Open main menu

January 2019 lunar eclipse

A total lunar eclipse occurred on January 21, 2019 UTC (Coordinated Universal Time). For observers in the Americas, the eclipse took place between the evening of Sunday, January 20 and the early morning hours of Monday, January 21. For observers in Europe and Africa, the eclipse occurred during the morning of January 21. The Moon was near its perigee on January 21 and as such can be described as a "supermoon".[1]

January 2019 lunar eclipse
Total eclipse
Total lunar eclipse on January 21, 2019 (45910439045) (cropped).jpg
The eclipse as seen from Oria, Italy, at 5:43 UTC, January 21, at the end of totality
DateJanuary 21, 2019
Gamma0.3684
Magnitude1.1953
Saros cycle134 (27 of 73)
Totality61 minutes, 59 seconds
Partiality196 minutes, 45 seconds
Penumbral311 minutes, 30 seconds

As this supermoon was also a wolf moon (the first full moon in a calendar year), it was referred to as a "super blood wolf moon"; blood refers to the typical red color of the Moon during a total lunar eclipse.[2] This was the last total lunar eclipse until May 2021.

The Griffith Observatory in Los Angeles, California captured video showing a meteor between the size of an acorn and tennis ball impacting the moon during the eclipse.[3] The impact was observed during totality, at 4:41 UT on the eastern limb.[4] It is one of the only documented cases of lunar impact during a total lunar eclipse.[5][6]

Contents

VisibilityEdit

The eclipse was visible in its entirety from North and South America, as well as portions of western Europe and northwest Africa. From locations in North America, the eclipse began during the evening hours of January 20. Observers at locations in Europe and much of Africa were able to view part of the eclipse before the Moon set in the early morning (pre-dawn) hours of January 21.

 
Simulated view of Earth from Moon during greatest eclipse, with infrared clouds
 
Visibility map

TimingEdit

Contact points relative to Earth's umbral and penumbral shadows, here with the Moon near its descending node (left), and the hourly motion for the January 2019 lunar eclipse (right)

The timing of total lunar eclipses are determined by its contacts:[7]

P1 (First contact): Beginning of the penumbral eclipse. Earth's penumbra touches the Moon's outer limb.
U1 (Second contact): Beginning of the partial eclipse. Earth's umbra touches the Moon's outer limb.
U2 (Third contact): Beginning of the total eclipse. The Moon's surface is entirely within Earth's umbra.
Greatest eclipse: The peak stage of the total eclipse. The Moon is at its closest to the center of Earth's umbra.
U3 (Fourth contact): End of the total eclipse. The Moon's outer limb exits Earth's umbra.
U4 (Fifth contact): End of the partial eclipse. Earth's umbra leaves the Moon's surface.
P4 (Sixth contact): End of the penumbral eclipse. Earth's penumbra no longer makes contact with the Moon.

The penumbral phases of the eclipse changes the appearance of the Moon only slightly and is generally not noticeable.[8]

Local times of contacts
Timezone
adjustments from
UTC
Americas Atlantic European/African
-8h -7h -6h -5h -4h -3h -2h -1h 0h +1h +2h +3h
PST MST CST EST AST GMT
WET
WEST
CET
BST
CEST
EET
MSK−1
FET
MSK
EAT
Event Evening January 20 Morning January 21
P1 Penumbral begins* 6:37 pm 7:37 pm 8:37 pm 9:37 pm 10:37 pm 11:37 pm 12:37 am 1:37 am 2:37 am 3:37 am 4:37 am 5:37 am
U1 Partial begins 7:34 pm 8:34 pm 9:34 pm 10:34 pm 11:34 pm 12:34 am 1:34 am 2:34 am 3:34 am 4:34 am 5:34 am 6:34 am
U2 Total begins 8:41 pm 9:41 pm 10:41 pm 11:41 pm 12:41 am 1:41 am 2:41 am 3:41 am 4:41 am 5:41 am 6:41 am 7:41 am
Mid-eclipse 9:12 pm 10:12 pm 11:12 pm 12:12 am 1:12 am 2:12 am 3:12 am 4:12 am 5:12 am 6:12 am 7:12 am 8:12 am
U3 Total ends 9:43 pm 10:43 pm 11:43 pm 12:43 am 1:43 am 2:43 am 3:43 am 4:43 am 5:43 am 6:43 am 7:43 am 8:43 am
U4 Partial ends 10:51 pm 11:51 pm 12:51 am 1:51 am 2:51 am 3:51 am 4:51 am 5:51 am 6:51 am 7:51 am 8:51 am 9:51 am
P4 Penumbral ends* 11:48 pm 12:48 am 1:48 am 2:48 am 3:48 am 4:48 am 5:48 am 6:48 am 7:48 am 8:48 am 9:48 am 10:48 am

ObservationsEdit

Totality
Partial
Penumbral
Pre-eclipse

AppearanceEdit

It took place in the constellation of Cancer, just west of the Beehive Cluster.

 

Impact sightedEdit

Livestreams detected a flash of light while viewing the eclipse. It was "likely caused by the crash of a tiny, fast-moving meteoroid left behind by a comet."[9]

Originally thinking it was electronic noise from the camera, astronomers and citizen scientists shared the visual phenomenon with each other to identify it.[9]

When totality was just beginning at 4:41 UT, the tiny speck of light blinked south of a nearly 55-mile-wide crater in the western part of the moon.[10]

The location of the impact may be somewhere in the lunar highlands, south of Byrgius crater, according to Justin Cowart, a graduate student in geosciences at Stony Brook University in New York who first saw the flash of light.[9]

“A [meteoroid] about this size hits the moon about once a week or so,” said Cowart.[10]

This may be the first time that a collision, during a total lunar eclipse, was captured on video.[9]

“I have not heard of anyone seeing an impact like this during a lunar eclipse before,” said Sara Russell, a professor of planetary sciences at the Natural History Museum in London.[9]

People posted their images and video of a flicker of light as news spread quickly on social media.[10]

Working overtime, co-director of the Moon Impacts Detection and Analysis System, MIDAS, an astrophysicist at the University of Huelva in Spain, Jose Maria Madiedo, set up eight telescopes to watch for any impacts during the eclipse.[10]

“Something inside of me told me that this time would be the time,” said Madiedo.[10]

A paper estimates a mass between 20 to 100 kilograms and diameter of 30 to 50 cm and could cause a 7-15 meters crater.[11]

Related eclipsesEdit

Lunar year seriesEdit

Saros seriesEdit

It is part of Saros cycle 134.

Half-Saros cycleEdit

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[12] This lunar eclipse is related to two annular solar eclipses of Solar Saros 141.

January 15, 2010 January 26, 2028
   

See alsoEdit

ReferencesEdit

  1. ^ Rogers, James (20 January 2019). "'Super blood Moon' eclipse stuns in remarkable pictures". Fox News.
  2. ^ "Super blood wolf moon: stargazers battle cold and clouds to view lunar eclipse". The Guardian. January 21, 2019. Retrieved January 21, 2019.
  3. ^ Meghan Bartels (22 January 2019). "Watch a Meteor Smack the Blood Moon in This Lunar Eclipse Video". Space.com. Retrieved 22 January 2019.
  4. ^ "A meteor hit the moon during the lunar eclipse. Here's what we know". Science & Innovation. 22 January 2019.
  5. ^ Andrews, Robin George (2019-01-23). "During the Lunar Eclipse, Something Slammed Into the Moon". The New York Times. ISSN 0362-4331. Retrieved 2019-01-23.
  6. ^ "Video: A Meteorite Hit the Moon During the Recent Eclipse!". Jason Kottke. 23 January 2019.
  7. ^ Clarke, Kevin. "On the nature of eclipses". Inconstant Moon. Cyclopedia Selenica. Retrieved 19 December 2010.
  8. ^ Espenak, Fred. "Lunar Eclipses for Beginners". MrEclipse. Retrieved April 7, 2014.
  9. ^ a b c d e Andrews, Robin George (2019-01-23). "During the Lunar Eclipse, Something Slammed Into the Moon". The New York Times. ISSN 0362-4331. Retrieved 2019-01-23.
  10. ^ a b c d e "A meteor hit the moon during the lunar eclipse. Here's what we know". 2019-01-22. Retrieved 2019-01-24.
  11. ^ Location, orbit and energy of a meteoroid impacting the moon during the Lunar Eclipse of January 21, 2019
  12. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros

External linksEdit