Truncated 7-simplexes

  (Redirected from Bitruncated 7-simplex)
7-simplex t0.svg
7-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-simplex t01.svg
Truncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-simplex t12.svg
Bitruncated 7-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-simplex t23.svg
Tritruncated 7-simplex
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Orthogonal projections in A7 Coxeter plane

In seven-dimensional geometry, a truncated 7-simplex is a convex uniform 7-polytope, being a truncation of the regular 7-simplex.

There are unique 3 degrees of truncation. Vertices of the truncation 7-simplex are located as pairs on the edge of the 7-simplex. Vertices of the bitruncated 7-simplex are located on the triangular faces of the 7-simplex. Vertices of the tritruncated 7-simplex are located inside the tetrahedral cells of the 7-simplex.

Truncated 7-simplexEdit

Truncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t{3,3,3,3,3,3}
Coxeter-Dynkin diagrams              
6-faces 16
5-faces
4-faces
Cells 350
Faces 336
Edges 196
Vertices 56
Vertex figure ( )v{3,3,3,3}
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex, Vertex-transitive

In seven-dimensional geometry, a truncated 7-simplex is a convex uniform 7-polytope, being a truncation of the regular 7-simplex.

Alternate namesEdit

  • Truncated octaexon (Acronym: toc) (Jonathan Bowers)[1]

CoordinatesEdit

The vertices of the truncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,0,1,2). This construction is based on facets of the truncated 8-orthoplex.

ImagesEdit

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph      
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph      
Dihedral symmetry [5] [4] [3]

Bitruncated 7-simplexEdit

Bitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol 2t{3,3,3,3,3,3}
Coxeter-Dynkin diagrams              
6-faces
5-faces
4-faces
Cells
Faces
Edges 588
Vertices 168
Vertex figure { }v{3,3,3}
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex, Vertex-transitive

Alternate namesEdit

  • Bitruncated octaexon (acronym: bittoc) (Jonathan Bowers)[2]

CoordinatesEdit

The vertices of the bitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,2,2). This construction is based on facets of the bitruncated 8-orthoplex.

ImagesEdit

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph      
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph      
Dihedral symmetry [5] [4] [3]

Tritruncated 7-simplexEdit

Tritruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol 3t{3,3,3,3,3,3}
Coxeter-Dynkin diagrams              
6-faces
5-faces
4-faces
Cells
Faces
Edges 980
Vertices 280
Vertex figure {3}v{3,3}
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex, Vertex-transitive

Alternate namesEdit

  • Tritruncated octaexon (acronym: tattoc) (Jonathan Bowers)[3]

CoordinatesEdit

The vertices of the tritruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,2,2,2). This construction is based on facets of the tritruncated 8-orthoplex.

ImagesEdit

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph      
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph      
Dihedral symmetry [5] [4] [3]

Related polytopesEdit

These three polytopes are from a set of 71 uniform 7-polytopes with A7 symmetry.

See alsoEdit

NotesEdit

  1. ^ Klitizing, (x3x3o3o3o3o3o - toc)
  2. ^ Klitizing, (o3x3x3o3o3o3o - roc)
  3. ^ Klitizing, (o3o3x3x3o3o3o - tattoc)

ReferencesEdit

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "7D uniform polytopes (polyexa)". x3x3o3o3o3o3o - toc, o3x3x3o3o3o3o - roc, o3o3x3x3o3o3o - tattoc

External linksEdit

Fundamental convex regular and uniform polytopes in dimensions 2–10
An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Triangle Square p-gon Hexagon Pentagon
Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
5-simplex 5-orthoplex5-cube 5-demicube
6-simplex 6-orthoplex6-cube 6-demicube 122221
7-simplex 7-orthoplex7-cube 7-demicube 132231321
8-simplex 8-orthoplex8-cube 8-demicube 142241421
9-simplex 9-orthoplex9-cube 9-demicube
10-simplex 10-orthoplex10-cube 10-demicube
n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds