Global health is the health of populations in a worldwide context;[1] it has been defined as "the area of study, research, and practice that places a priority on improving health and achieving equity in health for all people worldwide".[2] Problems that transcend national borders or have a global political and economic impact are often emphasized.[3] Thus, global health is about worldwide health improvement (including mental health), reduction of disparities, and protection against global threats that disregard national borders,[4][5] including the most common causes of human death and years of life lost from a global perspective.

The World Health Organization in Geneva, Switzerland

Global health is not to be confused with international health, which is defined as the branch of public health focusing on developing nations and foreign aid efforts by industrialized countries.[6]

One way that global health can be measured is through the prevalence of various global diseases in the world and their threat to decrease life expectancy in the present day. Estimates suggest that in a pre-modern, poor world, life expectancy was around 30 years in all regions of the world (mainly due to high infant mortality).[7] Another holistic perspective called One Health can be used to address global health challenges and to improve global health security.[8][9][10]

The predominant agency associated with global health (and international health) is the World Health Organization (WHO). Other important agencies impacting global health include UNICEF and World Food Programme (WFP). The United Nations system has also played a part in cross-sectoral actions to address global health and its underlying socioeconomic determinants with the declaration of the Millennium Development Goals[11] and the more recent Sustainable Development Goals.

Definition

 
Open Global Health at OpenCon 2015

Global health employs several perspectives that focus on the determinants and distribution of health in international contexts.

Both individuals and organizations working in the domain of global health often face many questions regarding ethical and human rights. Critical examination of the various causes and justifications of health inequities is necessary for the success of proposed solutions. Such issues are discussed at the bi-annual Global Summits of National Ethics/Bioethics Councils.[17]

History

 
Life expectancy by world region, from 1770 to 2018

Global health as a discipline is widely acknwoledged to be of imperial origin and the need for its decolonisation has been widely recognised.[18][19][20] The global health ecosystem has also been criticised as having a feudal structure, acting for a small group of institutions and individuals based in high-income countries which acts similar to an imperial "Crown".[21] Some key leaders of the decolonising global health movement are Seye Abimbola and Madhukar Pai.

Important steps were taken towards global co-operation in health with the formation of the United Nations (UN) and the World Bank Group in 1945, after World War II. In 1948, the member states of the newly formed United Nations gathered to create the World Health Organization. A cholera epidemic that took 20,000 lives in Egypt in 1947 and 1948 helped spur the international community to action.[22] The WHO published its Model List of Essential Medicines, and the 1978 Alma Ata declaration underlined the importance of primary health care.[23]

At a United Nations Summit in 2000, member nations declared eight Millennium Development Goals (MDGs),[24] which reflected the major challenges facing human development globally, to be achieved by 2015.[25] The declaration was matched by unprecedented global investment by donor and recipient countries. According to the UN, these MDGs provided an important framework for development and significant progress has been made in a number of areas.[26] However, progress has been uneven and some of the MDGs were not fully realized including maternal, newborn and child health and reproductive health.[26] Building on the MDGs, a new Sustainable Development Agenda with 17 Sustainable Development Goals (SDGs) has been established for the years 2016–2030.[26] The first goal being an ambitious and historic pledge to end poverty.[27] On 25 September 2015, the 193 countries of the UN General Assembly adopted the 2030 Development Agenda titled Transforming our world: the 2030 Agenda for Sustainable Development.[27]

Several major initiatives began in the 2000s, including the vaccine alliance GAVI in 2000, The Global Fund to Fight AIDS, Tuberculosis and Malaria in 2002, U.S. President's Emergency Plan for AIDS Relief in 2003, and the U.S. President's Malaria Initiative in 2005. In this decade and as part of the Monterrey Consensus (which did not pursue goals as aggressively as many activists had urged),[28] an increasing emphasis was put on measuring improvement in health outcomes, rather than merely the amount of money spent.[29]

In 2015 a book titled To Save Humanity was published, with nearly 100 essays regarding today's most pressing global health issues.[30] The essays were authored by global figures in politics, science, and advocacy ranging from Bill Clinton to Peter Piot, and addressed a wide range of issues including vaccinations, antimicrobial resistance, health coverage, tobacco use, research methodology, climate change, equity, access to medicine, and media coverage of health research.

Measures

Measures of global health include disability-adjusted life year (DALY), quality-adjusted life years (QALYs), and mortality rate.[31]

Disability-adjusted life years

 
Disability-adjusted life years per 100,000 people in 2004:
  No data
  Less than 9,250
  9,250–16,000
  16,000–22,750
  22,750–29,500
  29,500–36,250
  36,250–43,000
  43,000–49,750
  49,750–56,500
  56,500–63,250
  63,250–70,000
  70,000–80,000
  Over 80000

The DALY is a summary measure that combines the impact of illness, disability, and mortality by measuring the time lived with disability and the time lost due to premature mortality. One DALY can be thought of as one lost year of "healthy" life. The DALY for a disease is the sum of the years of life lost due to premature mortality and the years lost due to disability for incident cases of the health condition.

Quality-adjusted life years

QALYs combine expected survival with expected quality of life into a single number: if an additional year of healthy life is worth a value of one (year), then a year of less healthy life is worth less than one (year). QALY calculations are based on measurements of the value that individuals place on expected years of survival. Measurements can be made in several ways: by techniques that replicate gambles about preferences for alternative states of health, with surveys or analyses that infer willingness to pay for alternative states of health, or through instruments that are based on trading off some or all likely survival time that a medical intervention might provide in order to gain less survival time of higher quality.[31]

Infant and child mortality

Infant mortality and child mortality for children under age 5 are more specific than DALYs or QALYs in representing the health in the poorest sections of a population, and are thus especially useful when focusing on health equity.[32] added section

Morbidity

Morbidity measures include incidence rate, prevalence, and cumulative incidence, with incidence rate referring to the risk of developing a new health condition within a specified period of time. Although sometimes loosely expressed simply as the number of new cases during a time period, morbidity is better expressed as a proportion or a rate.

Health topics

Infectious diseases

Respiratory tract infections

Infections of the respiratory tract and middle ear are major causes of morbidity and mortality worldwide.[33] Some respiratory infections of global significance include tuberculosis, measles, influenza, coronaviruses and pneumonias caused by Mycobacterium tuberculosis, Morbillivirus, Haemophilus influenzae and Pneumococci respectively. The spread of respiratory infections is exacerbated by crowded conditions, and poverty is associated with more than a 20-fold increase in the relative burden of lung infections.[34]

Diarrheal illnesses

Diarrhea is the second most common cause of child mortality worldwide, responsible for 17% of deaths of children under age 5.[35] Poor sanitation can increase transmission of bacteria and viruses through water, food, utensils, hands, and flies. Dehydration due to diarrhea can be effectively treated through oral rehydration therapy with dramatic reductions in mortality.[36][37] Important nutritional measures include the promotion of breastfeeding and zinc supplementation. While hygienic measures alone may be insufficient for the prevention of rotavirus diarrhea,[38] it can be prevented by a safe and potentially cost-effective vaccine.[39]

HIV/AIDS

The HIV/AIDS epidemic has highlighted the global nature of human health and welfare and globalization has given rise to a trend toward finding common solutions to global health challenges. Numerous international funds have been set up in recent times to address global health challenges such as HIV.[40] Since the beginning of the epidemic, more than 70 million people have been infected with the HIV virus and about 35 million people have died of HIV. Globally, 36.9 million [31.1–43.9 million] people were living with HIV at the end of 2017. An estimated 0.8% [0.6–0.9%] of adults aged 15–49 years worldwide are living with HIV, although the burden of the epidemic continues to vary considerably between countries and regions. The WHO African region remains most severely affected, with nearly 1 in every 25 adults (4.1%) living with HIV and accounting for nearly two-thirds of the people living with HIV worldwide.[41] Human immunodeficiency virus (HIV) is transmitted through unprotected sex, unclean needles, blood transfusions, and from mother to child during birth or lactation. Globally, HIV is primarily spread through sexual intercourse. The risk-per-exposure with vaginal sex in low-income countries from female to male is 0.38% and male to female is 0.3%.[42] The infection damages the immune system, leading to acquired immunodeficiency syndrome (AIDS) and eventually, death. Antiretroviral drugs prolong life and delay the onset of AIDS by minimizing the amount of HIV in the body.

Malaria

Malaria is a mosquito-borne infectious disease caused by the parasites of the genus Plasmodium. Symptoms may include fever, headaches, chills, muscle aches and nausea. Each year, there are approximately 500 million cases of malaria worldwide, most commonly among children and pregnant women in developing countries.[43] The WHO African Region carries a disproportionately high share of the global malaria burden. In 2016, the region was home to 90% of malaria cases and 91% of malaria deaths.[44] The use of insecticide-treated bed nets is a cost-effective way to reduce deaths from malaria, as is prompt artemisinin-based combination therapy, supported by intermittent preventive therapy in pregnancy. International travelers to endemic zones are advised chemoprophylaxis with antimalarial drugs like Atovaquone-proguanil, doxycycline, or mefloquine.[45] Global consumption and international trade in deforestation-associated commodities could also indirectly influence malaria risk. Many primary commodities cause deforestation and deforestation can increase malaria transmission. Consumption of such commodities in developed nations could increase malaria risk in developing nations.[46]

Bacterial pathogens

 
Global number of deaths (A) and YLLs (B), by pathogen and GBD super-region, 2019[47]
 
Overall age-standardised mortality rate per 100 000 population for 33 pathogens investigated, 2019[47]

A GBD study reported global estimates of death rates from (33) bacterial pathogens, finding such infections are contributing to one in 8 deaths (or ~7.7 million deaths), which could make it the second largest cause of death globally in 2019.[47]

Neglected tropical diseases

More than one billion people were treated for at least one neglected tropical disease in 2015.[48] For instance, neglected tropical diseases are a diverse group of infectious diseases that are endemic in tropical and subtropical regions of 149 countries, primarily effecting low and middle income populations in Africa, Asia, and Latin America. They are variously caused by bacteria (trachoma, leprosy), viruses (dengue,[49] rabies), protozoa (human African trypanosomiasis, chagas), and helminths (schistosomiasis, onchocerciasis, Soil transmitted helminths).[50] The Global Burden of Disease Study concluded that neglected tropical diseases comprehensively contributed to approximately 26.06 million disability-adjusted life years in 2010, as well as significant deleterious economic effects.[51] In 2011, the World Health Organization launched a 2020 Roadmap for neglected tropical diseases, aiming for the control or elimination of 10 common diseases.[52] The 2012 London Declaration builds on this initiative, and called on endemic countries and the international community to improve access to clean water and basic sanitation, improved living conditions, vector control, and health education, to reach the 2020 goals.[53] In 2017, a WHO report cited "unprecedented progress" against neglected tropical diseases since 2007, especially due to mass drug administration of drugs donated by pharmaceutical companies.[54]

Pandemic prevention and preparedness

Pandemics have an impact on global health.

Pandemic prevention is the organization and management of preventive measures against pandemics. Those include measures to reduce causes of new infectious diseases and measures to prevent outbreaks and epidemics from becoming pandemics.

It is not to be mistaken for pandemic preparedness or mitigation (e.g. against COVID-19) which largely seek to mitigate the magnitude of negative effects of pandemics, although the topics may overlap with pandemic prevention in some respects.

Some biosafety and public health researchers contend that certain pandemic prevention efforts themselves carry risk of triggering pandemics (e.g. wildlife virus sampling), though not engaging in any form of sampling also carries the risk of being unprepared for future spillover events and being unaware of future pandemic pathogens.

On 6 May 2024, the White House released an official policy to more safely manage medical research projects involving potentially hazardous pathogens, including viruses and bacteria, that may pose a risk of a pandemic.[55][56]

Prevention of future pandemics requires steps to identify future causes of pandemics and to take preventive measures before the disease moves uncontrollably into the human population.

For example, influenza is a rapidly evolving disease which has caused pandemics in the past and has potential to cause future pandemics. WHO collates the findings of 144 national influenza centres worldwide which monitor emerging flu viruses. Virus variants which are assessed as likely to represent a significant risk are identified and can then be incorporated into the next seasonal influenza vaccine program.[57]

In a press conference on 28 December 2020, Mike Ryan, head of the WHO Emergencies Program, and other officials said the current COVID-19 pandemic is "not necessarily the big one" and "the next pandemic may be more severe." They called for preparation.[58] WHO and the UN have warned the world must tackle the cause of pandemics and not just the health and economic symptoms.[59]

Health research and development

The global health approach could foster international collaboration in medical research and development and share of its results such as vaccines, optimizing overall global health for citizens. The U.S. Agency for International Development's new Global Health Research and Development Strategy 2023–2028 includes plans to coordinate with such stakeholders in support of innovative global health product development and work with other agencies like the CDC and National Institutes of Health. Another approach to health would be the innovation of vaccines. The Washington Post reported the US government's new five billion dollar budget on vaccines to prevent Covid variants because the Vaccines' access and public-private partnerships are important.[60] Often the relevance of mechanisms to stimulate research and development is limited by national scopes and "by the transnational nature of the problem which asks for an international approach".[61] Financing models, creation of evidence-based recommendations, and logistics may be part of that.[62]

Maternal health

Complications of pregnancy and childbirth are the leading causes of death among women of reproductive age. In many developing countries, a woman dies from complications from childbirth approximately every minute.[63] According to the World Health Organization's 2005 World Health Report, poor maternal conditions are the fourth leading cause of death for women worldwide, after HIV/AIDS, malaria, and tuberculosis.[64] Most maternal deaths and injuries can be prevented, and such deaths have been largely eradicated in the developed world.[65] Targets for improving maternal health include increasing and assisting the number of deliveries accompanied by skilled birth attendants.[66] 68 low-income countries tracked by the WHO- and UNICEF-led collaboration Countdown to 2015 are estimated to hold for 97% of worldwide maternal and child deaths.[67]

Nutrition

In 2010, about 104 million children were underweight, and undernutrition contributes to about one third of child deaths around the world.[68] (Undernutrition is not to be confused with malnutrition, which refers to poor proportion of food intake and can thus refer to obesity.)[69] Undernutrition impairs the immune system, increasing the frequency, severity, and duration of infections (including measles, pneumonia, and diarrhea). Infection can further contribute to malnutrition.[70]

Deficiencies of micronutrients, such as vitamin A, iron, iodine, and zinc, are common worldwide and can compromise intellectual potential, growth, development, and adult productivity.[71][72][73][74][75][76][77] Interventions to prevent malnutrition include micronutrient supplementation, fortification of basic grocery foods, dietary diversification, hygienic measures to reduce spread of infections, and the promotion of breastfeeding.

Non-communicable diseases

Approximately 80% of deaths linked to non-communicable diseases occur in developing countries.[78] For instance, urbanization and aging have led to increasing poor health conditions related to non-communicable diseases in India. Similarly, China's rapid urbanization and modernization have been associated with increased sedentary lifestyles, contributing to the rise in NCDs in the region.[79] The fastest-growing causes of disease burden over the last 26 years were diabetes (rate increased by 80%) and ischemic heart disease (up 34%). More than 60% of deaths, about 6.1 million, in 2016 were due to NCDs, up from about 38% in 1990.[80] Increases in refugee urbanization, has led to a growing number of people diagnosed with chronic non-communicable diseases.[81]

In September 2011, the United Nations is hosting its first General Assembly Special Summit on the issue of non-communicable diseases.[82] Noting that non-communicable diseases are the cause of some 35 million deaths each year, the international community is being increasingly called to take measures for the prevention and control of chronic diseases and mitigate their impacts on the world population, especially on women, who are usually the primary caregivers.

For example, the rate of type 2 diabetes, associated with obesity, has been on the rise in countries previously troubled by hunger. In low-income countries, the number of individuals with diabetes is expected to increase from 84 million to 228 million by 2030.[83] Obesity, a preventable condition, is associated with numerous chronic diseases, including cardiovascular conditions, stroke, certain cancers, and respiratory disease. About 16% of the global burden of disease, measured as DALYs, has been accounted for by obesity.[83]

Considering that 360 million people across the world live with disabling hearing loss, including 32 million children and nearly 180 million older adults, and that chronic ear diseases, such as chronic suppurative otitis media, can lead to hearing loss and may cause life-threatening complications, the seventieth World Health Assembly on May 31, 2017 signed the resolution WHA70.13 (Agenda item 15.8) urging member states to integrate strategies for ear and hearing care within the framework of their primary health care systems, under the umbrella of universal health coverage.[84] A World Report on Hearing (WRH) was published in response to the resolution (WHA70.13), to provide guidance for Member States to integrate ear and hearing care into their national health plans.[85]

Lifestyle diseases

 
Smoking cigarettes can lead to lung cancer, considered a lifestyle disease

Lifestyle diseases can be defined as the diseases linked to the manner in which a person lives their life. These diseases are non-communicable, and can be caused by lack of physical activity, unhealthy eating, alcohol, substance use disorders and smoking tobacco, which can lead to heart disease, stroke, obesity, type II diabetes and lung cancer.[86][87] The diseases that appear to increase in frequency as countries become more industrialized and people live longer include Alzheimer's disease, arthritis, atherosclerosis, asthma, cancer, chronic liver disease or cirrhosis, chronic obstructive pulmonary disease, colitis, irritable bowel syndrome, type 2 diabetes, heart disease, hypertension, metabolic syndrome, chronic kidney failure, osteoporosis, PCOD, stroke, depression, obesity and vascular dementia.

Concerns were raised in 2011 that lifestyle diseases could soon have an impact on the workforce and the cost of health care. Treating these non-communicable diseases can be expensive.[88] It can be critical for the patient's health to receive primary prevention and identify early symptoms of these non-communicable diseases. These lifestyle diseases are expected to increase throughout the years if people do not improve their lifestyle choices.[89]

Some commenters maintain a distinction between diseases of longevity and diseases of civilization or diseases of affluence.[90] Certain diseases, such as diabetes, dental caries and asthma, appear at greater rates in young populations living in the "western" way; their increased incidence is not related to age, so the terms cannot accurately be used interchangeably for all diseases.[91]

Commercial determinants of health refers to private sector activities that affect people's health positively or negatively such as advertisements for unhealthy food.[92]

 
Leading cause of death (2016) (world)

The following is a list of the causes of human deaths worldwide for different years arranged by their associated mortality rates. In 2002, there were about 57 million deaths. In 2005, according to the World Health Organization (WHO) using the International Classification of Diseases (ICD), about 58 million people died.[93] In 2010, according to the Institute for Health Metrics and Evaluation, 52.8 million people died.[94] In 2016, the WHO recorded 56.7 million deaths[95] with the leading cause of death as cardiovascular disease causing more than 17 million deaths (about 31% of the total) as shown in the chart to the side. In 2021, there were approx. 68 million deaths worldwide, as per WHO report.[96]

Some causes listed include deaths also included in more specific subordinate causes, and some causes are omitted, so the percentages may only sum approximately to 100%. The causes listed are relatively immediate medical causes, but the ultimate cause of death might be described differently. For example, tobacco smoking often causes lung disease or cancer, and alcohol use disorder can cause liver failure or a motor vehicle accident. For statistics on preventable ultimate causes, see preventable causes of death.

Besides frequency, other measures to compare, consider, and monitor trends of causes of deaths include disability-adjusted life year (DALY) and years of potential life lost (YPLL).
 
Global number of deaths (A) and YLLs (B), by bacterial pathogen (of 33) and GBD super-region, 2019[97]

Top causes of death, according to the World Health Organization report for the calendar year 2001:[98]

Causes of death in developing countries Number of deaths Causes of death in developed countries Number of deaths
HIV-AIDS 2,678,000 Ischaemic heart disease 3,512,000
Lower respiratory infections 2,643,000 Cerebrovascular disease 3,346,000
Ischaemic heart disease 2,484,000 Chronic obstructive pulmonary disease 1,829,000
Diarrhea 1,793,000 Lower respiratory infections 1,180,000
Cerebrovascular disease 1,381,000 Lung cancer 938,000
Childhood diseases 1,217,000 Car crash 669,000
Malaria 1,103,000 Stomach cancer 657,000
Tuberculosis 1,021,000 Hypertensive heart disease 635,000
Chronic obstructive pulmonary disease 748,000 Tuberculosis 571,000
Measles 674,000 Suicide 499,000

Violence against women

Violence against women has been defined as: "physical, sexual and psychological violence occurring in the family and in the general community, including battering, sexual abuse, dowry-related violence, rape, female genital mutilation and other traditional practices harmful to women, non-spousal violence and violence related to exploitation, sexual harassment and intimidation at work, in educational institutions and elsewhere, trafficking in women, forced prostitution and violence perpetrated or condoned by the state."[99] In addition to causing injury, violence may increase "women's long-term risk of a number of other health problems, including chronic pain, physical disability, drug and alcohol abuse, and depression".[100] The WHO Report on global and regional estimates on violence against women found that partner abuse causes women to have 16% more chances of suffering miscarriages, 41% more occurrences of pre-term birth babies and twice the likeliness of having abortions and acquiring HIV or other STDs[101]

Although statistics can be difficult to obtain as many cases go unreported, it is estimated that one in every five women faces some form of violence during her lifetime, in some cases leading to serious injury or even death.[102] Risk factors for being an offender include low education, past exposure to child maltreatment or witnessing violence between parents, harmful use of alcohol, attitudes accepting of violence, and gender inequality.[103] Equality of women has been addressed in the Millennium Development Goals. Now, gender equality is Sustainable Development Goal 5. Preventing the violence against women needs to form an essential part of the public health reforms in the form of advocation and evidence gathering. Primary prevention in the form of raising women economic empowerment facilities, microfinance and skills training social projects related to gender equality should be conducted.

Activities promoting relationship and communication skills among couples, reducing alcohol access and altering societal ideologies should be organized. Childhood interventions, community and school-based education, raising media-oriented awareness and other approaches should be carried out to challenge social norms and stereotypical thought processes to promote behavioral change among men and raise gender equality. Trained health care providers would play a vital role in secondary and tertiary prevention of abuse by performing early identification of women suffering from violence and contributing to the addressing of their health and psychological needs. They could be highly important in prevention of the recurrence of violence and the mitigation of its effects on the health of the abused women and their children.[104] The Member States of the World Health Assembly endorsed a plan in 2016 for reinforcing the health system's role in addressing the global phenomenon of violence against women and girls and working towards their health and protection.[105]

Global surgery

Halfdan T. Mahler, the 3rd Director-General of the World Health Organization (WHO), first brought attention to the disparities in surgery and surgical care when he stated, "the vast majority of the world's population has no access whatsoever to skilled surgical care and little is being done to find a solution".[106]

While significant progresses have been made in fields within global health such as infectious diseases, maternal and child health, and even other non-communicable diseases over the past several decades, the provision of surgery and surgical care in resource-limited settings have largely remained unmet with about 5 billion people lacking access to safe and affordable surgical and anesthesia care.[107] This is especially true in the poorest countries, which account for over one-third of the population but only 3.5% of all surgeries that occur worldwide.[108] In fact, it has been estimated that up to 30% of the total global burden of disease (GBD) could be attributable to surgical conditions, which include a mix of injuries, malignancies, congenital anomalies, and complications of pregnancy.[109][110] As a result, global surgery has become an emerging field within global health as "the multidisciplinary enterprise of providing improved and equitable surgical care to the world's population, with its core belief as the issues of need, access and quality" and has often been described as the "neglected stepchild of global health", a term coined by Dr. Paul Farmer to highlight the urgent need for further work in this area.[111][112] Furthermore, Jim Young Kim, the former President of the World Bank, proclaimed in 2014 that "surgery is an indivisible, indispensable part of health care and of progress towards universal health coverage."[113]

In 2015, the Lancet Commission on Global Surgery (LCoGS) published the landmark report titled "Global Surgery 2030: evidence and solutions for achieving health, welfare, and economic development", describing the large, pre-existing burden of surgical diseases in low- and middle-income countries (LMICs) and future directions for increasing universal access to safe surgery by the year 2030.[107] The Commission highlighted that 143 million additional procedures were needed every year to prevent further morbidity and mortality from treatable surgical conditions as well as a $12.3 trillion loss in economic productivity by the year 2030.[107] It emphasized the need to significantly improve the capacity for Bellwether procedures — laparotomy, caesarean section, open fracture care — which are considered a minimum level of care that first-level hospitals should be able to provide in order to capture the most basic emergency surgical care.[107][114] In order to address these challenges and track progress, the Commission defined the following core indicators for assessing access to safe and affordable surgical d anesthesia care:[107]

Core Indicators Definition Target
Access to timely essential surgery The proportion of the population that can access, within 2 hours, a facility that can do cesarean delivery, laparotomy, and treatment of open fracture (the Bellwether Procedures) A minimum of 80% coverage of essential surgical and anesthesia services per country by 2030
Specialist surgical workforce density The number of specialist surgical, anaesthetic, and obstetric physicians who are working, per 100,000 population 100% of countries with at least 20 surgical, anaesthetic, and obstetric physicians per 100, 000 population by 2030
Surgical volume The number of procedures done in an operating theatre, per 100,000 population per year 80% of countries by 2020 and 100% of countries by 2030 tracking surgical volume; a minimum of 5000 procedures per 100,000 population by 2030
Perioperative mortality All-cause death rate before discharge in patients who have undergone a procedure in an operating theatre, divided by the total number of procedures, presented as a percentage 80% of countries by 2020 and 100% of countries by 2030 tracking perioperative mortality; in 2020, assess global data and set national targets for 2030
Protection against impoverishing expenditure The proportion of households protected against impoverishment from direct out-of-pocket payments for surgical and anesthesia care 100% protection against impoverishment from out-of-pocket payments for surgical and anaesthesia care by 2030
Protection against catastrophic expenditure The proportion of households protected against catastrophic expenditure from direct out-of-pocket payments for surgical and anesthesia care 100% protection against catastrophic expenditure from out-of-pocket payments for surgical and anaesthesia care by 2030

Meeting these goals by the year 2030 would require increases in anesthetists, obstetricians, surgeons, nurses, and facilities with operating rooms as well as pre- and post-surgical care capacities.

Data from WHO and the World Bank indicate that scaling up infrastructure to enable access to surgical care in regions where it is currently limited or is non-existent is a low-cost measure relative to the significant morbidity and mortality caused by lack of surgical treatment.[109] In fact, a systematic review found that the cost-effectiveness ratio — dollars spent per DALYs averted — for surgical interventions is on par or exceeds those of major public health interventions such as oral rehydration therapy, breastfeeding promotion, and even HIV/AIDS antiretroviral therapy.[115] This finding challenged the common misconception that surgical care is financially prohibitive endeavor not worth pursuing in LMICs.

In terms of the financial impact on the patients, the lack of adequate surgical and anesthesia care has resulted in 33 million individuals every year facing catastrophic health expenditure — the out-of-pocket healthcare cost exceeding 40% of a given household's income.[107][116]

In alignment with the LCoGS call for action, the World Health Assembly adopted the resolution WHA68.15 in 2015 that stated, "Strengthening emergency and essential surgical care and anesthesia as a component of universal health coverage."[117] This not only mandated the WHO to prioritize strengthening the surgical and anesthesia care globally, but also led to governments of the member states recognizing the urgent need for increasing capacity in surgery and anesthesia. Additionally, the third edition of Disease Control Priorities (DCP3), published in 2015 by the World Bank, declared surgery as essential and featured an entire volume dedicated to building surgical capacity.[118]

A key policy framework that arose from this renewed global commitment towards surgical care worldwide is the National Surgical Obstetric and Anesthesia Plan (NSOAP).[119] NSOAP focuses on policy-to-action capacity building for surgical care with tangible steps as follows: (1) analysis of baseline indicators, (2) partnership with local champions, (3) broad stakeholder engagement, (4) consensus building and synthesis of ideas, (5) language refinement, (6) costing, (7) dissemination, and (8) implementation. This approach has been widely adopted and has served as guiding principles between international collaborators and local institutions and governments. Successful implementations have allowed for sustainability in terms of longterm monitoring, quality improvement, and continued political and financial support.[119]

The NIHR Global Health Research Unit on Global Surgery

Seven surgical research Hubs in Benin, Ghana, India, Mexico, Nigeria, Rwanda and South Africa with an extensive network of urban and rural ‘Spoke' hospitals have joined to create the NIHR.[120] The NIHR Global Health Research Unit on Global Surgery is led by the University of Birmingham[121] which provides overall oversight in relation to the Unit strategy, infrastructure and delivery, research and finance.

The network prioritized surgical topics that needed research and has performed multiple surgical studies. The network resulted in many research groups including GlobalSurg I, II, III[122] and COVIDSurg[123] and many other trials with worldwide collaborations as project FALCON[124] and CHEETAH.[125]

The research was published in over 40 articles in high impact journals in topics like surgical site infections,[126] COVID-19[127] and mortality.[128]

Other global surgery collaborations

More trials have emerged to assess surgical outcomes around the World using big data from thousands of centers. Other notable trials include:

  • Global PaedSurg; The study was published in The Lancet examined the risk of mortality for nearly 4000 babies born with birth defects in 264 hospitals around the world. The study found babies born with birth defects involving the intestinal tract have a two in five chance of dying in a low-income country compared to one in five in a middle-income country and one in twenty in a high-income country.[129][130]
  • APORG: The African Perioperative Research Group (APORG) was launched in South Africa
  • ASOS and ASOS-2: The studies showed that death after surgery is a major public health problem in Africa. Surgical patients in Africa are twice as likely to die in hospital following surgery when compared to the global average.[131][132]
  • ACCCOS
  • Global Health Research Group on Children's Non-Communicable Diseases Collaborative

Many scholars from around the world have participated in overlapping trials whether as Principal Investigators, Dissemination Committee or Regional leaders to promote the research and oversee data collection. Notable collaborators from these networks include The list included key figures from around the World as Prof Bruce Biccard (South Africa), Prof Adesoji Ademuyiwa (Nigeria), Prof Kokila Lakhoo (Oxford, UK), Dr Naomi Wright (Oxford, UK), Dr Emrah Aydin (Turkey), Prof Mahmoud Elfiky (Egypt) and Prof Milind Chitnis (South Africa).[133]

Multimorbidity is "a growing public health problem worldwide", "likely driven by the ageing population but also by factors such as high body-mass index, urbanisation, and the growing burden of NCDs (such as type 2 diabetes) and tuberculosis in low- and middle-income countries (LMICs)".[134][135][136] Around the world, many people do not die from one isolated condition but from a multitude of factors and conditions.[additional citation(s) needed] A study suggested there is a paucity of multimorbidity and comorbidity data globally and mapped comorbidity patterns.[137]

With aging populations, there is a rise of age-related diseases which puts major burdens on healthcare systems as well as contemporary economies or contemporary economics and their appendant societal systems. Healthspan extension and anti-aging research seek to extend the span of health in the old as well as slow aging or its negative impacts such as physical and mental decline. Modern anti-senescent and regenerative technology with augmented decision making could help "responsibly bridge the healthspan-lifespan gap for a future of equitable global wellbeing".[138] Aging is "the most prevalent risk factor for chronic disease, frailty and disability, and it is estimated that there will be over 2 billion persons age > 60 by the year 2050", making it a large global health challenge that demands substantial (and well-orchestrated or efficient) efforts, including interventions that alter and target the inborn aging process.[139]

Infertility crisis

A scientific review found that human sperm counts fell by 62% in the last 50 years, are decreasing at an accelerating rate and are decreasing worldwide,[140][141] likely a result of factors such as poor diets, endocrine disruptors in prevalent products, unhealthy lifestyles and toxic forever chemicals in air and water.[140]

Health interventions

Global interventions for improved child health and survival include the promotion of breastfeeding, zinc supplementation, vitamin A fortification, salt iodization, hygiene interventions such as hand-washing, vaccinations, and treatments of severe acute malnutrition.[66][142][143] The Global Health Council suggests a list of 32 treatments and health interventions that could potentially save several million lives each year.[144]

Many populations face an "outcome gap", which refers to the gap between members of a population who have access to medical treatment versus those who do not. Countries facing outcome gaps lack sustainable infrastructure.[145] In Guatemala, a subset of the public sector, the Programa de Accessibilidad a los Medicamentos ("Program for Access to Medicines"), had the lowest average availability (25%) compared to the private sector (35%). In the private sector, the highest- and lowest-priced medicines were 22.7 and 10.7 times more expensive than international reference prices respectively. Treatments were generally unaffordable, costing as much as 15 days wages for a course of the antibiotic ceftriaxone.[146] The public sector in Pakistan, while having access to medicines at a lower price than international reference prices, has a chronic shortage of and lack of access to basic medicines.[147]

Journalist Laurie Garrett argues that the field of global health is not plagued by a lack of funds, but that more funds do not always translate into positive outcomes. The problem lies in the way these funds are allocated, as they are often disproportionately allocated to alleviating a single disease.[148]

Labor shortages

In its 2006 World Health Report, the WHO estimated a shortage of almost 4.3 million doctors, midwives, nurses, and support workers worldwide, especially in sub-Saharan Africa.[149] A 2022 study estimated that, "in 2019, the world had 104.0 million (95% uncertainty interval 83.5–128.0) health workers, including 12.8 million (9.7–16.6) physicians, 29.8 million (23.3–37.7) nurses and midwives, 4.6 million (3.6–6.0) dentistry personnel, and 5.2 million (4.0–6.7) pharmaceutical personnel" and found that sub-Saharan Africa, south Asia, and north Africa and the Middle East had the lowest densities of human resources for health.[150] However, even when only considering current technologies and processes (such as only little use of telehealth as of 2022), overall numbers of personnel and shortages do not consider sub-national geographic distribution of various types of health workers (or expertise).

Global health security

The COVID-19 pandemic has highlighted how global health security is reliant on all countries around the world, including low- and middle-income countries, having strong health systems and at least a minimum of health research capacities. In an article 2020 in Annals of Global Health,[151] the ESSENCE group outlined a mechanism for review of investment in health research capacity building in low- and middle-income countries. The review mechanism will give funders of research for health the information to identify the gaps in the capacity that exist in low- and middle-income countries and the opportunity to work together to address those disparities. The overall goal is increased, coordinated support of research on national health priorities as well as improved pandemic preparedness in LMICs, and, eventually, fewer countries with very limited health research capacity.

Global factors impacting health

Climate change

 
Example of impacts on health: Heat stroke treatment at Baton Rouge during the 2016 Louisiana floods. Climate change is making heat waves more intense, potentially leading to a higher risk of heat stroke.

The effects of climate change on human health are profound and increase the likelihood of many diseases and conditions.[152][153] There is widespread agreement among researchers, health professionals and organizations that climate change is the biggest global health threat of the 21st century.[154][155][156][157]

Rising temperatures and changes in weather patterns are increasing the severity of heat waves, extreme weather and other causes of illness, injury or death. Heat waves and extreme weather events have a big impact on health both directly and indirectly. When people are exposed to higher temperatures for longer time periods they might experience heat illness and heat-related death.[158]

In addition to direct impacts, climate change and extreme weather events cause changes in the biosphere. Climate change will impact where infectious diseases are able to spread in the future. Many infectious diseases will spread to new geographic areas where people have not previously been exposed to them.[159][160] Certain diseases that are carried and spread by living hosts such as mosquitoes and ticks (known as vectors) may become more common in some regions. Affected diseases include dengue fever and malaria.[158] Contracting waterborne diseases such as diarrhoeal disease will also be more likely.[161]

Changes in climate can cause decreasing yields for some crops and regions, resulting in higher food prices, less available food, and undernutrition. Climate change can also reduce access to clean and safe water supply. Extreme weather and its health impact can also threaten the livelihoods and economic stability of people. These factors together can lead to increasing poverty, human migration, violent conflict, and mental health issues.[162][163][164][165]

Climate change affects human health at all ages, from infancy through adolescence, adulthood and old age.[162][158] Factors such as age, gender and socioeconomic status influence to what extent these effects become wide-spread risks to human health.[166]: 1867  Some groups are more vulnerable than others to the health effects of climate change. These include children, the elderly, outdoor workers and disadvantaged people.[158]: 15 [166]

A comprehensive annually scheduled study finds climate change is "undermining every dimension of global health monitored" and reports dire conclusions from tracking of impact indicators.[167][168] The effects of climate change have also increased the risk of health conditions, such as lung disease or asthma which are caused by air pollution.[169] These medical conditions are caused due to extreme heatwaves or by "higher concentrations of ground-level ozone".[169]

Antimicrobial resistance

 
Antibiotic resistance tests: Bacteria are streaked on dishes with white disks, each impregnated with a different antibiotic. Clear rings, such as those on the left, show that bacteria have not grown—indicating that these bacteria are not resistant. The bacteria on the right are fully resistant to three of seven and partially resistant to two of seven antibiotics tested.[170]

Antimicrobial resistance (AMR or AR) occurs when microbes evolve mechanisms that protect them from antimicrobials, which are drugs used to treat infections.[171] This resistance affects all classes of microbes, including bacteria (antibiotic resistance), viruses (antiviral resistance), protozoa (antiprotozoal resistance), and fungi (antifungal resistance). Together, these adaptations fall under the AMR umbrella, posing significant challenges to healthcare worldwide.[172] Misuse and improper management of antimicrobials are primary drivers of this resistance, though it can also occur naturally through genetic mutations and the spread of resistant genes.[173]

Microbes resistant to multiple drugs are termed multidrug-resistant (MDR) and are sometimes called superbugs.[174] Antibiotic resistance, a significant AMR subset, enables bacteria to survive antibiotic treatment, complicating infection management and treatment options.[172] Resistance arises through spontaneous mutation, horizontal gene transfer, and increased selective pressure from antibiotic overuse, both in medicine and agriculture, which accelerates resistance development.[175]

The burden of AMR is immense, with nearly 5 million annual deaths associated with resistant infections.[176] Infections from AMR microbes are more challenging to treat and often require costly alternative therapies that may have more severe side effects.[177] Preventive measures, such as using narrow-spectrum antibiotics and improving hygiene practices, aim to reduce the spread of resistance.[178]

The WHO and other international bodies warn that AMR could lead to up to 10 million deaths annually by 2050 unless actions are taken.[179] Global initiatives, such as calls for international AMR treaties, emphasize coordinated efforts to limit misuse, fund research, and provide access to necessary antimicrobials in developing nations. However, the COVID-19 pandemic redirected resources and scientific attention away from AMR, intensifying the challenge.[180]

AMR has been described as a leading global health issue. Globally, 1.27 million deaths in 2019 were attributable to AMR. That year, AMR may have contributed to 5 million deaths and one in five people who died due to AMR were children under five years old.[181]

Organization

Governmental or inter-governmental organizations focused on global health include:

Non-governmental organizations focused on global health include:

Governments and analysis

A study of select global health related organizations and initiatives suggests that major trends in global health governance appear to be "towards more discretionary funding and away from core or longer-term funding; towards defined multi-stakeholder governance and away from traditional government-centred representation and decision-making; and towards narrower mandates or problem-focused vertical initiatives and away from broader systemic goals".[182] There is a growing willingness to use militaries in state-led support of global health efforts which have capabilities ranging from "research, surveillance, and medical expertise to rapidly deployable, large-scale assets for logistics, transportation, and security".[183]

Global Health Security Agenda

The Global Health Security Agenda (GHSA) is "a multilateral, multi-sector effort that includes 60 participating countries and numerous private and public international organizations focused on building up worldwide health security capabilities toward meeting such threats" as the spread of infectious disease. On March 26–28, 2018, the GHSA held a high-level meeting in Tbilisi, Georgia, on biosurveillance of infectious disease threats, "which include such modern-day examples as HIV/AIDS, severe acute respiratory syndrome (SARS), H1N1 influenza, multi-drug resistant tuberculosis—any emerging or reemerging disease that threatens human health and global economic stability".[184] This event brought together GHSA partner countries, contributing countries of Real-Time Surveillance Action Package, and international partner organizations supporting the strengthening of capacities to detect infectious disease threats within the Real-Time Surveillance Action Package and other cross-cutting packages.[185]

GHSA works through four main mechanisms of member action, action packages, task forces and international cooperation. In 2015, the Steering Group of the GHSA agreed upon the implementation of their commitments through 11 Action Packages. Action Packages are a commitment by member countries and their partners to work collaboratively towards development and implementation of International Health Regulations (IHR).[186] Action packages are based on GHSA's aim to strengthen national and international capacity to prevent, detect, and respond to infectious disease threats. Each action package consists of five-year targets, measures of progress, desired impacts, country commitments, and list of baseline assessments.[187] The Joint External Evaluation process, derived as part of the IHR Monitoring and Evaluation Framework is an assessment of a country's capacity for responding to public health threats.[186] So far, G7 partners and EU have made a collective commitment to assist 76 countries whereas the US committed to helping 32 countries to achieve GHSA targets for IHR implementation. In September 2014, a pilot tool was developed to measure progress of the Action Packages and applied in countries (Georgia, Peru, Uganda, Portugal, the United Kingdom, and Ukraine) that volunteered to participate in an external assessment.[188]

See also

Notes

References

  1. ^ Brown TM, Cueto M, Fee E (January 2006). "The World Health Organization and the transition from "international" to "global" public health". American Journal of Public Health. 96 (1): 62–72. doi:10.2105/AJPH.2004.050831. PMC 1470434. PMID 16322464.
  2. ^ Koplan JP, Bond TC, Merson MH, Reddy KS, Rodriguez MH, Sewankambo NK, Wasserheit JN (June 2009). "Towards a common definition of global health". Lancet. 373 (9679): 1993–5. CiteSeerX 10.1.1.610.7968. doi:10.1016/S0140-6736(09)60332-9. PMC 9905260. PMID 19493564. S2CID 6919716.
  3. ^ Global Health Initiative (2008). Why Global Health Matters. Washington, DC: FamiliesUSA. Archived from the original on 2011-03-08. Retrieved 2008-06-10.
  4. ^ Macfarlane SB, Jacobs M, Kaaya EE (December 2008). "In the name of global health: trends in academic institutions". Journal of Public Health Policy. 29 (4): 383–401. doi:10.1057/jphp.2008.25. PMID 19079297. S2CID 46424271.
  5. ^ Fischer SE, Patil P, Zielinski C, Baxter L, Bonilla-Escobar FJ, Hussain S, et al. (May 2020). "Is it about the 'where' or the 'how'? Comment on Defining global health as public health somewhere else". BMJ Global Health. 5 (5): e002567. doi:10.1136/bmjgh-2020-002567. PMC 7223010. PMID 32381654.
  6. ^ White F, Nanan DJ (2008). "International and Global Health". In Wallace RB (ed.). Maxcy-Rosenau-Last Public Health and Preventive Medicine (15th ed.). McGraw Hill. pp. 1252–8. ISBN 978-0-07-144198-8.
  7. ^ Roser M, Ortiz-Ospina E, Ritchie H (2013-05-23). "Life Expectancy". Our World in Data.
  8. ^ Conrad PA, Meek LA, Dumit J (May 2013). "Operationalizing a One Health approach to global health challenges". Comparative Immunology, Microbiology and Infectious Diseases. 36 (3): 211–6. doi:10.1016/j.cimid.2013.03.006. PMID 23711930.
  9. ^ Hernando-Amado S, Coque TM, Baquero F, Martínez JL (September 2019). "Defining and combating antibiotic resistance from One Health and Global Health perspectives". Nature Microbiology. 4 (9): 1432–42. doi:10.1038/s41564-019-0503-9. PMID 31439928. S2CID 201283254.
  10. ^ Sinclair JR (May 2019). "Importance of a One Health approach in advancing global health security and the Sustainable Development Goals". Revue Scientifique et Technique. 38 (1): 145–154. doi:10.20506/rst.38.1.2949. PMID 31564744. S2CID 203608381.
  11. ^ "Millennium Development Goals". United Nations. Retrieved 2013-03-15.
  12. ^ Weatherall DJ, Clegg JB (2001). "Inherited haemoglobin disorders: an increasing global health problem". Bulletin of the World Health Organization. 79 (8): 704–712. PMC 2566499. PMID 11545326.
  13. ^ Fried LP, Bentley ME, Buekens P, Burke DS, Frenk JJ, Klag MJ, Spencer HC (February 2010). "Global health is public health". Lancet. 375 (9714): 535–7. doi:10.1016/s0140-6736(10)60203-6. PMID 20159277. S2CID 38796542.
  14. ^ Ahern M, Kovats RS, Wilkinson P, Few R, Matthies F (2005). "Global health impacts of floods: epidemiologic evidence". Epidemiologic Reviews. 27 (1): 36–46. doi:10.1093/epirev/mxi004. PMID 15958425.
  15. ^ Verano JW, Ubelake DH (1992). Disease and demography in the Americas. Washington: Smithsonian Institution Press. ISBN 978-1-56098-163-3.
  16. ^ Bloom DE, Cafiero E, Jané-Llopis E, Abrahams-Gessel S, Bloom LR, Fathima S, et al. (January 2012). The global economic burden of noncommunicable diseases. Program on the Global Demography of Aging (Report).
  17. ^ "Global Summits of National Ethics/Bioethics Councils". Berlin. 2016. Archived from the original on 4 April 2019.
  18. ^ Kwete X, Tang K, Chen L, Ren R, Chen Q, Wu Z, et al. (January 2022). "Decolonizing global health: what should be the target of this movement and where does it lead us?". Global Health Research and Policy. 7 (1): 3. doi:10.1186/s41256-022-00237-3. PMC 8784247. PMID 35067229.
  19. ^ Rasheed MA (December 2021). "Navigating the violent process of decolonisation in global health research: a guideline". The Lancet. Global Health. 9 (12): e1640–1. doi:10.1016/S2214-109X(21)00440-X. PMID 34798014. S2CID 244286291.
  20. ^ Affun-Adegbulu C, Adegbulu O (August 2020). "Decolonising Global (Public) Health: from Western universalism to Global pluriversalities". BMJ Global Health. 5 (8): e002947. doi:10.1136/bmjgh-2020-002947. PMC 7443258. PMID 32819916. S2CID 221220715.
  21. ^ Keshri VR, Bhaumik S (September 2022). "The feudal structure of global health and its implications for decolonisation". BMJ Global Health. 7 (9): e010603. doi:10.1136/bmjgh-2022-010603. PMC 9516156. PMID 36167407. S2CID 252565623.
  22. ^ World Health Organization. "History of WHO". Archived from the original on 2006-12-07.
  23. ^ Primary Health Care: Report of the International Conference on Primary Health Care (PDF) (Report). Geneva: World Health Organization. 1978. Archived from the original (PDF) on 2017-08-29. Retrieved 2014-05-06.
  24. ^ Kumar S, Kumar N, Vivekadhish S (January–March 2016). "Millennium Development Goals (MDGs) to Sustainable Development Goals (SDGs): Addressing Unfinished Agenda and Strengthening Sustainable Development and Partnership". Indian Journal of Community Medicine. 41 (1): 1–4. doi:10.4103/0970-0218.170955. PMC 4746946. PMID 26917865.
  25. ^ "Resolution adopted by the General Assembly, 55/2" (PDF). United Nations. 18 September 2000.
  26. ^ a b c "Transforming our world: the 2030 Agenda for Sustainable Development .:. Sustainable Development Knowledge Platform". sustainabledevelopment.un.org. Retrieved 2016-02-26.
  27. ^ a b "Sustainable Development Goals". UNDP. Archived from the original on 2016-03-04. Retrieved 2016-02-26.
  28. ^ Price N (March 23, 2002). "Countries gather to fight poverty". The Sacramento Bee. p. A13. Retrieved 21 November 2022.
  29. ^ Mark Dybul M (Summer 2017). "How HIV, SARS, and Ebola Put Global Health on the Agenda". The Catalyst. George W. Bush Institute.
  30. ^ Hoffman SJ (October 2011). "Ending medical complicity in state-sponsored torture". Lancet. 378 (9802): 1535–7. doi:10.1016/S0140-6736(11)60816-7. PMID 21944647. S2CID 45829194.
  31. ^ a b Etches V, Frank J, Di Ruggiero E, Manuel D (2006). "Measuring population health: a review of indicators". Annual Review of Public Health. 27: 29–55. doi:10.1146/annurev.publhealth.27.021405.102141. PMID 16533108.
  32. ^ Mulholland E, Smith L, Carneiro I, Becher H, Lehmann D (May 2008). "Equity and child-survival strategies". Bulletin of the World Health Organization. 86 (5): 399–407. doi:10.2471/BLT.07.044545. PMC 2647438. PMID 18545743.
  33. ^ Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ (May 2006). "Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data". Lancet. 367 (9524): 1747–57. doi:10.1016/S0140-6736(06)68770-9. PMID 16731270. S2CID 22609505.
  34. ^ Mizgerd JP (February 2006). "Lung infection--a public health priority". PLOS Medicine. 3 (2): e76. doi:10.1371/journal.pmed.0030076. PMC 1326257. PMID 16401173.
  35. ^ "Statistics by Area — Diarrhoeal disease — The challenge". UNICEF. Retrieved 2013-01-12.
  36. ^ Taylor CE, Greenough WB (1989). "Control of diarrheal diseases". Annual Review of Public Health. 10: 221–244. doi:10.1146/annurev.pu.10.050189.001253. PMID 2655632.
  37. ^ Victora CG, Bryce J, Fontaine O, Monasch R (2000). "Reducing deaths from diarrhoea through oral rehydration therapy". Bulletin of the World Health Organization. 78 (10): 1246–55. PMC 2560623. PMID 11100619.
  38. ^ "Rotavirus Vaccine Access and Delivery — PATH" (PDF). Rotavirusvaccine.org. 2011-12-07. Archived from the original (PDF) on 2009-12-22. Retrieved 2013-01-12.
  39. ^ Valencia-Mendoza A, Bertozzi SM, Gutierrez JP, Itzler R (July 2008). "Cost-effectiveness of introducing a rotavirus vaccine in developing countries: the case of Mexico". BMC Infectious Diseases. 8: 103. doi:10.1186/1471-2334-8-103. PMC 2527317. PMID 18664280.
  40. ^ Coovadia HM, Hadingham J (August 2005). "HIV/AIDS: global trends, global funds and delivery bottlenecks". Globalization and Health. 1: 13. doi:10.1186/1744-8603-1-13. PMC 1199613. PMID 16060961.
  41. ^ "HIV/AIDS". World Health Organization. Retrieved 2018-11-01.
  42. ^ "Estimated HIV transmission risk per exposure for specific activities and events". 15 May 2020.
  43. ^ Birn A, Pillay Y, Holtz T (2009). Textbook of International Health (3rd ed.). Oxford University Press. p. 273. ISBN 978-0-19-971985-3.
  44. ^ "Malaria key facts".
  45. ^ "Malaria – Travelers – Malaria Information and Prophylaxis, by Country". U.S. Centers for Disease Control and Prevention. 2018-01-26. Retrieved 2018-11-01.
  46. ^ Chaves LS, Fry J, Malik A, Geschke A, Sallum MA, Lenzen M (March 2020). "Global consumption and international trade in deforestation-associated commodities could influence malaria risk". Nature Communications. 11 (1): 1258. Bibcode:2020NatCo..11.1258C. doi:10.1038/s41467-020-14954-1. PMC 7062889. PMID 32152272.
  47. ^ a b c Ikuta KS, Swetschinski LR, Robles Aguilar G, Sharara F, Mestrovic T, Gray AP, et al. (December 2022). "Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019". Lancet. 400 (10369): 2221–48. doi:10.1016/S0140-6736(22)02185-7. PMC 9763654. PMID 36423648.
  48. ^ "Unprecedented progress against neglected tropical diseases, WHO reports". World Health Organization. 2017. Retrieved 2017-05-11.
  49. ^ Horstick O, Tozan Y, Wilder-Smith A (April 2015). "Reviewing dengue: still a neglected tropical disease?". PLOS Neglected Tropical Diseases. 9 (4): e0003632. doi:10.1371/journal.pntd.0003632. PMC 4415787. PMID 25928673.
  50. ^ "Neglected Tropical Diseases — Diseases". Centers for Disease Control and Prevention. Retrieved 2017-05-11.
  51. ^ Hotez PJ, Alvarado M, Basáñez MG, Bolliger I, Bourne R, Boussinesq M, et al. (July 2014). "The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases". PLOS Neglected Tropical Diseases. 8 (7): e2865. doi:10.1371/journal.pntd.0002865. PMC 4109880. PMID 25058013.
  52. ^ Sustaining the drive to overcome the global impact of neglected tropical diseases: second WHO report on neglected tropical diseases; summary (PDF). World Health Organization. 2013. WHO/HTM/NTD/2013.2.
  53. ^ London Declaration on Neglected Tropical Diseases (PDF). 2012.
  54. ^ Integrating Neglected Tropical Diseases into Global Health and Development (PDF). World Health Organization. 2017. ISBN 978-92-4-156544-8.
  55. ^ Zimmer C, Mueller B (7 May 2024). "U.S. Tightens Rules on Risky Virus Research - A long-awaited new policy broadens the type of regulated viruses, bacteria, fungi and toxins, including those that could threaten crops and livestock". The New York Times. Archived from the original on 7 May 2024. Retrieved 8 May 2024.
  56. ^ White House (6 May 2024). "United States Government Policy for Oversight of Dual Use Research of Concern and Pathogens with Enhanced Pandemic Potential" (PDF). Whitehouse.gov. Archived (PDF) from the original on 8 May 2024. Retrieved 8 May 2024.
  57. ^ "Selecting Viruses for the Seasonal Flu Vaccine". Centers for Disease Control and Prevention. 3 November 2022. Retrieved 30 June 2023.
  58. ^ "WHO official: 'Next pandemic may be more severe'". Arab News. 29 December 2020. Retrieved 30 December 2020.
  59. ^ Carrington D (9 March 2021). "Inaction leaves world playing 'Russian roulette' with pandemics, say experts". The Guardian. Retrieved 10 March 2021.
  60. ^ Pagliusi S, Ting CC, Lobos F (March 2017). "Vaccines: Shaping global health". Vaccine. 35 (12): 1579–85. doi:10.1016/j.vaccine.2017.02.017. PMC 7127343. PMID 28237501.
  61. ^ Wernli D, Flahault A (2015). "Strengthening research and development for and access to health technologies for neglected diseases and global health threats".
  62. ^ Bloom DE, Cadarette D (2019). "Infectious Disease Threats in the Twenty-First Century: Strengthening the Global Response". Frontiers in Immunology. 10: 549. doi:10.3389/fimmu.2019.00549. PMC 6447676. PMID 30984169.
  63. ^ "Improve Maternal Health". UNICEF. Archived from the original on 2019-03-31. Retrieved 2011-07-13.
  64. ^ "World Health Report 2005: make every mother and child count". Geneva: World Health Organization. 2005. Archived from the original on April 9, 2005.
  65. ^ "Most Maternal Deaths in Sub-Saharan Africa Could Be Avoided". Science Daily. 2 March 2010. Retrieved 3 March 2011.
  66. ^ a b Bhutta ZA, Ahmed T, Black RE, Cousens S, Dewey K, Giugliani E, et al. (February 2008). "What works? Interventions for maternal and child undernutrition and survival". Lancet. 371 (9610): 417–440. doi:10.1016/S0140-6736(07)61693-6. PMID 18206226. S2CID 18345055.
  67. ^ "Progress reports". Countdown to 2015. Archived from the original on 2011-07-25. Retrieved 2011-03-15.
  68. ^ "Challenges". Nutrition. World Health Organization. Archived from the original on March 21, 2006.
  69. ^ Shetty P (2003). "Malnutrition and Undernutrition". Medicine. 31 (4): 18–22. doi:10.1383/medc.31.4.18.27958. ISSN 1357-3039. Malnutrition refers to all deviations from adequate and optimal nutritional status, including energy undernutrition and over-nutrition (obesity is a form of malnutrition). The term 'undernutrition' is used to refer to generally poor nutritional status, but also implies underfeeding
  70. ^ Schaible UE, Kaufmann SH (May 2007). "Malnutrition and infection: complex mechanisms and global impacts". PLOS Medicine. 4 (5): e115. doi:10.1371/journal.pmed.0040115. PMC 1858706. PMID 17472433.
  71. ^ "Vitamin A supplementation". World Health Organization. Archived from the original on 2013-01-25.
  72. ^ Stevens GA, Beal T, Mbuya MN, Luo H, Neufeld LM (November 2022). "Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: a pooled analysis of individual-level data from population-representative surveys". The Lancet. Global Health. 10 (11): e1590–9. doi:10.1016/S2214-109X(22)00367-9. PMC 10918648. PMID 36240826. S2CID 252857990.
  73. ^ Lynch S, Stoltzfus R, Rawat R (December 2007). "Critical review of strategies to prevent and control iron deficiency in children". Food and Nutrition Bulletin. 28 (4 Suppl): S610–S620. doi:10.1177/15648265070284S413. PMID 18297898.
  74. ^ Walker SP, Wachs TD, Gardner JM, Lozoff B, Wasserman GA, Pollitt E, Carter JA (January 2007). "Child development: risk factors for adverse outcomes in developing countries". Lancet. 369 (9556): 145–157. doi:10.1016/S0140-6736(07)60076-2. PMID 17223478. S2CID 11120228.
  75. ^ Lazzerini M (October 2007). "Effect of zinc supplementation on child mortality". Lancet. 370 (9594): 1194–5. doi:10.1016/S0140-6736(07)61524-4. PMID 17920908. S2CID 33297518.
  76. ^ Fischer Walker CL, Ezzati M, Black RE (May 2009). "Global and regional child mortality and burden of disease attributable to zinc deficiency". European Journal of Clinical Nutrition. 63 (5): 591–7. doi:10.1038/ejcn.2008.9. PMID 18270521.
  77. ^ Lazzerini M, Wanzira H (December 2016). "Oral zinc for treating diarrhoea in children". The Cochrane Database of Systematic Reviews. 12 (12): CD005436. doi:10.1002/14651858.CD005436.pub5. PMC 5450879. PMID 27996088.
  78. ^ "WHO: Global Status Report on Noncommunicable Diseases 2010". 2011. Archived from the original on April 30, 2011.
  79. ^ Menhas R, Dai J, Ashraf MA, M Noman S, Khurshid S, Mahmood S, et al. (2021-06-03). "Physical Inactivity, Non-Communicable Diseases and National Fitness Plan of China for Physical Activity". Risk Management and Healthcare Policy. 14: 2319–31. doi:10.2147/RMHP.S258660. PMC 8184286. PMID 34113188.
  80. ^ "Comprehensive health study in India finds rise of non-communicable diseases". 2017-11-13. Archived from the original on 2023-02-09. Retrieved 2018-11-01.
  81. ^ Amara AH, Aljunid SM (April 2014). "Noncommunicable diseases among urban refugees and asylum-seekers in developing countries: a neglected health care need". Globalization and Health. 10: 24. doi:10.1186/1744-8603-10-24. PMC 3978000. PMID 24708876.
  82. ^ "Press Conference on General Assembly Decision to Convene Summit in September 2011 on Non-Communicable Diseases". New York: United Nations. 13 May 2010.
  83. ^ a b Hossain P, Kawar B, El Nahas M (January 2007). "Obesity and diabetes in the developing world--a growing challenge". The New England Journal of Medicine. 356 (3): 213–5. doi:10.1056/NEJMp068177. PMID 17229948.
  84. ^ "Agenda item 15.8: Prevention of deafness and hearing loss" (PDF). Seventieth World Health Assembly. 31 May 2017. WHA70.13.
  85. ^ World report on hearing. Geneva: World Health Organization. 2021. ISBN 978-92-4-002048-1. OCLC 1295473345.
  86. ^ "Lifestyle disease". MedicineNet. Retrieved 2016-05-12.
  87. ^ Mathur P, Mascarenhas L (2019). "Lifestyle diseases: Keeping fit for a better tomorrow". The Indian Journal of Medical Research. 149 (Suppl 1): S129–S135. doi:10.4103/0971-5916.251669. PMC 6515727. PMID 31070189.
  88. ^ "Lifestyle diseases 'cost economy'". Cape Argus. Cape Town. 13 September 2011. ProQuest 889325276.
  89. ^ Engelen L, Gale J, Chau JY, Hardy LL, Mackey M, Johnson N, Shirley D, Bauman A (2017). "Who is at risk of chronic disease? Associations between risk profiles of physical activity, sitting and cardio-metabolic disease in Australian adults". Australian and New Zealand Journal of Public Health. 41 (2): 178–183. doi:10.1111/1753-6405.12627. PMID 27960249. S2CID 34368321. ProQuest 2290216359.
  90. ^ Bitar AR (January 2018). Diet and the Disease of Civilization. Rutgers University Press. ISBN 978-0-8135-8964-0.
  91. ^ Pollan M (2008). In Defense of Food: An Eater's Manifesto. Penguin Press HC, The. ISBN 978-1-59420-145-5.
  92. ^ "Commercial determinants of health". World Health Organization. Retrieved 5 December 2022.
  93. ^ WHO (2005). "Cancer". Archived from the original on May 18, 2020.
  94. ^ Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. (December 2012). "Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010" (PDF). Lancet. 380 (9859): 2095–2128. doi:10.1016/S0140-6736(12)61728-0. hdl:10536/DRO/DU:30050819. PMC 10790329. PMID 23245604. S2CID 1541253. Archived from the original (PDF) on February 11, 2020.
  95. ^ "The top 10 causes of death". www.who.int.
  96. ^ "The top 10 causes of death". www.who.int. Retrieved 2024-08-12.
  97. ^ Ikuta KS, Swetschinski LR, Robles Aguilar G, Sharara F, Mestrovic T, Gray AP, et al. (December 2022). "Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019". Lancet. 400 (10369): 2221–2248. doi:10.1016/S0140-6736(22)02185-7. PMC 9763654. PMID 36423648.
  98. ^ "Cause of Death". UC Atlas of Global Inequality. University of California, Santa Cruz. 18 February 2004. Archived from the original on 18 June 2014. Retrieved 2014-06-09.
  99. ^ "Violence Against Women Fact Sheet". The United Nations Population Fund. 2005. Archived from the original on 2012-09-08. Retrieved 2012-09-29.
  100. ^ Ellsberg M, Heise L (2005). Researching Violence Against Women: A Practical Guide for Researchers and Activists (PDF). World Health Organization, PATH. ISBN 92-4-154647-6.
  101. ^ Global and regional estimates of violence against women: prevalence and health effects of intimate partner violence and non-partner sexual violence. World Health Organization. 2013. hdl:10665/85239. ISBN 978-92-4-156462-5.
  102. ^ Addressing violence against women and achieving the Millennium Development Goals. World Health Organization (Report). Geneva, Switzerland. September 2005. WHO/FCH/GWH/05.1.
  103. ^ "Violence against women: Intimate partner and sexual violence against women fact sheet". World Health Organization. 2011.
  104. ^ Cockerham WC, Quah SR, eds. (2017). International Encyclopedia of Public Health (Second ed.). Elsevier/AP. ISBN 978-0-12-803708-9.
  105. ^ WHO. "The World Health Assembly endorses the global plan of action on violence against women and girls, and also against children". WHO.int. Retrieved 1 December 2019.
  106. ^ Mahler H. Address by Dr. H. Mahler, Director General of the World Health Organization, in presenting his report for 1986 and 1987. Forty-first World Health Assembly: world health-2000 and beyond. (Report). JSTOR 41989284.
  107. ^ a b c d e f Meara JG, Leather AJ, Hagander L, Alkire BC, Alonso N, Ameh EA, et al. (August 2015). "Global Surgery 2030: evidence and solutions for achieving health, welfare, and economic development". Lancet. 386 (9993): 569–624. doi:10.1016/S0140-6736(15)60160-X. PMID 25924834. S2CID 2048403.
  108. ^ Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, Gawande AA (July 2008). "An estimation of the global volume of surgery: a modelling strategy based on available data". Lancet. 372 (9633): 139–144. doi:10.1016/S0140-6736(08)60878-8. PMID 18582931. S2CID 17918156.
  109. ^ a b McQueen KA, Ozgediz D, Riviello R, Hsia RY, Jayaraman S, Sullivan SR, Meara JG (June 2010). "Essential surgery: Integral to the right to health". Health and Human Rights. 12 (1): 137–152. PMID 20930260.
  110. ^ Shrime MG, Bickler SW, Alkire BC, Mock C (April 2015). "Global burden of surgical disease: an estimation from the provider perspective". The Lancet. Global Health. 3 (Suppl 2): S8–S9. doi:10.1016/S2214-109X(14)70384-5. PMID 25926322.
  111. ^ Bath M, Bashford T, Fitzgerald JE (2019). "What is 'global surgery'? Defining the multidisciplinary interface between surgery, anaesthesia and public health". BMJ Global Health. 4 (5): e001808. doi:10.1136/bmjgh-2019-001808. PMC 6830053. PMID 31749997.
  112. ^ Farmer PE, Kim JY (April 2008). "Surgery and global health: a view from beyond the OR". World Journal of Surgery. 32 (4): 533–6. doi:10.1007/s00268-008-9525-9. PMC 2267857. PMID 18311574.
  113. ^ Dare AJ, Grimes CE, Gillies R, Greenberg SL, Hagander L, Meara JG, Leather AJ (December 2014). "Global surgery: defining an emerging global health field". Lancet. 384 (9961): 2245–7. doi:10.1016/S0140-6736(14)60237-3. PMID 24853601. S2CID 37349469.
  114. ^ O'Neill KM, Greenberg SL, Cherian M, Gillies RD, Daniels KM, Roy N, et al. (November 2016). "Bellwether Procedures for Monitoring and Planning Essential Surgical Care in Low- and Middle-Income Countries: Caesarean Delivery, Laparotomy, and Treatment of Open Fractures". World Journal of Surgery. 40 (11). Springer Science and Business Media LLC: 2611–9. doi:10.1007/s00268-016-3614-y. PMID 27351714. S2CID 12830913.
  115. ^ Chao TE, Sharma K, Mandigo M, Hagander L, Resch SC, Weiser TG, Meara JG (June 2014). "Cost-effectiveness of surgery and its policy implications for global health: a systematic review and analysis". The Lancet. Global Health. 2 (6): e334–45. doi:10.1016/S2214-109X(14)70213-X. PMID 25103302.
  116. ^ Xu K, Evans DB, Kawabata K, Zeramdini R, Klavus J, Murray CJ (July 2003). "Household catastrophic health expenditure: a multicountry analysis". Lancet. 362 (9378): 111–7. doi:10.1016/S0140-6736(03)13861-5. PMID 12867110. S2CID 2052830.
  117. ^ Price R, Makasa E, Hollands M (September 2015). "World Health Assembly Resolution WHA68.15: "Strengthening Emergency and Essential Surgical Care and Anesthesia as a Component of Universal Health Coverage"—Addressing the Public Health Gaps Arising from Lack of Safe, Affordable and Accessible Surgical and Anesthetic Services". World Journal of Surgery. 39 (9): 2115–25. doi:10.1007/s00268-015-3153-y. PMID 26239773. S2CID 13027859.
  118. ^ Debas HT, Donkor P, Gawande A, Jamison DT, Kruk ME, Mock CN (2015-03-24). Debas HT, Donkor P, Gawande A, Jamison DT, Kruk ME, Mock CN (eds.). Disease Control Priorities. Vol. 1 Essential Surgery (3rd ed.). doi:10.1596/978-1-4648-0346-8. hdl:10986/21568. ISBN 978-1-4648-0367-3. PMID 26740991.
  119. ^ a b Truché P, Shoman H, Reddy CL, Jumbam DT, Ashby J, Mazhiqi A, et al. (January 2020). "Globalization of national surgical, obstetric and anesthesia plans: the critical link between health policy and action in global surgery". Globalization and Health. 16 (1): 1. doi:10.1186/s12992-019-0531-5. PMC 6941290. PMID 31898532.
  120. ^ "NIHR Global Health Research Unit on Global Surgery". The NIHR Global Health Research Unit on Global Surgery.
  121. ^ "NIHR Global Health Research Unit on Global Surgery — University of Birmingham". The NIHR Global Health Research Unit on Global Surgery.
  122. ^ "About GlobalSurg". GlobalSurg. Retrieved January 28, 2023.
  123. ^ "CovidSurg". GlobalSurg. April 30, 2005. Retrieved January 28, 2023.
  124. ^ NIHR Global Research Health Unit on Global Surgery (October 25, 2021). "Reducing surgical site infections in low-income and middle-income countries (FALCON): a pragmatic, multicentre, stratified, randomised controlled trial". Lancet. 398 (10312): 1687–99. doi:10.1016/S0140-6736(21)01548-8. PMC 8586736. PMID 34710362.
  125. ^ NIHR Global Research Health Unit on Global Surgery (October 31, 2022). "Routine sterile glove and instrument change at the time of abdominal wound closure to prevent surgical site infection (ChEETAh): a pragmatic, cluster-randomised trial in seven low-income and middle-income countries". Lancet. 400 (10365): 1767–76. doi:10.1016/S0140-6736(22)01884-0. PMID 36328045. S2CID 253242381.
  126. ^ GlobalSurg Collaborative (February 13, 2018). "Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study". The Lancet Infectious Diseases. 18 (5): 516–525. doi:10.1016/S1473-3099(18)30101-4. PMC 5910057. PMID 29452941.
  127. ^ COVIDSurg Collaborative (May 29, 2020). "Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study". Lancet. 396 (10243): 27–38. doi:10.1016/S0140-6736(20)31182-X. PMC 7259900. PMID 32479829.
  128. ^ GlobalSurg Collaborative (4 May 2016). "Mortality of emergency abdominal surgery in high-, middle- and low-income countries". British Journal of Surgery. 103 (8): 971–988. doi:10.1002/bjs.10151. hdl:2027.42/146346. PMID 27145169. S2CID 217871463.
  129. ^ Global PaedSurg Research Collaboration (July 13, 2021). "Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study". Lancet. 398 (10297): 325–339. doi:10.1016/S0140-6736(18)30001-1. PMC 8314066. PMID 34270932.
  130. ^ "La géographie détermine la survie des bébés nés avec des malformations congénitales à travers le monde". FrenchPlanete. 26 July 2021.
  131. ^ "Landmark Trial Concludes to address the problem of Post-operative Death in Africa". SunsineSlate. August 26, 2021.
  132. ^ Biccard BM, Madiba TE, Kluyts HL, Munlemvo DM, Madzimbamuto FD, Basenero A, et al. (African Surgical Outcomes Study (ASOS) investigators.) (April 2018). "Perioperative patient outcomes in the African Surgical Outcomes Study: a 7-day prospective observational cohort study". Lancet. 391 (10130): 1589–98. doi:10.1016/S0140-6736(18)30001-1. PMID 29306587. S2CID 4666606.
  133. ^ "Geography determined Survival for Newborns with Congenital Birth Defects". MaxiNews. July 26, 2021.
  134. ^ Hariri P, Clarke R, Bragg F, Chen Y, Guo Y, Yang L, et al. (January 2022). "Frequency and types of clusters of major chronic diseases in 0.5 million adults in urban and rural China". Journal of Multimorbidity and Comorbidity. 12: 26335565221098327. doi:10.1177/26335565221098327. PMC 9125108. PMID 35615751.
  135. ^ The Lancet (April 2018). "Making more of multimorbidity: an emerging priority". Lancet. 391 (10131): 1637. doi:10.1016/S0140-6736(18)30941-3. PMID 29726322.
  136. ^ Pearson-Stuttard J, Ezzati M, Gregg EW (December 2019). "Multimorbidity-a defining challenge for health systems". The Lancet. Public Health. 4 (12): e599–e600. doi:10.1016/S2468-2667(19)30222-1. hdl:10044/1/75127. PMID 31812234. S2CID 208955266.
  137. ^ Kuan V, Denaxas S, Patalay P, Nitsch D, Mathur R, Gonzalez-Izquierdo A, et al. (January 2023). "Identifying and visualising multimorbidity and comorbidity patterns in patients in the English National Health Service: a population-based study". The Lancet. Digital Health. 5 (1): e16–e27. doi:10.1016/S2589-7500(22)00187-X. PMID 36460578. S2CID 254129048.
  138. ^ Garmany A, Yamada S, Terzic A (September 2021). "Longevity leap: mind the healthspan gap". npj Regenerative Medicine. 6 (1): 57. doi:10.1038/s41536-021-00169-5. PMC 8460831. PMID 34556664.
  139. ^ Farrelly C (November 2022). "Aging, Equality and the Human Healthspan". HEC Forum. 36 (2): 187–205. doi:10.1007/s10730-022-09499-3. PMC 9644010. PMID 36348214.
  140. ^ a b "Humans could face reproductive crisis as sperm count declines, study finds". The Guardian. 15 November 2022. Retrieved 27 November 2022.
  141. ^ Levine H, Jørgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Jolles M, et al. (March 2023). "Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries". Human Reproduction Update. 29 (2): 157–176. doi:10.1093/humupd/dmac035. PMID 36377604.
  142. ^ Laxminarayan R, Mills AJ, Breman JG, Measham AR, Alleyne G, Claeson M, et al. (April 2006). "Advancement of global health: key messages from the Disease Control Priorities Project". Lancet. 367 (9517): 1193–1208. doi:10.1016/S0140-6736(06)68440-7. PMID 16616562. S2CID 1567552.
  143. ^ Bryce J, Black RE, Walker N, Bhutta ZA, Lawn JE, Steketee RW (2005). "Can the world afford to save the lives of 6 million children each year?". Lancet. 365 (9478): 2193–2200. doi:10.1016/S0140-6736(05)66777-3. PMID 15978927. S2CID 46067330.
  144. ^ "Interventions in Health". Global Health Council. Archived from the original on 2011-01-06.
  145. ^ Farmer P (July 2001). "The major infectious diseases in the world--to treat or not to treat?". The New England Journal of Medicine. 345 (3): 208–210. doi:10.1056/NEJM200107193450310. PMID 11463018.
  146. ^ Anson A, Ramay B, de Esparza AR, Bero L (July 2012). "Availability, prices and affordability of the World Health Organization's essential medicines for children in Guatemala". Globalization and Health. 8: 22. doi:10.1186/1744-8603-8-22. PMC 3503802. PMID 22747646.
  147. ^ Kiani A, Qadeer A, Mirza Z, Khanum A, Tisocki K, Mustafa T. "Prices, availability and affordability of medicines in Pakistan" (PDF). Geneva: Health Action International. 2006. Archived from the original (PDF) on 14 December 2010. Retrieved 7 April 2014.
  148. ^ Garrett L (2007). "The Challenge of Global Health". Foreign Affairs. 86 (January/February 2007).
  149. ^ "The world health report 2006: working together for health". Geneva: World Health Organization. Archived from the original on December 2, 2006.
  150. ^ Haakenstad A, Irvine CM, Knight M, Bintz C, Aravkin AY, Zheng P, et al. (June 2022). "Measuring the availability of human resources for health and its relationship to universal health coverage for 204 countries and territories from 1990 to 2019: a systematic analysis for the Global Burden of Disease Study 2019". Lancet. 399 (10341): 2129–54. doi:10.1016/S0140-6736(22)00532-3. PMC 9168805. PMID 35617980.
  151. ^ Kilmarx PH, Maitin T, Adam T, Akuffo H, Aslanyan G, Cheetham M, et al. (August 2020). "A Mechanism for Reviewing Investments in Health Research Capacity Strengthening in Low- and Middle-Income Countries". Annals of Global Health. 86 (1): 92. doi:10.5334/aogh.2941. PMC 7413164. PMID 32832386.
  152. ^ Cissé G, McLeman R, Adams H, Aldunce P, Bowen K, Campbell-Lendrum D, et al. (2022). "Chapter 7: Health, Wellbeing, and the Changing Structure of Communities" (PDF). In Pörtner HO, Roberts DC, Tignor M, Poloczanska ES, Mintenbeck K, Alegría A, et al. (eds.). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Report). Cambridge and New York: Cambridge University Press. pp. 1041–1170. doi:10.1017/9781009325844.009.
  153. ^ Romanello M, Di Napoli C, Drummond P, Green C, Kennard H, Lampard P, et al. (November 5, 2022). "The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels". The Lancet. 400 (10363): 1619–1654. doi:10.1016/S0140-6736(22)01540-9. PMID 36306815.
  154. ^ Atwoli L, Baqui AH, Benfield T, Bosurgi R, Godlee F, Hancocks S, Horton R, Laybourn-Langton L, Monteiro CA, Norman I, Patrick K, Praities N, Olde Rikkert MG, Rubin EJ, Sahni P (2021-09-04). "Call for emergency action to limit global temperature increases, restore biodiversity, and protect health". The Lancet. 398 (10304): 939–941. doi:10.1016/S0140-6736(21)01915-2. PMC 8428481. PMID 34496267.
  155. ^ Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, et al. (2009). "Managing the health effects of climate change". The Lancet. 373 (9676): 1693–1733. doi:10.1016/S0140-6736(09)60935-1. PMID 19447250. S2CID 205954939.
  156. ^ "WHO calls for urgent action to protect health from climate change – Sign the call". World Health Organization. 2015. Archived from the original on October 8, 2015. Retrieved 2020-04-19.
  157. ^ "Tackling climate change could be the greatest global health opportunity of the 21st century" (PDF). Global Climate and Health Alliance. April 2021. Retrieved 30 October 2024.
  158. ^ a b c d Romanello M, McGushin A, Di Napoli C, Drummond P, Hughes N, Jamart L, et al. (October 2021). "The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future" (PDF). The Lancet. 398 (10311): 1619–1662. doi:10.1016/S0140-6736(21)01787-6. hdl:10278/3746207. PMID 34687662. S2CID 239046862.
  159. ^ Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F, Rice BL, et al. (April 2022). "Infectious disease in an era of global change". Nature Reviews Microbiology. 20 (4): 193–205. doi:10.1038/s41579-021-00639-z. ISSN 1740-1534. PMC 8513385. PMID 34646006.
  160. ^ Wilson ME (2010). "Geography of infectious diseases". Infectious Diseases: 1055–1064. doi:10.1016/B978-0-323-04579-7.00101-5. ISBN 978-0-323-04579-7. PMC 7152081.
  161. ^ Levy K, Smith SM, Carlton EJ (2018). "Climate Change Impacts on Waterborne Diseases: Moving Toward Designing Interventions". Current Environmental Health Reports. 5 (2): 272–282. Bibcode:2018CEHR....5..272L. doi:10.1007/s40572-018-0199-7. ISSN 2196-5412. PMC 6119235. PMID 29721700.
  162. ^ a b Watts N, Amann M, Arnell N, Ayeb-Karlsson S, Belesova K, Boykoff M, et al. (16 November 2019). "The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate" (PDF). The Lancet. 394 (10211): 1836–1878. Bibcode:2019Lanc..394.1836W. doi:10.1016/S0140-6736(19)32596-6. PMID 31733928. S2CID 207976337.
  163. ^ Watts N, Amann M, Arnell N, Ayeb-Karlsson S, Belesova K, Boykoff M, et al. (16 November 2019). "The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate" (PDF). The Lancet. 394 (10211): 1836–1878. Bibcode:2019Lanc..394.1836W. doi:10.1016/S0140-6736(19)32596-6. PMID 31733928. S2CID 207976337.
  164. ^ Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, et al. (2015). "Health and climate change: policy responses to protect public health". The Lancet. 386 (10006): 1861–1914. doi:10.1016/S0140-6736(15)60854-6. hdl:10871/17695. PMID 26111439. S2CID 205979317.
  165. ^ Romanello M, McGushin A, Di Napoli C, Drummond P, Hughes N, Jamart L, et al. (October 2021). "The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future" (PDF). The Lancet. 398 (10311): 1619–1662. doi:10.1016/S0140-6736(21)01787-6. hdl:10278/3746207. PMID 34687662. S2CID 239046862.
  166. ^ a b Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, et al. (2015). "Health and climate change: policy responses to protect public health". The Lancet. 386 (10006): 1861–1914. doi:10.1016/S0140-6736(15)60854-6. hdl:10871/17695. PMID 26111439. S2CID 205979317.
  167. ^ "Global health at mercy of fossil fuel addiction, warn scientists". The Guardian. 25 October 2022. Retrieved 17 November 2022.
  168. ^ Romanello M, Di Napoli C, Drummond P, Green C, Kennard H, Lampard P, et al. (November 2022). "The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels". Lancet. 400 (10363): 1619–54. doi:10.1016/S0140-6736(22)01540-9. PMID 36306815. S2CID 253148997.
  169. ^ a b D'Amato G, Pawankar R, Vitale C, Lanza M, Molino A, Stanziola A, Sanduzzi A, Vatrella A, D'Amato M (September 2016). "Climate Change and Air Pollution: Effects on Respiratory Allergy". Allergy Asthma Immunol Res. 8 (5): 391–5. doi:10.4168/aair.2016.8.5.391. PMC 4921692. PMID 27334776.
  170. ^ Kirby-Bauer Disk Diffusion Susceptibility Test Protocol Archived 26 June 2011 at the Wayback Machine, Jan Hudzicki, ASM
  171. ^ "About Antimicrobial Resistance". US Centers for Disease Control and Prevention. 22 April 2024. Retrieved 11 October 2024.
  172. ^ a b "Antimicrobial resistance Fact sheet N°194". who.int. April 2014. Archived from the original on 10 March 2015. Retrieved 7 March 2015.
  173. ^ Tanwar J, Das S, Fatima Z, Hameed S (2014). "Multidrug resistance: an emerging crisis". Interdisciplinary Perspectives on Infectious Diseases. 2014: 541340. doi:10.1155/2014/541340. PMC 4124702. PMID 25140175.
  174. ^ Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (March 2012). "Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance". Clinical Microbiology and Infection. 18 (3): 268–281. doi:10.1111/j.1469-0691.2011.03570.x. PMID 21793988.
  175. ^ Dabour R, Meirson T, Samson AO (December 2016). "Global antibiotic resistance is mostly periodic". Journal of Global Antimicrobial Resistance. 7: 132–134. doi:10.1016/j.jgar.2016.09.003. PMID 27788414.
  176. ^ "Better use of vaccines could reduce antibiotic use by 2.5 billion doses annually, says WHO". World Health Organization. 10 October 2024. Retrieved 11 October 2024.
  177. ^ Saha M, Sarkar A (December 2021). "Review on Multiple Facets of Drug Resistance: A Rising Challenge in the 21st Century". Journal of Xenobiotics. 11 (4): 197–214. doi:10.3390/jox11040013. PMC 8708150. PMID 34940513.
  178. ^ Swedish work on containment of antibiotic resistance – Tools, methods and experiences (PDF). Stockholm: Public Health Agency of Sweden. 2014. pp. 16–17, 121–128. ISBN 978-91-7603-011-0. Archived (PDF) from the original on 23 July 2015. Retrieved 23 July 2015.
  179. ^ Chanel S, Doherty B (2020-09-10). "'Superbugs' a far greater risk than Covid in Pacific, scientist warns". The Guardian. ISSN 0261-3077. Archived from the original on 5 December 2022. Retrieved 2020-09-14.
  180. ^ Rodríguez-Baño J, Rossolini GM, Schultsz C, Tacconelli E, Murthy S, Ohmagari N, Holmes A, Bachmann T, Goossens H, Canton R, Roberts AP, Henriques-Normark B, Clancy CJ, Huttner B, Fagerstedt P, Lahiri S, Kaushic C, Hoffman SJ, Warren M, Zoubiane G, Essack S, Laxminarayan R, Plant L (March 2021). "Key considerations on the potential impacts of the COVID-19 pandemic on antimicrobial resistance research and surveillance". Trans R Soc Trop Med Hyg. 115 (10): 1122–1129. doi:10.1093/trstmh/trab048. PMC 8083707. PMID 33772597.
  181. ^ Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. (February 2022). "Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis". Lancet. 399 (10325): 629–655. doi:10.1016/S0140-6736(21)02724-0. PMC 8841637. PMID 35065702.
  182. ^ Clinton C, Sridhar D (July 2017). "Who pays for cooperation in global health? A comparative analysis of WHO, the World Bank, the Global Fund to Fight HIV/AIDS, Tuberculosis and Malaria, and Gavi, the Vaccine Alliance" (PDF). Lancet. 390 (10091): 324–332. doi:10.1016/S0140-6736(16)32402-3. hdl:20.500.11820/6efaf7e1-836c-42a6-a582-c7e5c7b458fd. PMID 28139255. S2CID 23911963.
  183. ^ Michaud J, Moss K, Licina D, Waldman R, Kamradt-Scott A, Bartee M, et al. (January 2019). "Militaries and global health: peace, conflict, and disaster response". Lancet. 393 (10168): 276–286. doi:10.1016/S0140-6736(18)32838-1. PMID 30663597. S2CID 58624715.
  184. ^ Riley K (2018-03-21). "U.S. at a critical juncture with Global Health Security Agenda". Homeland Preparedness News. Retrieved 2018-03-23.
  185. ^ "Global Health Security Agenda: Action Packages". 23 July 2021 – via U.S. Centers for Disease Control and Prevention (CDC).
  186. ^ a b McPhee E, Gronvall GK, Sell TK (May 2019). "Analysis of sectoral participation in the development of Joint External Evaluations". BMC Public Health. 19 (1): 631. doi:10.1186/s12889-019-6978-8. PMC 6533773. PMID 31122234.
  187. ^ "Global Health Security Agenda: Action Packages". CDC. 2016. Retrieved 18 November 2019.
  188. ^ Wolicki SB, Nuzzo JB, Blazes DL, Pitts DL, Iskander JK, Tappero JW (2016). "Public Health Surveillance: At the Core of the Global Health Security Agenda". Health Security. 14 (3): 185–8. doi:10.1089/hs.2016.0002. PMC 6937158. PMID 27314658.

Further reading