gas sub
total
rank Hydro Geo
Thermal
Solar
PV*
Solar
Thermal
Wind Tide sub
total
rank
World total 8,263 1,111 4,301 13,675 - 2,731 - 3,288 65 12 0.9 219 0.5 3,584 - 271 20,261 -
Proportion 41% 5.5% 21% 67% - 13% - 16% 0.3% 0.06% 0.004% 1.1% 0.003% 18% - 1.3% 100% -
  China 2,733 23 31 2,788 2 68 8 585 - 0.2 - 13 - 598 1 2.4 3,457 2
  India 569 34 82 685 5 15 12 114 - 0.02 - 14 - 128.02 6 2.0 830 5
  USA 2,133 58 1011 3,101 1 838 1 282 17 1.6 0.88 56 - 357 4 73 4,369 1
  Indonesia 61 43 25 130 19 - - 12 8.3 - - - - 20 17 - 149 20
  Brazil 13 18 29 59 23 14 13 370 - - - 0.6 - 370 3 20 463 9
  Pakistan 0.1 32 30 62 22 1.6 16 28 - - - - - 28 14 - 92 24
  Bangladesh 0.6 1.7 31 33 27 - - 1.5 - - - - - 1.5 29 - 35 27
  Nigeria - 3.1 12 15 28 - - 5.7 - - - - - 5.7 25 - 21 28
  Russia 197 16 495 708 4 163 4 167 0.5 - - 0.01 - 167 5 2.5 1,040 4
  Japan 288 139 283 711 3 258 3 83 2.8 2.3 - 2.6 - 91 7 22 1,082 3
  Mexico 21 49 131 202 13 9.8 14 39 7.1 0.01 - 0.3 - 47 12 0.8 259 14
  Philippines 16 4.9 20 40 26 - - 9.8 11 0.001 - 0.1 - 21 16 - 61 26
  Vietnam 15 1.6 30 47 25 - - 26 - - - - - 26 15 - 73 25
  Ethiopia - 0.5 - 0.5 29 - - 3.3 0.01 - - - - 3.3 28 - 3.8 30
  Egypt - 26 90 115 20 - - 15 - - - 0.9 - 16 20 - 131 22
  Germany 291 9.2 88 388 6 148 6 27 0.02 4.4 - 41 - 72 9 29 637 7
  Turkey 58 7.5 99 164 16 - - 33 0.16 - - 0.85 - 34 13 0.22 198 19
  DR Congo - 0.02 0.03 0.05 30 - - 7.5 - - - - - 7.5 22 - 7.5 29
  Iran 0.4 36 173 209 11 - - 5.0 - - - 0.20 - 5.2 26 - 215 17
  Thailand 32 1.7 102 135 18 - - 7.1 0.002 0.003 - - - 7.1 23 4.8 147 21
  France 27 5.8 22 55 24 439 2 68 - 0.04 - 5.7 0.51 75 8 5.9 575 8
  UK 127 6.1 177 310 7 52 10 9.3 - 0.02 - 7.1 - 16 18 11 389 11
  Italy 49 31 173 253 9 - - 47 5.5 0.2 - 4.9 - 58 11 8.6 319 12
  South Korea 192 15 81 288 8 151 5 5.6 - 0.3 - 0.4 - 6.3 24 0.7 446 10
  Spain 50 18 122 190 14 59 9 26 - 2.6 0.02 32 - 61 10 4.3 314 13
  Canada 112 9.8 41 162 17 94 7 383 - 0.03 - 3.8 0.03 386 2 8.5 651 6
  Saudi Arabia - 116 88 204 12 - - - - - - - - - - - 204 18
  Taiwan 125 14 46 186 15 41 11 7.8 - 0.004 - 0.6 - 8.4 21 3.5 238 16
  Australia 198 2.8 39 239 10 - - 12 - 0.2 0.004 3.9 - 16 19 2.2 257 15
  Netherlands 27 2.1 63 92 21 4.2 15 0.1 - 0.04 - 4.3 - 4.4 27 6.8 108 23
Country Coal Oil Gas sub
total
rank Nuclear rank Hydro Geo
Thermal
Solar
PV
Solar
Thermal
Wind Tide sub
total
rank Bio
other
Total rank

Solar PV* is Photovoltaics Bio other* = 198TWh (Biomass) + 69TWh (Waste) + 4TWh (other)

Environmental concernsEdit

Variations between countries generating electrical power affect concerns about the environment. In France only 10% of electricity is generated from fossil fuels, the US is higher at 70% and China is at 80%.[11] The cleanliness of electricity depends on its source. Most scientists agree that emissions of pollutants and greenhouse gases from fossil fuel-based electricity generation account for a significant portion of world greenhouse gas emissions; in the United States, electricity generation accounts for nearly 40% of emissions, the largest of any source. Transportation emissions are close behind, contributing about one-third of U.S. production of carbon dioxide.[13] In the United States, fossil fuel combustion for electric power generation is responsible for 65% of all emissions of sulfur dioxide, the main component of acid rain.[14] Electricity generation is the fourth highest combined source of NOx, carbon monoxide, and particulate matter in the US.[15] In July 2011, the UK parliament tabled a motion that "levels of (carbon) emissions from nuclear power were approximately three times lower per kilowatt hour than those of solar, four times lower than clean coal and 36 times lower than conventional coal".[16]

Lifecycle greenhouse gas emissions by electricity source.[17]
Technology Description 50th percentile
(g CO2/kWhe)
Hydroelectric reservoir 4
Wind onshore 12
Nuclear various generation II reactor types 16
Biomass various 18
Solar thermal parabolic trough 22
Geothermal hot dry rock 45
Solar PV Polycrystalline silicon 46
Natural gas various combined cycle turbines without scrubbing 469
Coal various generator types without scrubbing 1001

See alsoEdit

ReferencesEdit

  1. ^ "Pearl Street Station - Engineering and Technology History Wiki". ethw.org. Retrieved 2016-08-14. 
  2. ^ "EIA - Electricity Data". www.eia.gov. Retrieved 2016-08-14. 
  3. ^ DGEMP / Observatoire de l'énergie (April 2007). "L'Electricité en France en 2006 : une analyse statistique" (PDF) (in French). Retrieved 2007-05-23. 
  4. ^ World's Largest Utility Battery System Installed in Alaska (press release, 2003-09-24), U.S. Department of Energy. "13,670 nickel-cadmium battery cells to generate up to 40 megawatts of power for about 7 minutes, or 27 megawatts of power for 15 minutes."
  5. ^ New World Record Achieved in Solar Cell Technology (press release, 2006-12-05), U.S. Department of Energy.
  6. ^ Smith, Karl (22 March 2013). "Will Natural Gas Stay Cheap Enough To Replace Coal And Lower Us Carbon Emissions". Forbes. Retrieved 20 June 2015. 
  7. ^ "Coal & electricity". World Coal Association. Retrieved 2016-08-14. 
  8. ^ http://ieeexplore.ieee.org/document/5075247/?reload=true&arnumber=5075247&queryText%3D2000%20mw%20generator&tp=
  9. ^ "OECD Factbook 2015-2016: Economic, Environmental and Social Statistics". 8 April 2016. Retrieved 12 February 2017. 
  10. ^ International Energy Agency, "2008 Energy Balance for World", 2011.
  11. ^ a b IEA Statistics and Balances retrieved 2011-5-8
  12. ^ CIA World Factbook 2009 retrieved 2011-5-8
  13. ^ Borenstein, Seth (2007-06-03). "Carbon-emissions culprit? Coal". The Seattle Times. Archived from the original on 2011-04-24. 
  14. ^ "Sulfur Dioxide". US Environmental Protection Agency. 
  15. ^ "AirData". US Environmental Protection Agency. 
  16. ^ "Early day motion 2061". UK Parliament. Retrieved 15 May 2015. 
  17. ^ http://srren.ipcc-wg3.de/report/IPCC_SRREN_Annex_II.pdf see page 10 Moomaw, W., P. Burgherr, G. Heath, M. Lenzen, J. Nyboer, A. Verbruggen, 2011: Annex II: Methodology. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation.