Open main menu

Wikipedia β

Animals are eukaryotic, multicellular organisms that form the biological kingdom Animalia. With few exceptions, animals are motile (able to move), heterotrophic (consume organic material), reproduce sexually, and their embryonic development includes a blastula stage. The body plan of the animal derives from this blastula, differentiating specialized tissues and organs as it develops; this plan eventually becomes fixed, although some undergo metamorphosis at some stage in their lives.

Animals
Temporal range: CryogenianPresent, 670–0Ma
StarfishAurelia auritaFluted giant clamEchiniscusLiocarcinus vernalisJumping spiderSpongeGiant leopard mothSiberian tigerPhylactolaemataPolymorphidaePseudoceros dimidiatusSepiola atlanticaAlitta succineaPolycarpa aurataFangtooth morayBlue jayPhoronidaAnimal diversity.png
About this image
Scientific classification e
Domain: Eukaryota
(unranked): Unikonta
(unranked): Opisthokonta
(unranked): Holozoa
(unranked): Filozoa
Kingdom: Animalia
Linnaeus, 1758
Phyla
Synonyms
  • Metazoa

Zoology is the study of animals. Currently there are over 66 thousand (less than 5% of all animals) vertebrate species, and over 1.3 million (over 95% of all animals) invertebrate species in existence. Classification of animals into groups (taxonomy) is accomplished using either the hierarchical Linnaean system; or cladistics, which displays diagrams (phylogenetic trees) called cladograms to show relationships based on the evolutionary principle of the most recent common ancestor.

Animals are traditionally divided by body plan into vertebrates and invertebrates. Vertebrates—fishes, amphibians, reptiles, birds, and mammals—have a vertebral column (spine); invertebrates do not. All vertebrates and most invertebrates are bilaterally symmetrical (Bilateria). Invertebrates include arthropods, molluscs, roundworms, ringed worms, flatworms, and other phyla in Ecdysozoa and Spiralia. Echinoderm larvae are initially bilaterally symmetrical, but later as adults develop fivefold symmetry; Cnidarians are radially symmetrical; ctenophores are biradially symmetrical; and sponges have no symmetry.

Animals emerged as a clade within Apoikozoa as the sister group to the single celled choanoflagellates. Enigmatic life forms interpreted as early animals were present in the late Precambrian (see Ediacaran biota). Most modern animal phyla are first clearly established in the fossil record as marine species during the Cambrian explosion, about 542 million years ago.

Contents

Etymology

The word "animal" comes from the Latin animalis, meaning having breath, having soul or living being.[3] The biological definition of the word refers to all members of the kingdom Animalia, encompassing creatures as diverse as sponges, jellyfish, insects, and humans.[4] In everyday non-scientific usage, the word often implies exclusion of humans – that is, "animal" is used to refer only to non-human members of the kingdom Animalia; sometimes, only closer relatives of humans such as mammals and other vertebrates, are meant.[5]

Characteristics

Animals have several characteristics that set them apart from other living things. Animals are eukaryotic and multicellular,[6][7] which separates them from bacteria and most protists, which are prokaryotic and unicellular. They are heterotrophic,[7][8] generally digesting food in an internal chamber, which separates them from plants and algae, which are autotrophs.[9] They lack rigid cell walls, which separates them from plants, algae, and fungi.[10] All animals are motile,[11] if only at certain life stages. In most animals but in no other organisms, embryos pass through a blastula stage,[12] which allows for differentiation into specialized tissues and organs.

Structure

All animals are composed of eukaryotic cells, surrounded by a characteristic extracellular matrix composed of collagen and elastic glycoproteins.[13] This may be calcified to form structures like shells, bones, and spicules.[14] During development, it forms a relatively flexible framework[15] upon which cells can move about and be reorganized, making complex structures possible. In contrast, other multicellular organisms, like plants and fungi, have cells held in place by cell walls, and so develop by progressive growth.[16] Also, unique to animal cells are the following intercellular junctions: tight junctions, gap junctions, and desmosomes.[17]

With a few exceptions—most notably the two phyla consisting of sponges and placozoans—animals have bodies that are differentiated into tissues.[18]:362,365 These include muscles, which are able to contract and control locomotion, and nerve tissues, which send and process signals. Typically, there is also an internal digestive chamber, with one or two openings.[16] Animals with this sort of organization are called metazoans, or eumetazoans when the former is used for animals in general.[19]

Reproduction

 
A newt lung cell in the early anaphase stage of mitosis, cell division

Nearly all animals undergo some form of sexual reproduction.[20] They produce haploid gametes by meiosis (see Origin and function of meiosis). The smaller, motile gametes are spermatozoa and the larger, non-motile gametes are ova.[21] These fuse to form zygotes, which develop via multiple successive mitoses and differentiation into new individuals[22] (see Allogamy).

Some animals are also capable of asexual reproduction.[23] This may take place through parthenogenesis, where fertile eggs are produced without mating, budding, or fragmentation.[24]

 
DNA analysis has shown that 60% of offspring in splendid fairywrens nests were sired through extra-pair copulations, rather than from resident males.[25]

During sexual reproduction, mating with a close relative (inbreeding) generally leads to inbreeding depression due to expression of deleterious recessive mutations.[26][27] Animals have evolved numerous mechanisms for avoiding close inbreeding.[25]

In various species, such as the splendid fairywren, females benefit by mating with multiple males, thus producing more offspring of higher genetic quality. Females that are pair bonded to a male of poor genetic quality, as is the case in inbreeding, are more likely to engage in extra-pair copulations in order to improve their reproductive success and the survivability of their offspring.[28]

Embryonic development

A zygote initially develops into a hollow sphere, called a blastula,[29] which undergoes rearrangement and differentiation. In sponges, blastula larvae swim to a new location and develop into a new sponge.[30] In most other groups, the blastula undergoes more complicated rearrangement.[31] It first invaginates to form a gastrula with a digestive chamber, and two separate germ layers—an external ectoderm and an internal endoderm.[32] In most cases, a mesoderm also develops between them.[33] These germ layers then differentiate to form tissues and organs.[34]

Food and energy sourcing

All animals are heterotrophs, meaning that they feed directly or indirectly on other living things.[35] They are often further subdivided into groups such as carnivores, herbivores, omnivores, and parasites.[36]

Predation is a biological interaction where a predator (a heterotroph that is hunting) feeds on its prey (the organism that is attacked).[37] Predators may or may not kill their prey prior to feeding on them, but the act of predation almost always results in the death of the prey.[38] The other main category of consumption is detritivory, the consumption of dead organic matter.[39] It can at times be difficult to separate the two feeding behaviours, for example, where parasitic species prey on a host organism and then lay their eggs on it for their offspring to feed on its decaying corpse. Selective pressures imposed on one another has led to an evolutionary arms race between prey and predator, resulting in various antipredator adaptations.[40]

Most animals indirectly use the energy of sunlight by eating plants or plant-eating animals. Most plants use light to convert inorganic molecules in their environment into carbohydrates, fats, proteins and other biomolecules, characteristically containing reduced carbon in the form of carbon-hydrogen bonds. Starting with carbon dioxide (CO2) and water (H2O), photosynthesis converts the energy of sunlight into chemical energy in the form of simple sugars (e.g., glucose), with the release of molecular oxygen. These sugars are then used as the building blocks for plant growth, including the production of other biomolecules.[16] When an animal eats plants (or eats other animals which have eaten plants), the reduced carbon compounds in the food become a source of energy and building materials for the animal.[41] They are either used directly to help the animal grow, or broken down, releasing stored solar energy, and giving the animal the energy required for its own biological processes, for example motion.[42][43]

Animals living close to hydrothermal vents and cold seeps on the ocean floor are not dependent on the energy of sunlight.[44] Instead chemosynthetic archaea and bacteria form the base of the food chain.[45]

Linnaean classification

 
The levels of modern Linnaean classification applied to the red fox, Vulpes vulpes. Additional intermediate levels are used with some animals.[46]

Taxonomy classifies organisms into groups. There are two taxonomic approaches: the Linnaean system classifies life according to an eight level hierarchy based on features other than phylogenomics (cladistics).

The three-domain system is an addition to the Linnaean system biological classification introduced by Carl Woese et al. in 1977[47][48] that divides cellular life forms into archaea, bacteria, and eukaryote domains. In particular, it emphasizes the separation of prokaryotes into two groups, originally called Eubacteria (now Bacteria) and Archaebacteria (now Archaea). Woese argued that, on the basis of differences in 16S rRNA genes, these two groups and the eukaryotes each arose separately from an ancestor with poorly developed genetic machinery, often called a progenote. To reflect these primary lines of descent, he treated each as a domain, divided into several different kingdoms. The term "domain" was adopted in 1990.[48]

Animals are thus classified under the domain Eukaryota. The Linnaean hierarchy below the kingdom Animalia consists of these groups: phyla, classes, orders, families, genera, and species. All the groups, from domain to species, are called taxa. There are occasional intermediate levels, such as superphyla and subphyla, in special situations. The International Commission on Zoological Nomenclature (ICZN) determines what names are valid for any taxon in the family, genus, and species group. It has additional but more limited provisions on names in higher ranks.

Evolutionary origin

BacteriaArchaeaEucaryotaAquifexThermotogaCytophagaBacteroidesBacteroides-CytophagaPlanctomycesCyanobacteriaProteobacteriaSpirochetesGram-positive bacteriaGreen filantous bacteriaPyrodicticumThermoproteusThermococcus celerMethanococcusMethanobacteriumMethanosarcinaHalophilesEntamoebaeSlime moldAnimalFungusPlantCiliateFlagellateTrichomonadMicrosporidiaDiplomonad 
A phylogenetic tree based on rRNA data, emphasizing the separation of bacteria, archaea, and eukaryotes, as proposed by Carl Woese in 1977: animals are under eukaryotes at the top right.

Animals are generally considered to have emerged within flagellated eukaryota.[49] Their closest known living relatives are the choanoflagellates, collared flagellates that have a morphology similar to the choanocytes of certain sponges.[50] Molecular studies place animals in a supergroup called the opisthokonts, which also include the choanoflagellates, fungi and a few small parasitic protists.[51] The name comes from the posterior location of the flagellum in motile cells, such as most animal spermatozoa, whereas other eukaryotes tend to have anterior flagella.[52]

The first fossils that might represent animals appear in the Trezona Formation at Trezona Bore, West Central Flinders, South Australia.[53] These fossils are interpreted as being early sponges. They were found in 665-million-year-old rock.[53]

The next oldest possible animal fossils are found towards the end of the Precambrian, around 610 million years ago, and are known as the Ediacaran or Vendian biota.[54] These are difficult to relate to later fossils, however. Some may represent precursors of modern phyla, but they may be separate groups, and it is possible they are not really animals at all.[55]

Aside from them, most known animal phyla make a more or less simultaneous appearance during the Cambrian period, about 542 million years ago.[56] It is still disputed whether this event, called the Cambrian explosion, is due to a rapid divergence between different groups or due to a change in conditions that made fossilization possible.

 
Dunkleosteus was a 10-metre-long (33 ft) fish that lived 358–382 million years ago.[57]

Some palaeontologists suggest that animals appeared much earlier than the Cambrian explosion, possibly as early as 1 billion years ago.[58] Trace fossils such as tracks and burrows found in the Tonian period indicate the presence of triploblastic worms, like metazoans, roughly as large (about 5 mm wide) and complex as earthworms.[59] During the beginning of the Tonian period around 1 billion years ago, there was a decrease in Stromatolite diversity, which may indicate the appearance of grazing animals, since stromatolite diversity increased when grazing animals became extinct at the End Permian and End Ordovician extinction events, and decreased shortly after the grazer populations recovered. However the discovery that tracks very similar to these early trace fossils are produced today by the giant single-celled protist Gromia sphaerica casts doubt on their interpretation as evidence of early animal evolution.[60][61]

Number of living species

Animals can be divided into two broad groups: vertebrates (animals with a backbone) and invertebrates (animals without a backbone). Half of all described vertebrate species are fishes and three-quarters of all described invertebrate species are insects. Over 95% of the described animal species in the world are invertebrates.

The following table lists the number of described living species for each major animal subgroup as estimated for the IUCN Red List of Threatened Species, 2014.3.[62]

 
The relative number of species contributed to the total by each phylum of animals
Group Image Subgroup Estimated number of
described species[62]
Vertebrates   Fishes 32,900
  Amphibians 7,302
  Reptiles 10,038
  Birds 10,425
  Mammals 5,513
Total vertebrate species: 66,178
Invertebrates   Insects 1,000,000
  Molluscs 85,000
  Crustaceans 47,000
  Corals 2,000
  Arachnids 102,248
  Velvet worms 165
  Horseshoe crabs 4
Others 68,658
Total invertebrate species: 1,305,075
Total for all animal species: 1,371,253

Main clades

Cladistics classifies animals according to their evolutionary tree, by assigning species descending from a most recent common ancestor to groups called clades. Following this approach, animals are thought to be a basal Apoikozoan clade as sister of the Choanoflagellata.[63] The most basal animals (Ctenophora, Porifera, Cnidaria and Placozoa) lack a bilaterally symmetric body plan , with their relationships still disputed. In 2017, the Porifera are found as basalmost animals after "recoding" to reduce "compositional heterogeneity".[64][65][66][67][68][69] The remainder of the animals form a Diploblast/Eumetazoa group. An alternative scenario is the Ctenophora-sister hypothesis.[70][71][72][73] Some of the issues are the rapid evolutionary rate within Ctenophora, insufficient sampling, and the recent internal divergence date of Ctenophora. It is indicated approximately how many million years ago (Mya) the clades diverged into newer clades.[74][75]

The other animals are the bilaterians, whose body display bilateral symmetry, and are thought to form a monophyletic group.[76][77] The Bilaterians are further classified based on a major division between Deuterostomes and Protostomes.

Apoikozoa (950)

Choanoflagellata  


Animal (760)

Porifera


Diploblasts/Eumetazoa/

Ctenophora  


ParaHoxozoa

Placozoa


Planulozoa (680)

Cnidaria  


Bilateria/

Xenacoelomorpha


Nephrozoa (650)

Deuterostomes  


Protostomes (610)

Ecdysozoa  



Spiralia  




Triploblasts


Epitheliozoa


Animal genes

The gene classes SINE, LIM, POU, NKL-ANTP and Q50-PRD are present in Porifera and Diploblasts but not in other organisms.[78]

Non-bilaterian animals: Ctenophora, Porifera, Placozoa, Cnidaria

 
Examples of non-bilaterian animals are sponges and coral: the orange animal in the midfield is an elephant ear sponge, Agelas clathrodes. In the background are two corals: (upper center) is a sea fan Iciligorgia schrammi, and (upper right corner) is a sea rod, Plexaurella nutans.

Several animal phyla are recognized for their lack of bilateral symmetry, and are thought to have diverged from other animals early in evolution. Among these, the sponges (Porifera) were long thought to have diverged first, representing the oldest animal phylum.[79] They lack the complex organization found in most other phyla.[80] Their cells are differentiated, but in most cases not organized into distinct tissues.[81] Sponges typically feed by drawing in water through pores.[82] However, a series of phylogenomic studies from 2008–2015 have found support for Ctenophora, or comb jellies, as the basal lineage of animals.[83][84][85][86] This result has been controversial, since it would imply that sponges may not be so primitive, but may instead be secondarily simplified.[83] Other researchers have argued that the placement of Ctenophora as the earliest-diverging animal phylum is a statistical anomaly caused by the high rate of evolution in ctenophore genomes.[87][88][89][90]

The Ctenophora and the sponges are unique among the animals in lacking true hox genes.[91] The presence of a Hox/Parahox gene in the Placozoa suggests that either the Porifera or the Ctenophora are the most basal animal clades.[92] Another DNA based study suggests that the Ctenophora are the earliest branching animals.[93] Another study also suggests that this group are a sister group to other animals.[94]

Among the other phyla, the Ctenophora and the Cnidaria, which includes sea anemones, corals, and jellyfish, are radially symmetric and have digestive chambers with a single opening, which serves as both the mouth and the anus.[95] Both have distinct tissues, but they are not organized into organs.[96] There are only two main germ layers, the ectoderm and endoderm, with only scattered cells between them. As such, these animals are sometimes called diploblastic.[97] The tiny placozoans are similar, but they do not have a permanent digestive chamber.

The Myxozoa, microscopic parasites that were originally considered Protozoa, are now believed to have evolved within Cnidaria.[98]

Bilaterian animals

The remaining animals form a monophyletic group called the Bilateria. For the most part, they are bilaterally symmetric, and often have a specialized head with feeding and sensory organs. The body is triploblastic, i.e. all three germ layers are well-developed, and tissues form distinct organs. The digestive chamber has two openings, a mouth and an anus, and there is also an internal body cavity called a coelom or pseudocoelom. There are exceptions to each of these characteristics, however—for instance adult echinoderms are radially symmetric, and certain parasitic worms have extremely simplified body structures.

Genetic studies have considerably changed our understanding of the relationships within the Bilateria. Most appear to belong to two major lineages: the deuterostomes and the protostomes, the latter of which includes the Ecdysozoa, and Lophotrochozoa. The Chaetognatha or arrow worms have been traditionally classified as deuterostomes, though recent molecular studies have identified this group as a basal protostome lineage.[99]

In addition, there are a few small groups of bilaterians with relatively cryptic morphology whose relationships with other animals are not well-established. For example, recent molecular studies have identified Acoelomorpha and Xenoturbella as forming a monophyletic group,[100][101][102] but studies disagree as to whether this group evolved from within deuterostomes,[101] or whether it represents the sister group to all other bilaterian animals (Nephrozoa).[103][104] The Rhombozoa and Orthonectida have now been placed within the Protostomia. One phylum - the Monoblastozoa - was described in 1892, but since then there has been no evidence of its existence.[105]

Deuterostomes and protostomes

Deuterostomes differ from protostomes in several ways. Animals from both groups possess a complete digestive tract. However, in protostomes, the first opening of the gut to appear in embryological development (the archenteron) develops into the mouth, with the anus forming secondarily. In deuterostomes the anus forms first, with the mouth developing secondarily.[106] In most protostomes, cells simply fill in the interior of the gastrula to form the mesoderm, called schizocoelous development, but in deuterostomes, it forms through invagination of the endoderm, called enterocoelic pouching.[107] Deuterostome embryos undergo radial cleavage during cell division, while protostomes undergo spiral cleavage.[108]

All this suggests the deuterostomes and protostomes are separate, monophyletic lineages. The main phyla of deuterostomes are the Echinodermata and Chordata.[109] The former are radially symmetric and exclusively marine, such as starfish, sea urchins, and sea cucumbers.[110] The latter are dominated by the vertebrates, animals with backbones.[111] These include fish, amphibians, reptiles, birds, and mammals.[112]

The deuterostomes also include the Hemichordata, or acorn worms, which are thought to be closely related to Echinodermata forming a group known as Ambulacraria.[113][114] Although they are not especially prominent today, the important fossil graptolites may belong to this group.[115]

Ecdysozoa

 
Yellow-winged darter, Sympetrum flaveolum

The Ecdysozoa are protostomes, named after the common trait of growth by moulting or ecdysis.[116] The largest animal phylum belongs here, the Arthropoda, including insects, spiders, crabs, and their kin. All these organisms have a body divided into repeating segments, typically with paired appendages. Two smaller phyla, the Onychophora and Tardigrada, are close relatives of the arthropods and share these traits. The ecdysozoans also include the Nematoda or roundworms, perhaps the second largest animal phylum. Roundworms are typically microscopic, and occur in nearly every environment where there is water.[117] A number are important parasites.[118] Smaller phyla related to them are the Nematomorpha or horsehair worms, and the Kinorhyncha, Priapulida, and Loricifera. These groups have a reduced coelom, called a pseudocoelom.

 
Roman snail, Helix pomatia

Lophotrochozoa

The Lophotrochozoa, evolved within Protostomia, include two of the most successful animal phyla, the Mollusca and Annelida.[119][120] The former, which is the second-largest animal phylum by number of described species, includes animals such as snails, clams, and squids, and the latter comprises the segmented worms, such as earthworms and leeches. These two groups have long been considered close relatives because of the common presence of trochophore larvae, but the annelids were considered closer to the arthropods because they are both segmented.[121] Now, this is generally considered convergent evolution, owing to many morphological and genetic differences between the two phyla.[122] Lophotrochozoa also includes the Nemertea or ribbon worms, the Sipuncula, and several phyla that have a ring of ciliated tentacles around the mouth, called a lophophore.[123] These were traditionally grouped together as the lophophorates.[124] but it now appears that the lophophorate group may be paraphyletic,[125] with some closer to the nemerteans and some to the molluscs and annelids.[126][127] They include the Brachiopoda or lamp shells, which are prominent in the fossil record, the Entoprocta, the Phoronida, and possibly the Bryozoa or moss animals.[128]

The Platyzoa include the phylum Platyhelminthes, the flatworms.[129] These were originally considered some of the most primitive Bilateria, but it now appears they developed from more complex ancestors.[130] A number of parasites are included in this group, such as the flukes and tapeworms.[129] Flatworms are acoelomates, lacking a body cavity, as are their closest relatives, the microscopic Gastrotricha.[131] The other platyzoan phyla are mostly microscopic and pseudocoelomate. The most prominent are the Rotifera or rotifers, which are common in aqueous environments. They also include the Acanthocephala or spiny-headed worms, the Gnathostomulida, Micrognathozoa, and possibly the Cycliophora.[132] These groups share the presence of complex jaws, from which they are called the Gnathifera.

A relationship between the Brachiopoda and Nemertea has been suggested by molecular data.[133] A second study has also suggested this relationship.[134] This latter study also suggested that Annelida and Mollusca may be sister clades. Another study has suggested that Annelida and Mollusca are sister clades.[135] This clade has been termed the Neotrochozoa.

 
Carl Linnaeus is known as the father of modern taxonomy.[136]

History of classification

Aristotle divided animals into those with blood and those without. He also divided animals from plants, and this was followed by Carl Linnaeus, in the first hierarchical classification.[137] In Linnaeus's original scheme, the animals were one of three kingdoms, divided into the classes of Vermes, Insecta, Pisces, Amphibia, Aves, and Mammalia. Since then the last four have all been subsumed into a single phylum, the Chordata, whereas the various other forms have been separated out.

In 1874, Ernst Haeckel divided the animal kingdom into two subkingdoms: Metazoa (multicellular animals) and Protozoa (single-celled animals).[138] The protozoa were later moved to the former kingdom Protista, leaving only the metazoa. Thus Metazoa is now considered a synonym of Animalia.[139]

In human culture

 
Artistic vision: Still Life with Lobster and Oysters by Alexander Coosemans, c. 1660
 
Sides of beef in a slaughterhouse

The human population exploits a large number of other animal species for food, both of domesticated livestock species in animal husbandry and, mainly at sea, by hunting wild species.[140][141] Marine fish of many species are caught commercially for food. A smaller number of species are farmed commercially.[140][142][143] Invertebrates including cephalopods, crustaceans, and bivalve or gastropod molluscs are hunted or farmed for food.[144] Chickens, cattle, sheep, pigs and other animals are raised as livestock for meat across the world.[141][145][146] Animal fibres such as wool are used to make textiles, while animal sinews have been used as lashings and bindings, and leather is widely used to make shoes and other items. Animals have been hunted and farmed for their fur to make items such as coats and hats.[147][148] Dyestuffs including carmine (cochineal),[149][150] shellac,[151][152] and kermes[153][154][155][156][157] have been made from the bodies of insects. Working animals including cattle and horses have been used for work and transport from the origins of agriculture.[158]

Animals such as the fruit fly Drosophila melanogaster serve a major role in science as experimental models.[159][160][161][162] Animals have been used to create vaccines since their discovery in the 18th century.[163] Some medicines such as the cancer drug Yondelis are based on toxins or other molecules of animal origin.[164]

People have used hunting dogs to help chase down animals,[165] and birds of prey to catch birds and mammals,[166] while tethered cormorants have been used to catch fish.[167] Poison dart frogs have been used to poison the tips of blowpipe darts.[168][169] A wide variety of animals are kept as pets, from invertebrates such as tarantulas and octopuses, insects including praying mantises,[170] reptiles such as snakes and chameleons,[171] and birds including canaries, parakeets and parrots[172] all finding a place. However, the most kept pet species are dogs, cats, and rabbits.[173][174][175] There is a tension between the role of animals as companions to humans, and their existence as individuals with rights of their own.[176] A wide variety of terrestrial and aquatic animals are hunted for sport.[177]

Animals have been the subjects of art from the earliest times, both historical, as in Ancient Egypt, and prehistoric, as in the cave paintings at Lascaux. Major animal paintings include Albrecht Dürer's 1515 The Rhinoceros, and George Stubbs's c. 1762 horse portrait Whistlejacket.[178] Insects, birds and mammals play roles in literature and film,[179] such as in giant bug movies.[180][181][182] Animals including insects[183] and mammals[184] feature in mythology and religion. In both Japan and Europe, a butterfly was seen as the personification of a person's soul,[183][185][186] while the scarab beetle was sacred in ancient Egypt.[187] Among the mammals, cattle,[188] deer,[184] horses,[189] lions,[190] bats[191][192][193][194][195] and wolves[196] are the subjects of myths and worship. The signs of the Western and Chinese zodiacs are based on animals.[197][198][199]

See also

References

  1. ^ Harzsch, S.; Müller, C. H. (18 May 2007). "A new look at the ventral nerve centre of Sagitta: implications for the phylogenetic position of Chaetognatha (arrow worms) and the evolution of the bilaterian nervous system". Frontiers in Zoology. 4: 14. doi:10.1186/1742-9994-4-14. PMC 1885248 . PMID 17511857. 
  2. ^ Annelid phylogeny and status of Sipuncula and Echiura
  3. ^ Cresswell, Julia (2010). The Oxford Dictionary of Word Origins (2nd ed.). New York: Oxford University Press. ISBN 978-0-19-954793-7. 'having the breath of life', from anima 'air, breath, life'. 
  4. ^ "Animal". The American Heritage Dictionary (4th ed.). Houghton Mifflin Company. 2006. 
  5. ^ "Animals". Merriam-Webster's. Retrieved 16 May 2010. 2 a : one of the lower animals as distinguished from human beings b : mammal; broadly : vertebrate 
  6. ^ Vernon L. Avila (1995). Biology: Investigating Life on Earth. Jones & Bartlett Learning. pp. 767–. ISBN 978-0-86720-942-6. 
  7. ^ a b "Palaeos:Metazoa". Palaeos. Retrieved 25 February 2018. 
  8. ^ Bergman, Jennifer. "Heterotrophs". Archived from the original on 29 August 2007. Retrieved 30 September 2007. 
  9. ^ Douglas, Angela E.; Raven, John A. (January 2003). "Genomes at the interface between bacteria and organelles". Philosophical Transactions of the Royal Society B. 358 (1429): 5–17. doi:10.1098/rstb.2002.1188. PMC 1693093 . PMID 12594915. 
  10. ^ Davidson, Michael W. "Animal Cell Structure". Archived from the original on 20 September 2007. Retrieved 20 September 2007. 
  11. ^ Saupe, S. G. "Concepts of Biology". Retrieved 30 September 2007. 
  12. ^ Minkoff, Eli C. (2008). Barron's EZ-101 Study Keys Series: Biology (2nd, revised ed.). Barron's Educational Series. p. 48. ISBN 978-0-7641-3920-8. 
  13. ^ Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2002). Molecular Biology of the Cell (4th ed.). New York: Garland Science. Retrieved 2015-03-23. 
  14. ^ Sangwal 2007, p. 212
  15. ^ Becker, Wayne M. (1991). The world of the cell. Benjamin/Cummings. ISBN 978-0-8053-0870-9. 
  16. ^ a b c Adam-Carr, Christine; Hayhoe, Christy; Hayhoe, Douglas; Hayhoe, Katharine (2010). Science Perspectives 10. Nelson Education Ltd. ISBN 978-0-17-635528-9. 
  17. ^ Magloire 2004, p. 45
  18. ^ Starr, Cecie (2007-09-25). Biology: Concepts and Applications without Physiology. Cengage Learning. ISBN 0495381500. 
  19. ^ Hillmer, Gero; Lehmann, Ulrich (1983). Fossil Invertebrates. Translated by J. Lettau. CUP Archive. p. 54. ISBN 978-0-521-27028-1. ISSN 0266-3236. Retrieved 2015-03-23. 
  20. ^ Knobil, Ernst (1998). Encyclopedia of reproduction, Volume 1. Academic Press. p. 315. ISBN 978-0-12-227020-8. 
  21. ^ Schwartz, Jill (2010). Master the GED 2011 (w/CD). Peterson's. p. 371. ISBN 978-0-7689-2885-3. 
  22. ^ Hamilton, Matthew B. (2009). Population genetics. Wiley-Blackwell. p. 55. ISBN 978-1-4051-3277-0. 
  23. ^ Adiyodi, K. G.; Hughes, Roger N.; Adiyodi, Rita G. (July 2002). Reproductive Biology of Invertebrates, Volume 11, Progress in Asexual Reproduction. Wiley. p. 116. 
  24. ^ Kaplan (2008). GRE exam subject test. Kaplan Publishing. p. 233. ISBN 978-1-4195-5218-2. 
  25. ^ a b Pusey A, Wolf M (1996). "Inbreeding avoidance in animals". Trends Ecol. Evol. 11 (5): 201–206. doi:10.1016/0169-5347(96)10028-8. PMID 21237809. 
  26. ^ Charlesworth D, Willis JH (2009). "The genetics of inbreeding depression". Nat. Rev. Genet. 10 (11): 783–796. doi:10.1038/nrg2664. PMID 19834483. 
  27. ^ Bernstein H, Hopf FA, Michod RE (1987). "The molecular basis of the evolution of sex". Adv. Genet. Advances in Genetics. 24: 323–370. doi:10.1016/s0065-2660(08)60012-7. ISBN 9780120176243. PMID 3324702. 
  28. ^ Petrie, M.; Kempenaers, B. (1998). "Extra-pair paternity in birds: Explaining variation between species and populations". Trends in Ecology and Evolution. 13 (2): 52–57. doi:10.1016/s0169-5347(97)01232-9. PMID 21238200. 
  29. ^ Tmh (2006). Study Package For Medical College Entrance Examinations. Tata McGraw-Hill. p. 6.22. ISBN 978-0-07-061637-0. 
  30. ^ Ville, Claude Alvin; Walker, Warren Franklin; Barnes, Robert D. (1984). General zoology. Saunders College Pub. p. 467. ISBN 978-0-03-062451-3. 
  31. ^ Hamilton, William James; Boyd, James Dixon; Mossman, Harland Winfield (1945). Human embryology: (prenatal development of form and function). Williams & Wilkins. p. 330. 
  32. ^ Philips, Joy B. (1975). Development of vertebrate anatomy. Mosby. p. 176. ISBN 978-0-8016-3927-2. 
  33. ^ The Encyclopedia Americana: a library of universal knowledge, Volume 10. Encyclopedia Americana Corp. 1918. p. 281. 
  34. ^ Romoser, William S.; Stoffolano, J. G. (1998). The science of entomology. WCB McGraw-Hill. p. 156. ISBN 978-0-697-22848-2. 
  35. ^ Rastogi, V. B. (1997). Modern Biology. Pitambar Publishing. p. 3. ISBN 978-81-209-0496-5. 
  36. ^ Levy, Charles K. (1973). Elements of Biology. Appleton-Century-Crofts. p. 108. ISBN 978-0-390-55627-1. 
  37. ^ Begon, M., Townsend, C., Harper, J. (1996). Ecology: Individuals, populations and communities (Third edition). Blackwell Science, London. ISBN 0-86542-845-X, ISBN 0-632-03801-2, ISBN 0-632-04393-8.
  38. ^ predation. Britannica.com. Retrieved on 2011-11-23.
  39. ^ Marchetti, Mauro; Rivas, Victoria (2001). Geomorphology and environmental impact assessment. Taylor & Francis. p. 84. ISBN 978-90-5809-344-8. 
  40. ^ Allen, Larry Glen; Pondella, Daniel J.; Horn, Michael H. (2006). Ecology of marine fishes: California and adjacent waters. University of California Press. p. 428. ISBN 978-0-520-24653-9. 
  41. ^ Clutterbuck, Peter (2000). Understanding Science: Upper Primary. Blake Education. p. 9. ISBN 978-1-86509-170-9. 
  42. ^ Gupta, P.K. Genetics Classical To Modern. Rastogi Publications. p. 26. ISBN 978-81-7133-896-2. 
  43. ^ Garrett, Reginald; Grisham, Charles M. (2010). Biochemistry. Cengage Learning. p. 535. ISBN 978-0-495-10935-8. 
  44. ^ New Scientist. IPC Magazines. 152 (2050–2055): 105. 1996. 
  45. ^ Castro, Peter; Huber, Michael E. (2007). Marine Biology (7th ed.). McGraw-Hill. p. 376. ISBN 978-0-07-722124-9. 
  46. ^ http://www.123rf.com /clipart-vector/vulpes_vulpes.html
  47. ^ Woese C, Fox G (1977). "Phylogenetic structure of the bacteria domain: the primary kingdoms". Proc Natl Acad Sci USA. 74 (11): 5088–5090. Bibcode:1977PNAS...74.5088W. doi:10.1073/pnas.74.11.5088. PMC 432104 . PMID 270744. 
  48. ^ a b Woese C, Kandler O, Wheelis M (1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya". Proc Natl Acad Sci USA. 87 (12): 4576–4579. Bibcode:1990PNAS...87.4576W. doi:10.1073/pnas.87.12.4576. PMC 54159 . PMID 2112744. Retrieved 2010-02-11. 
  49. ^ Campbell, Niel A. (1990). Biology (2nd ed.). Benjamin/Cummings Pub. Co. p. 560. ISBN 978-0-8053-1800-5. 
  50. ^ Richard R. Behringer; Alexander D. Johnson; Robert E. Krumlauf; Michael K. Levine; Nipam Patel; Neelima Sinha, eds. (2008). Emerging model organisms: a laboratory manual, Volume 1 (illustrated ed.). Cold Spring Harbor Laboratory Press. p. 1. ISBN 978-0-87969-872-0. 
  51. ^ Hall, Brian Keith; Hallgrímsson, Benedikt; Strickberger, Monroe W. (2008). Strickberger's evolution: the integration of genes, organisms and populations. Jones & Bartlett Learning. p. 278. ISBN 978-0-7637-0066-9. 
  52. ^ Hamilton, Gina. Kingdoms of Life – Animals (ENHANCED eBook). Lorenz Educational Press. p. 9. ISBN 978-1-4291-1610-7. 
  53. ^ a b Maloof, Adam C.; Rose, Catherine V.; Beach, Robert; Samuels, Bradley M.; Calmet, Claire C.; Erwin, Douglas H.; Poirier, Gerald R.; Yao, Nan; Simons, Frederik J. (17 August 2010). "Possible animal-body fossils in pre-Marinoan limestones from South Australia". Nature Geoscience. 3 (9): 653–659. Bibcode:2010NatGe...3..653M. doi:10.1038/ngeo934.  Pdf
  54. ^ Costa, James T.; Darwin, Charles (2009). The annotated Origin: a facsimile of the first edition of On the origin of species. Harvard University Press. p. 308. ISBN 978-0-674-03281-1. 
  55. ^ Schopf, J. William (1999). Evolution!: facts and fallacies. Academic Press. p. 7. ISBN 978-0-12-628860-5. 
  56. ^ Milsom, Clare; Rigby, Sue (2009). Fossils at a Glance. John Wiley and Sons. ISBN 978-1-4051-9336-8. 
  57. ^ "Monster fish crushed opposition with strongest bite ever". smh.com.au. 
  58. ^ Campbell, Neil A.; Reece, Jane B. (2005). Biology (7th ed.). Pearson, Benjamin Cummings. p. 526. ISBN 978-0-8053-7171-0. 
  59. ^ Seilacher, Adolf; Bose, Pradip K.; Pfluger, Friedrich (2 October 1998). "Triploblastic animals more than 1 billion years ago: trace fossil evidence from india". Science. 282 (5386): 80–83. Bibcode:1998Sci...282...80S. doi:10.1126/science.282.5386.80. PMID 9756480. 
  60. ^ Matz, Mikhail V.; Frank, Tamara M.; Marshall, N. Justin; Widder, Edith A.; Johnsen, Sönke (9 December 2008). "Giant Deep-Sea Protist Produces Bilaterian-like Traces" (PDF). Current Biology. 18 (23): 1–6. doi:10.1016/j.cub.2008.10.028. PMID 19026540. Archived (PDF) from the original on 16 December 2008. Retrieved 2008-12-05. 
  61. ^ Reilly, Michael (20 November 2008). "Single-celled giant upends early evolution". MSNBC. Retrieved 2008-12-05. 
  62. ^ a b The World Conservation Union. 2014. IUCN Red List of Threatened Species, 2014.3. Summary Statistics for Globally Threatened Species. Table 1: Numbers of threatened species by major groups of organisms (1996–2014).
  63. ^ Budd, Graham E; Jensen, Sören (2017). "The origin of the animals and a 'Savannah' hypothesis for early bilaterian evolution". Biological Reviews. 92 (1): 446–473. doi:10.1111/brv.12239. PMID 26588818. 
  64. ^ Feuda, Roberto; Dohrmann, Martin; Pett, Walker; Philippe, Hervé; Rota-Stabelli, Omar; Lartillot, Nicolas; Wörheide, Gert; Pisani, Davide (2017). "Improved Modeling of Compositional Heterogeneity Supports Sponges as Sister to All Other Animals". Current Biology. 27 (24): 3864. doi:10.1016/j.cub.2017.11.008. PMID 29199080. 
  65. ^ Pisani, Davide; Pett, Walker; Dohrmann, Martin; Feuda, Roberto; Rota-Stabelli, Omar; Philippe, Hervé; Lartillot, Nicolas; Wörheide, Gert (15 December 2015). "Genomic data do not support comb jellies as the sister group to all other animals". Proceedings of the National Academy of Sciences. 112 (50): 15402–15407. Bibcode:2015PNAS..11215402P. doi:10.1073/pnas.1518127112. PMC 4687580 . PMID 26621703. 
  66. ^ Simion, Paul; Philippe, Hervé; Baurain, Denis; Jager, Muriel; Richter, Daniel J.; Franco, Arnaud Di; Roure, Béatrice; Satoh, Nori; Quéinnec, Éric (3 April 2017). "A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals". Current Biology. 27 (7): 958–967. doi:10.1016/j.cub.2017.02.031. PMID 28318975. 
  67. ^ Giribet, Gonzalo (1 October 2016). "Genomics and the animal tree of life: conflicts and future prospects". Zoologica Scripta. 45: 14–21. doi:10.1111/zsc.12215. ISSN 1463-6409. 
  68. ^ Laumer, Christopher E.; Gruber-Vodicka, Harald; Hadfield, Michael G.; Pearse, Vicki B.; Riesgo, Ana; Marioni, John C.; Giribet, Gonzalo (2017-10-11). "Placozoans are eumetazoans related to Cnidaria". BioRxiv: 200972. doi:10.1101/200972. 
  69. ^ Eitel, Michael; Francis, Warren; Osigus, Hans-Jürgen; Krebs, Stefan; Vargas, Sergio; Blum, Helmut; Williams, Gray Argust; Schierwater, Bernd; Wörheide, Gert (2017-10-13). "A taxogenomics approach uncovers a new genus in the phylum Placozoa". BioRxiv: 202119. doi:10.1101/202119. 
  70. ^ Dunn, Casey W.; Hejnol, Andreas; Matus, David Q.; Pang, Kevin; Browne, William E.; Smith, Stephen A.; Seaver, Elaine; Rouse, Greg W.; Obst, Matthias (2008). "Broad phylogenomic sampling improves resolution of the animal tree of life". Nature. 452 (7188): 745–749. Bibcode:2008Natur.452..745D. doi:10.1038/nature06614. 
  71. ^ Whelan, Nathan V.; Kocot, Kevin M.; Moroz, Tatiana P.; Mukherjee, Krishanu; Williams, Peter; Paulay, Gustav; Moroz, Leonid L.; Halanych, Kenneth M. (2017-10-09). "Ctenophore relationships and their placement as the sister group to all other animals". Nature Ecology & Evolution. 1 (11): 1737. doi:10.1038/s41559-017-0331-3. ISSN 2397-334X. 
  72. ^ Shen, Xing-Xing; Hittinger, Chris Todd; Rokas, Antonis (2017-04-10). "Contentious relationships in phylogenomic studies can be driven by a handful of genes". Nature Ecology & Evolution. 1 (5): 0126. doi:10.1038/s41559-017-0126. ISSN 2397-334X. 
  73. ^ Ryan, Joseph F.; Pang, Kevin; Schnitzler, Christine E.; Nguyen, Anh-Dao; Moreland, R. Travis; Simmons, David K.; Koch, Bernard J.; Francis, Warren R.; Havlak, Paul (13 December 2013). "The Genome of the Ctenophore Mnemiopsis leidyi and Its Implications for Cell Type Evolution". Science. 342 (6164): 1242592. doi:10.1126/science.1242592. ISSN 0036-8075. PMC 3920664 . PMID 24337300. 
  74. ^ Peterson, Kevin J.; Cotton, James A.; Gehling, James G.; Pisani, Davide (27 April 2008). "The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records". Philosophical Transactions of the Royal Society of London B: Biological Sciences. 363 (1496): 1435–1443. doi:10.1098/rstb.2007.2233. ISSN 0962-8436. PMID 18192191. 
  75. ^ Parfrey, Laura Wegener; Lahr, Daniel J. G.; Knoll, Andrew H.; Katz, Laura A. (16 August 2011). "Estimating the timing of early eukaryotic diversification with multigene molecular clocks". Proceedings of the National Academy of Sciences. 108 (33): 13624–13629. Bibcode:2011PNAS..10813624P. doi:10.1073/pnas.1110633108. ISSN 0027-8424. PMID 21810989. 
  76. ^ Peterson, Kevin J; Eernisse, Douglas J (2001). "Animal phylogeny and the ancestry of bilaterians: Inferences from morphology and 18S rDNA gene sequences". Evolution and Development. 3 (3): 170. doi:10.1046/j.1525-142x.2001.003003170.x. PMID 11440251. Retrieved 25 February 2018. 
  77. ^ Kraemer-Eis, Andrea; Ferretti, Luca; Schiffer, Philipp; Heger, Peter; Wiehe, Thomas (2016). "A catalogue of Bilaterian-specific genes - their function and expression profiles in early development" (PDF). doi:10.1101/041806. Retrieved 25 February 2018. 
  78. ^ Ryan, Joseph F.; Pang, Kevin; Mullikin, James C.; Martindale, Mark Q.; Baxevanis, Andreas D. (2010-10-04). "The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa". EvoDevo. 1 (1): 9. doi:10.1186/2041-9139-1-9. ISSN 2041-9139. PMC 2959044 . PMID 20920347. 
  79. ^ Bhamrah, H. S.; Juneja, Kavita (2003). An Introduction to Porifera. Anmol Publications PVT. LTD. p. 58. ISBN 978-81-261-0675-2. 
  80. ^ Sumich, James L. (2008). Laboratory and Field Investigations in Marine Life. Jones & Bartlett Learning. p. 67. ISBN 978-0-7637-5730-4. 
  81. ^ Jessop, Nancy Meyer (1970). Biosphere; a study of life. Prentice-Hall. p. 428. 
  82. ^ Sharma, N. S. (2005). Continuity And Evolution Of Animals. Mittal Publications. p. 106. ISBN 978-81-8293-018-6. 
  83. ^ a b Dunn, Casey W.; et al. (April 2008). "Broad phylogenomic sampling improves resolution of the animal tree of life". Nature. 452 (7188): 745–749. Bibcode:2008Natur.452..745D. doi:10.1038/nature06614. PMID 18322464. 
  84. ^ Ryan, Joseph F.; Pang, Kevin; Schnitzler, Christine E.; Nguyen, Anh-Dao; Moreland, R. Travis; Simmons, David K.; Koch, Bernard J.; Francis, Warren R.; Havlak, Paul (13 December 2013). "The Genome of the Ctenophore Mnemiopsis leidyi and Its Implications for Cell Type Evolution". Science. 342 (6164): 1242592. doi:10.1126/science.1242592. ISSN 0036-8075. PMC 3920664 . PMID 24337300. 
  85. ^ Moroz, Leonid L.; Kocot, Kevin M.; Citarella, Mathew R.; Dosung, Sohn; Norekian, Tigran P.; Povolotskaya, Inna S.; Grigorenko, Anastasia P.; Dailey, Christopher; Berezikov, Eugene (5 June 2014). "The ctenophore genome and the evolutionary origins of neural systems". Nature. 510 (7503): 109–114. Bibcode:2014Natur.510..109M. doi:10.1038/nature13400. ISSN 0028-0836. PMC 4337882 . PMID 24847885. 
  86. ^ Whelan, Nathan V.; Kocot, Kevin M.; Moroz, Leonid L.; Halanych, Kenneth M. (5 May 2015). "Error, signal, and the placement of Ctenophora sister to all other animals". Proceedings of the National Academy of Sciences. 112 (18): 5773–5778. Bibcode:2015PNAS..112.5773W. doi:10.1073/pnas.1503453112. PMC 4426464 . PMID 25902535. 
  87. ^ Philippe, Hervé; Derelle, Romain; Lopez, Philippe; Pick, Kerstin; Borchiellini, Carole; Boury-Esnault, Nicole; Vacelet, Jean; Renard, Emmanuelle; Houliston, Evelyn (April 2009). "Phylogenomics Revives Traditional Views on Deep Animal Relationships". Current Biology. 19 (8): 706–712. doi:10.1016/j.cub.2009.02.052. ISSN 0960-9822. PMID 19345102. 
  88. ^ Pick, K. S.; Philippe, H.; Schreiber, F.; Erpenbeck, D.; Jackson, D. J.; Wrede, P.; Wiens, M.; Alié, A.; Morgenstern, B. (September 2010). "Improved Phylogenomic Taxon Sampling Noticeably Affects Nonbilaterian Relationships". Molecular Biology and Evolution. 27 (9): 1983–1987. doi:10.1093/molbev/msq089. ISSN 0737-4038. PMC 2922619 . PMID 20378579. 
  89. ^ Nosenko, Tetyana; Schreiber, Fabian; Adamska, Maja; Adamski, Marcin; Eitel, Michael; Hammel, Jörg; Maldonado, Manuel; Müller, Werner E. G.; Nickel, Michael (1 April 2013). "Deep metazoan phylogeny: When different genes tell different stories". Molecular Phylogenetics and Evolution. 67 (1): 223–233. doi:10.1016/j.ympev.2013.01.010. PMID 23353073. 
  90. ^ Pisani, Davide; Pett, Walker; Dohrmann, Martin; Feuda, Roberto; Rota-Stabelli, Omar; Philippe, Hervé; Lartillot, Nicolas; Wörheide, Gert (15 December 2015). "Genomic data do not support comb jellies as the sister group to all other animals". Proceedings of the National Academy of Sciences. 112 (50): 15402–15407. Bibcode:2015PNAS..11215402P. doi:10.1073/pnas.1518127112. ISSN 0027-8424. PMC 4687580 . PMID 26621703. 
  91. ^ Evolution and Development. page 38 Archived 2 March 2014 at the Wayback Machine.
  92. ^ Jakob W, Sagasser S, Dellaporta S, Holland P, Kuhn K, Schierwater B (2004) The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary. Dev Genes Evol 214(4): 170–175
  93. ^ Arcila D, Ortí G, Vari R, Armbruster JW, Stiassny MLJ, Ko KD, Sabaj MH, Lundberg J, Revell LJ, Betancur-R R (2017) Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life. Nat Ecol Evol 1(2): 20. doi:10.1038/s41559-016-0020
  94. ^ Borowiec, Marek L.; Lee, Ernest K.; Chiu, Joanna C.; Plachetzki, David C. (2015-11-23). "Extracting phylogenetic signal and accounting for bias in whole-genome data sets supports the Ctenophora as sister to remaining Metazoa". BMC Genomics. 16 (1): 987. doi:10.1186/s12864-015-2146-4. ISSN 1471-2164. PMC 4657218 . PMID 26596625. 
  95. ^ Langstroth, Lovell; Langstroth, Libby (2000). Newberry, Todd, ed. A Living Bay: The Underwater World of Monterey Bay. University of California Press. p. 244. ISBN 978-0-520-22149-9. 
  96. ^ Safra, Jacob E. (2003). The New Encyclopædia Britannica, Volume 16. Encyclopædia Britannica. p. 523. ISBN 978-0-85229-961-6. 
  97. ^ Kotpal, R. L. Modern Text Book of Zoology: Invertebrates. Rastogi Publications. p. 184. ISBN 978-81-7133-903-7. 
  98. ^ Chang, E. Sally; Neuhof, Moran; Rubinstein, Nimrod D.; Diamant, Arik; Philippe, Hervé; Huchon, Dorothée; Cartwright, Paulyn (1 December 2015). "Genomic insights into the evolutionary origin of Myxozoa within Cnidaria". Proceedings of the National Academy of Sciences. 112 (48): 14912–14917. Bibcode:2015PNAS..11214912C. doi:10.1073/pnas.1511468112. ISSN 0027-8424. PMC 4672818 . PMID 26627241. 
  99. ^ Marlétaz, Ferdinand; Martin, Elise; Perez, Yvan; Papillon, Daniel; Caubit, Xavier; Lowe, Christopher J.; Freeman, Bob; Fasano, Laurent; Dossat, Carole (8 August 2006). "Chaetognath phylogenomics: a protostome with deuterostome-like development". Current Biology. 16 (15): R577–R578. doi:10.1016/j.cub.2006.07.016. ISSN 0960-9822. PMID 16890510. 
  100. ^ Hejnol, A.; Obst, M.; Stamatakis, A.; Ott, M.; Rouse, G. W.; Edgecombe, G. D.; et al. (2009). "Assessing the root of bilaterian animals with scalable phylogenomic methods". Proceedings of the Royal Society B: Biological Sciences. 276 (1677): 4261–4270. doi:10.1098/rspb.2009.0896. PMC 2817096 . PMID 19759036. 
  101. ^ a b Philippe, H.; Brinkmann, H.; Copley, R. R.; Moroz, L. L.; Nakano, H.; Poustka, A. J.; Wallberg, A.; Peterson, K. J.; Telford, M. J. (2011). "Acoelomorph flatworms are deuterostomes related to Xenoturbella". Nature. 470 (7333): 255–258. Bibcode:2011Natur.470..255P. doi:10.1038/nature09676. PMC 4025995 . PMID 21307940. 
  102. ^ Edgecombe, G. D.; Giribet, G.; Dunn, C. W.; Hejnol, A.; Kristensen, R. M.; Neves, R. C.; Rouse, G. W.; Worsaae, K.; Sørensen, M. V. (2011). "Higher-level metazoan relationships: Recent progress and remaining questions". Organisms Diversity & Evolution. 11 (2): 151–172. doi:10.1007/s13127-011-0044-4. 
  103. ^ Rouse, Greg W.; Wilson, Nerida G.; Carvajal, Jose I.; Vrijenhoek, Robert C. (3 February 2016). "New deep-sea species of Xenoturbella and the position of Xenacoelomorpha". Nature. 530 (7588): 94–97. Bibcode:2016Natur.530...94R. doi:10.1038/nature16545. PMID 26842060. Retrieved 3 February 2016. 
  104. ^ Cannon, Johanna T.; Vellutini, Bruno C.; Smith III, Julian.; Ronquist, Frederik; Jondelius, Ulf; Hejnol, Andreas (3 February 2016). "Xenacoelomorpha is the sister group to Nephrozoa". Nature. 530 (7588): 89–93. Bibcode:2016Natur.530...89C. doi:10.1038/nature16520. PMID 26842059. Retrieved 3 February 2016. 
  105. ^ Gone Missing, circa 1892
  106. ^ Peters, Kenneth E.; Walters, Clifford C.; Moldowan, J. Michael (2005). The Biomarker Guide: Biomarkers and isotopes in petroleum systems and Earth history. 2. Cambridge University Press. p. 717. ISBN 978-0-521-83762-0. 
  107. ^ Safra, Jacob E. (2003). The New Encyclopædia Britannica, Volume 1; Volume 3. Encyclopædia Britannica. p. 767. ISBN 978-0-85229-961-6. 
  108. ^ Valentine, James W. (July 1997). "Cleavage patterns and the topology of the metazoan tree of life". PNAS. The National Academy of Sciences. 94 (15): 8001–8005. Bibcode:1997PNAS...94.8001V. doi:10.1073/pnas.94.15.8001. PMC 21545 . PMID 9223303. 
  109. ^ Hyde, Kenneth (2004). Zoology: An Inside View of Animals. Kendall Hunt. p. 345. ISBN 978-0-7575-0997-1. 
  110. ^ Alcamo, Edward (1998). Biology Coloring Workbook. The Princeton Review. p. 220. ISBN 978-0-679-77884-4. 
  111. ^ Holmes 2008, p. 64.
  112. ^ Rice, Stanley A. (2007). Encyclopedia of evolution. Infobase Publishing. p. 75. ISBN 978-0-8160-5515-9. 
  113. ^ Tobin, Allan J.; Dusheck, Jennie (2005). Asking about life. Cengage Learning. p. 497. ISBN 978-0-534-40653-0. 
  114. ^ Simakov, Oleg; Kawashima, Takeshi; Marlétaz, Ferdinand; Jenkins, Jerry; Koyanagi, Ryo; Mitros, Therese; Hisata, Kanako; Bredeson, Jessen; Shoguchi, Eiichi (26 November 2015). "Hemichordate genomes and deuterostome origins". Nature. 527 (7579): 459–465. Bibcode:2015Natur.527..459S. doi:10.1038/nature16150. ISSN 0028-0836. PMC 4729200 . PMID 26580012. 
  115. ^ Safra, Jacob E. (2003). The New Encyclopædia Britannica, Volume 19. Encyclopædia Britannica. p. 791. ISBN 978-0-85229-961-6. 
  116. ^ Dawkins, Richard (2005). The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution. Houghton Mifflin Harcourt. p. 381. ISBN 978-0-618-61916-0. 
  117. ^ Prewitt, Nancy L.; Underwood, Larry S.; Surver, William (2003). BioInquiry: making connections in biology. John Wiley. p. 289. ISBN 978-0-471-20228-8. 
  118. ^ Schmid-Hempel, Paul (1998). Parasites in social insects. Princeton University Press. p. 75. ISBN 978-0-691-05924-2. 
  119. ^ "Biodiversity: Mollusca". The Scottish Association for Marine Science. Archived from the original on 8 July 2006. Retrieved 2007-11-19. 
  120. ^ Russell, Bruce J. (Writer), Denning, David (Writer) (2000). Branches on the Tree of Life: Annelids (VHS). BioMEDIA ASSOCIATES. 
  121. ^ Eernisse, Douglas J.; Albert, James S.; Anderson, Frank E. (1 September 1992). "Annelida and Arthropoda are not sister taxa: A phylogenetic analysis of spiralean metazoan morphology". Systematic Biology. 41 (3): 305–330. doi:10.2307/2992569. JSTOR 2992569. 
  122. ^ Kim, Chang Bae; Moon, Seung Yeo; Gelder, Stuart R.; Kim, Won (September 1996). "Phylogenetic Relationships of Annelids, Molluscs, and Arthropods Evidenced from Molecules and Morphology". Journal of Molecular Evolution. New York: Springer. 43 (3): 207–215. doi:10.1007/PL00006079. PMID 8703086. 
  123. ^ Collins, Allen G. (1995). The Lophophore. University of California Museum of Paleontology. Retrieved 2015-03-23. 
  124. ^ Adoutte, André; Balavoine, Guillaume; Lartillot, Nicolas; Lespinet, Olivier; Prud'Homme, Benjamin; De Rosa, Renaud (25 April 2000). "The new animal phylogeny: Reliability and implications". Proceedings of the National Academy of Sciences of the United States of America. 97 (9): 4453–4456. Bibcode:2000PNAS...97.4453A. doi:10.1073/pnas.97.9.4453. PMC 34321 . PMID 10781043. 
  125. ^ Passamaneck, Yale J. (2003). "Molecular Phylogenetics of the Metazoan Clade Lophotrochozoa" (PDF). Massachusetts Institute of Technology / Woods Hole Oceanographic Institution. p. 124. Retrieved 2015-03-23. 
  126. ^ Sundberg, Per; Turbeville, J. M.; Lindh, Susanne (September 2001). "Phylogenetic relationships among higher nemertean (Nemertea) taxa inferred from 18S rDNA sequences". Molecular Phylogenetics and Evolution. 20 (3): 327–334. doi:10.1006/mpev.2001.0982. PMID 11527461. 
  127. ^ Boore, Jeffrey L.; Staton, Joseph L. (February 2002). "The mitochondrial genome of the Sipunculid Phascolopsis gouldii supports its association with Annelida rather than Mollusca" (PDF). Molecular Biology and Evolution. 19 (2): 127–137. doi:10.1093/oxfordjournals.molbev.a004065. PMID 11801741. Archived (PDF) from the original on 28 November 2007. Retrieved 2007-11-19. 
  128. ^ Nielsen, Claus (2001). "Bryozoa (Ectoprocta: 'Moss' Animals)". Encyclopedia of Life Sciences. John Wiley & Sons, Ltd. doi:10.1038/npg.els.0001613. ISBN 0-470-01617-5. Retrieved 2008-01-19. 
  129. ^ a b Gilson, Étienne (2004). El espíritu de la filosofía medieval. Ediciones Rialp. p. 384. ISBN 978-84-321-3492-0. 
  130. ^ Ruiz-Trillo, Iñaki; Riutort, Marta; Littlewood, D. Timothy J.; Herniou, Elisabeth A.; Baguña, Jaume (19 March 1999). "Acoel Flatworms: Earliest Extant Bilaterian Metazoans, Not Members of Platyhelminthes". Science. 283 (5409): 1919–1923. Bibcode:1999Sci...283.1919R. doi:10.1126/science.283.5409.1919. PMID 10082465. 
  131. ^ Todaro, Antonio. "Gastrotricha: Overview". Gastrotricha: World Portal. University of Modena & Reggio Emilia. Retrieved 2008-01-26. 
  132. ^ Kristensen, Reinhardt Møbjerg (July 2002). "An Introduction to Loricifera, Cycliophora, and Micrognathozoa". Integrative and Comparative Biology. 42 (3): 641–651. doi:10.1093/icb/42.3.641. PMID 21708760. 
  133. ^ Bourlat, SJ; Nielsen, C; Economou, AD; Telford, MJ (2008). "Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom". Mol Phylogenet Evol. 49 (1): 23–31. doi:10.1016/j.ympev.2008.07.008. PMID 18692145. 
  134. ^ Helmkampf, M; Bruchhaus, I; Hausdorf, B (2008). "Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept". Proc Biol Sci. 275 (1645): 1927–1933. doi:10.1098/rspb.2008.0372. PMC 2593926 . PMID 18495619. 
  135. ^ Giribet, G; Distel, DL; Polz, M; Sterrer, W; Wheeler, WC (2000). "Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology". Syst Biol. 49 (3): 539–562. doi:10.1080/10635159950127385. PMID 12116426. 
  136. ^ Calisher, CH (2007). "Taxonomy: what's in a name? Doesn't a rose by any other name smell as sweet?". Croatian Medical Journal. 48 (2): 268–270. PMC 2080517 . PMID 17436393. 
  137. ^ Linnaeus, Carl (1758). Systema naturae per regna tria naturae :secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis (in Latin) (10th ed.). Holmiae (Laurentii Salvii). Archived from the original on 10 October 2008. Retrieved 22 September 2008. 
  138. ^ Haeckel, Ernst (1874). Anthropogenie oder Entwickelungsgeschichte des menschen (in German). Leipzig. p. 202. 
  139. ^ Hutchins 2003, p. 3
  140. ^ a b "Fisheries and Aquaculture". FAO. Retrieved 8 July 2016. 
  141. ^ a b "Graphic detail Charts, maps and infographics. Counting chickens". The Economist. 27 July 2011. Retrieved 23 June 2016. 
  142. ^ Helfman, Gene S. (2007). Fish Conservation: A Guide to Understanding and Restoring Global Aquatic Biodiversity and Fishery Resources. Island Press. p. 11. ISBN 1-59726-760-0. 
  143. ^ "World Review of Fisheries and Aquaculture" (PDF). fao.org. FAO. Retrieved 13 August 2015. 
  144. ^ "Shellfish climbs up the popularity ladder". HighBeam Research. Retrieved 8 July 2016. 
  145. ^ Cattle Today. "Breeds of Cattle at CATTLE TODAY". Cattle-today.com. Retrieved 15 October 2013. 
  146. ^ Lukefahr, S.D.; Cheeke, P.R. "Rabbit project development strategies in subsistence farming systems". Food and Agriculture Organization. Retrieved 23 June 2016. 
  147. ^ "Animals Used for Clothing". PETA. Retrieved 8 July 2016. 
  148. ^ "Ancient fabrics, high-tech geotextiles". Natural Fibres. Retrieved 8 July 2016. 
  149. ^ "Cochineal and Carmine". Major colourants and dyestuffs, mainly produced in horticultural systems. FAO. Retrieved June 16, 2015. 
  150. ^ "Guidance for Industry: Cochineal Extract and Carmine". FDA. Retrieved 6 July 2016. 
  151. ^ "How Shellac Is Manufactured". The Mail (Adelaide, SA : 1912 – 1954). 18 Dec 1937. Retrieved 17 July 2015. 
  152. ^ Pearnchob, N.; Siepmann, J.; Bodmeier, R. (2003). "Pharmaceutical applications of shellac: moisture-protective and taste-masking coatings and extended-release matrix tablets". Drug Development and Industrial Pharmacy. 29 (8): 925–938. doi:10.1081/ddc-120024188. PMID 14570313. 
  153. ^ Barber, E. J. W. (1991). Prehistoric Textiles. Princeton University Press. pp. 230–231. ISBN 0-691-00224-X. 
  154. ^ Goodwin, Jill (1982). A Dyer's Manual. Pelham. ISBN 0-7207-1327-7. 
  155. ^ Schoeser, Mary (2007). Silk. Yale University Press. pp. 118, 121, 248. ISBN 0-300-11741-8. 
  156. ^ Munro, John H. (2007). Netherton, Robin; Owen-Crocker, Gale R., eds. The Anti-Red Shift – To the Dark Side: Colour Changes in Flemish Luxury Woollens, 1300–1500. Medieval Clothing and Textiles. 3. Boydell Press. pp. 56–57. ISBN 978-1-84383-291-1. 
  157. ^ Munro, John H. (2003). Jenkins, David, ed. Medieval Woollens: Textiles, Technology, and Organisation. The Cambridge History of Western Textiles. Cambridge University Press. pp. 214–215. ISBN 0-521-34107-8. 
  158. ^ Pond, Wilson G. (2004). Encyclopedia of Animal Science. CRC Press. pp. 248–250. ISBN 978-0-8247-5496-9. 
  159. ^ "Genetics Research". Animal Health Trust. Retrieved 24 June 2016. 
  160. ^ "Drug Development". Animal Research.info. Retrieved 24 June 2016. 
  161. ^ "Animal Experimentation". BBC. Retrieved 8 July 2016. 
  162. ^ "EU statistics show decline in animal research numbers". Speaking of Research. 2013. Retrieved January 24, 2016. 
  163. ^ "Vaccines and animal cell technology". Animal Cell Technology Industrial Platform. Retrieved 9 July 2016. 
  164. ^ "Medicines by Design". National Institute of Health. Retrieved 9 July 2016. 
  165. ^ Fergus, Charles (2002). Gun Dog Breeds, A Guide to Spaniels, Retrievers, and Pointing Dogs. The Lyons Press. ISBN 1-58574-618-5. 
  166. ^ "History of Falconry". The Falconry Centre. Retrieved 22 April 2016. 
  167. ^ King, Richard J. (2013). The Devil's Cormorant: A Natural History. University of New Hampshire Press. p. 9. ISBN 978-1-61168-225-0. 
  168. ^ "AmphibiaWeb – Dendrobatidae". AmphibiaWeb. Retrieved 2008-10-10. 
  169. ^ Heying, H. (2003). "Dendrobatidae". Animal Diversity Web. Retrieved 9 July 2016. 
  170. ^ "Other bugs". Keeping Insects. Retrieved 8 July 2016. 
  171. ^ Kaplan, Melissa. "So, you think you want a reptile?". Anapsid.org. Retrieved 8 July 2016. 
  172. ^ "Pet Birds". PDSA. Retrieved 8 July 2016. 
  173. ^ "Animals in Healthcare Facilities" (PDF). 2012. Archived from the original (PDF) on 2016-03-04. 
  174. ^ The Humane Society of the United States. "U.S. Pet Ownership Statistics". Retrieved 27 April 2012. 
  175. ^ USDA. "U.S. Rabbit Industry profile" (PDF). Archived from the original (PDF) on 20 October 2013. Retrieved 10 July 2013. 
  176. ^ Plous, S. (1993). "The Role of Animals in Human Society". Journal of Social Issues. 49 (1): 1–9. doi:10.1111/j.1540-4560.1993.tb00906.x. 
  177. ^ Hummel, Richard (1994). Hunting and Fishing for Sport: Commerce, Controversy, Popular Culture. Popular Press. ISBN 978-0-87972-646-1. 
  178. ^ Jones, Jonathan (27 June 2014). "The top 10 animal portraits in art". The Guardian. Retrieved 24 June 2016. 
  179. ^ Paterson, Jennifer (29 October 2013). "Animals in Film and Media". Oxford Bibliographies. doi:10.1093/obo/9780199791286-0044. Retrieved 24 June 2016. 
  180. ^ Gregersdotter, Katarina; Höglund, Johan; Hållén, Nicklas (2016). Animal Horror Cinema: Genre, History and Criticism. Springer. p. 147. ISBN 978-1-137-49639-3. 
  181. ^ Warren, Bill; Thomas, Bill (2009). Keep Watching the Skies!: American Science Fiction Movies of the Fifties, The 21st Century Edition. McFarland. p. 32. ISBN 978-1-4766-2505-8. 
  182. ^ Crouse, Richard (2008). Son of the 100 Best Movies You've Never Seen. ECW Press. p. 200. ISBN 978-1-55490-330-6. 
  183. ^ a b Hearn, Lafcadio (1904). Kwaidan: Stories and Studies of Strange Things. Dover. ISBN 0-486-21901-1. 
  184. ^ a b "Deer". Trees for Life. Retrieved 23 June 2016. 
  185. ^ "Butterfly". Encyclopedia of Diderot and D'Alembert. Retrieved 10 July 2016. 
  186. ^ Hutchins, M., Arthur V. Evans, Rosser W. Garrison and Neil Schlager (Eds) (2003) Grzimek's Animal Life Encyclopedia, 2nd edition. Volume 3, Insects. Gale, 2003.
  187. ^ Ben-Tor, Daphna (1989). Scarabs, A Reflection of Ancient Egypt. Jerusalem. p. 8. ISBN 965-278-083-9. 
  188. ^ Biswas, Soutik. "Why the humble cow is India's most polarising animal". BBC. Retrieved 9 July 2016. 
  189. ^ Robert Hans van Gulik. Hayagrīva: The Mantrayānic Aspect of Horse-cult in China and Japan. Brill Archive. p. 9. 
  190. ^ Grainger, Richard (24 June 2012). "Lion Depiction across Ancient and Modern Religions". ALERT. Archived from the original on 23 September 2016. Retrieved 6 July 2016. 
  191. ^ Grant, Gilbert S. "Kingdom of Tonga: Safe Haven for Flying Foxes". Batcon.org. Retrieved 2013-06-24. 
  192. ^ "Aztec Symbols". Aztec-history.net. Retrieved 24 June 2013. 
  193. ^ Read, Kay Almere; Gonzalez, Jason J. (2000). Mesoamerican Mythology. Oxford University Press. pp. 132–134. 
  194. ^ "Artists Inspired by Oaxaca Folklore Myths and Legends". Oaxacanwoodcarving.com. Retrieved 24 June 2013. 
  195. ^ Berrin, Katherine & Larco Museum. The Spirit of Ancient Peru:Treasures from the Museo Arqueológico Rafael Larco Herrera. New York: Thames and Hudson, 1997.
  196. ^ McCone, Kim R. (1987). Meid, W., ed. Hund, Wolf, und Krieger bei den Indogermanen. Studien zum indogermanischen Wortschatz. Innsbruck. pp. 101–154. 
  197. ^ Lau, Theodora, The Handbook of Chinese Horoscopes, pp. 2–8, 30–5, 60–4, 88–94, 118–24, 148–53, 178–84, 208–13, 238–44, 270–78, 306–12, 338–44, Souvenir Press, New York, 2005
  198. ^ "he Zodiac and the Ecliptic". Western Washington University. 
  199. ^ Tester, S. Jim (1987). A History of Western Astrology. Boydell & Brewer. pp. 31–33 and passim. ISBN 978-0-85115-446-6. 

Bibliography

External links