Solar eclipse of January 26, 2028

An annular solar eclipse will occur on Wednesday, January 26, 2028. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

Solar eclipse of January 26, 2028
Map
Type of eclipse
NatureAnnular
Gamma0.3901
Magnitude0.9208
Maximum eclipse
Duration627 s (10 min 27 s)
Coordinates3°00′N 51°30′W / 3°N 51.5°W / 3; -51.5
Max. width of band323 km (201 mi)
Times (UTC)
Greatest eclipse15:08:59
References
Saros141 (24 of 70)
Catalog # (SE5000)9569

On January 26, 2028, the path of annularity will pass through Ecuador, Peru, and northern Brazil. It will then travel across the Atlantic Ocean and end in Spain. A partial eclipse will be visible over much of Central and South America and Western Europe, as well as in northwestern Africa.

Images edit

 

Related eclipses edit

Eclipses in 2028 edit

Solar eclipses of 2026–2029 edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Solar eclipse series sets from 2026 to 2029
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
121 2026 February 17
 
Annular
−0.97427 126 2026 August 12
 
Total
0.89774
131 2027 February 6
 
Annular
−0.29515 136 2027 August 2
 
Total
0.14209
141 2028 January 26
 
Annular
0.39014 146 2028 July 22
 
Total
−0.60557
151 2029 January 14
 
Partial
1.05532 156 2029 July 11
 
Partial
−1.41908

Partial solar eclipses on June 12, 2029, and December 5, 2029, occur in the next lunar year eclipse set.

Saros 141 edit

Solar saros 141, repeating every about 18 years, 11 days, and 8 hours, contains 70 events. The series started with partial solar eclipse on May 19, 1613. It contains 41 annular eclipses from August 4, 1739, to October 14, 2460. There are no total eclipses in this series. The series ends at member 70 as a partial eclipse on June 13, 2857. The longest annular eclipse occurred on December 14, 1955, with maximum duration of annularity at 12 minutes and 9 seconds. All eclipses in this series occur at the Moon’s ascending node.[2]

Series members 17–36 occur between 1901 and 2259
17 18 19
 
November 11, 1901
 
November 22, 1919
 
December 2, 1937
20 21 22
 
December 14, 1955
 
December 24, 1973
 
January 4, 1992
23 24 25
 
January 15, 2010
 
January 26, 2028
 
February 5, 2046
26 27 28
 
February 17, 2064
 
February 27, 2082
 
March 10, 2100
29 30 31
 
March 22, 2118
 
April 1, 2136
 
April 12, 2154
32 33 34
 
April 23, 2172
 
May 4, 2190
 
May 15, 2208
35 36
 
May 27, 2226
 
June 6, 2244

Metonic series edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between June 21, 1982, and June 21, 2058
June 21 April 8–9 January 26 November 13–14 September 1–2
107 109 111 113 115
June 21, 1963 April 9, 1967 January 26, 1971 November 14, 1974 September 2, 1978
117 119 121 123 125
 
June 21, 1982
 
April 9, 1986
 
January 26, 1990
 
November 13, 1993
 
September 2, 1997
127 129 131 133 135
 
June 21, 2001
 
April 8, 2005
 
January 26, 2009
 
November 13, 2012
 
September 1, 2016
137 139 141 143 145
 
June 21, 2020
 
April 8, 2024
 
January 26, 2028
 
November 14, 2031
 
September 2, 2035
147 149 151 153 155
 
June 21, 2039
 
April 9, 2043
 
January 26, 2047
 
November 14, 2050
 
September 2, 2054
157
 
June 21, 2058

References edit

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ Saros Series Catalog of Solar Eclipses NASA Eclipse Web Site.

External links edit