Open main menu
This article is about a group of ray-finned fish called Acanthomorpha or acanthomorphs. Acanthomorph is also a descriptive name for a spiny-walled subgroup of the microscopic fossils called acritarchs.

Acanthomorpha (meaning "thorn-shaped" in Greek) is an extraordinarily diverse taxon of teleost fishes with spiny-rays. The clade contains about one third of the world's modern species of vertebrates: over 14,000 species.[2]

Acanthomorpha
Temporal range: 100–0 Ma
Blochius longirostris.jpg
Blochius longirostris
Scientific classification edit
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Infraclass: Teleostei
(unranked): Acanthomorpha
Rosen, 1973[1]

A key anatomical innovation in acanthomorphs is hollow and unsegmented spines at the anterior edge of the dorsal and anal fins.[3] A fish can extend these sharp bony spines to protect itself from predators, but can also retract them to decrease drag when swimming.[4] Another shared feature is a particular rostral cartilage, associated with ligaments attached to the rostrum and premaxilla, that enables the fish to protrude its jaws considerably to catch food.[5]

Rosen coined the name in 1973 to describe a clade comprising Acanthopterygii, Paracanthopterygii, and also ctenothrissiform fossils from the Cretaceous Period, such as Aulolepis and Ctenothrissa. Those fossils share several details of the skeleton, and especially of the skull, with modern acanthomorphs.[1] Originally based on anatomy, Acanthomorpha has been borne out by more recent molecular analyses.[6]

Contents

PhylogenyEdit

The phylogeny of living bony fishes[7][8][9][10]

Acanthomorpha
Lampripterygii

Lampridiformes (oarfish, opah, ribbonfish)  

Paracanthopterygii
Percopsaria

Percopsiformes (troutperches)  

Zeiogadaria
Zeiariae

Zeiformes (dories)  

Gadariae

Stylephoriformes (tube-eyes, thread-fins)

Gadiformes (cods)  

Polymixiipterygii

Polymixiiformes (beardfish)  

Acanthopterygii
Berycimorphaceae

Beryciformes (alfonsinos; whalefishes)

Trachichthyiformes (pinecone fishes; slimeheads)  

Holocentrimorphaceae

Holocentriformes (squirrelfish; soldier fishes)

Percomorpha

Fossil record and evolutionary historyEdit

Some otoliths, tiny bones from the ears of fishes, have been found from the Jurassic Period that may belong to acanthomorphs, but body fossils from this taxon are only known from the middle of the Cretaceous Period, about 100 million years ago. Acanthomorphs from the early Late Cretaceous were small, typically about 4 centimeters long, and fairly rare.[11] Toward the beginning of the Cenozoic era, they exploded in an adaptive radiation, so by the time we see a thorough fossil record in the Eocene epoch, they had reached their modern diversity of 300 families.[4]

New findings grom Poland reveals that's the podest acantomorphs occurred on Late Triassic

[12].

Somme examples of extinct acanthomorph genera include:

Timeline of generaEdit

QuaternaryNeogenePaleogeneCretaceousHolocenePleistocenePlioceneMioceneOligoceneEocenePaleoceneLate CretaceousEarly CretaceousPseudotetrapterusPalaeorhynchusHomorhynchusAsineopsBlochiusEnniskillenusCongorhynchusCylindracanthusPharmacichthysOmosomopsisQuaternaryNeogenePaleogeneCretaceousHolocenePleistocenePlioceneMioceneOligoceneEocenePaleoceneLate CretaceousEarly Cretaceous 

ReferencesEdit

Notes

  1. ^ a b Rosen, Donn Eric (1973), "Interrelationships of higher euteleostean fishes", in Greenwood, P.H.; Miles, R.S.; Patterson, Colin, Interrelationships of Fishes, Academic Press, pp. 397–513, ISBN 0-12-300850-6
  2. ^ Chen, Wei-Jen; Bonillo, Céline; Lecointre, Guillaume (2003). "Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa". Molecular Phylogenetics and Evolution. 26: 262–288. doi:10.1016/s1055-7903(02)00371-8.
  3. ^ acanthomorphs group, of the phylogeny team, "What are the acanthomorphs?", AcanthoWeb, UPMC, Paris – UMR 7138, Systématique, Adaptation, Évolution, retrieved October 24, 2012
  4. ^ a b Maisey, John G. (1996), Discovering fossil fishes, Henry Holt & Company
  5. ^ Johnson, G. David; Wiley, E.O. (2007), "Acanthomorpha", Tree of Life Web Project, retrieved October 24, 2012
  6. ^ Near, Thomas J.; Eytan, Ron I.; Dornburg, Alex; Kuhn, Kristen L.; Moore, Jon A.; Davis, Matthew P.; Wainwright, Peter C.; Friedman, Matt; Smith, W. Leo (2012). "Resolution of ray-finned fish phylogeny and timing of diversification". PNAS. 109 (34): 13698–13703. doi:10.1073/pnas.1206625109. PMC 3427055.
  7. ^ Betancur-R; et al. (2013). "The Tree of Life and a New Classification of Bony Fishes". PLOS Currents Tree of Life (Edition 1). doi:10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288. Archived from the original on 2013-10-13.
  8. ^ Betancur-R; et al. (2013). "Complete tree classification (supplemental figure)" (PDF). PLOS Currents Tree of Life (Edition 1). Archived from the original (PDF) on 2013-10-21.
  9. ^ Betancur-R; et al. (2013). "Appendix 2 – Revised Classification for Bony Fishes" (PDF). PLOS Currents Tree of Life (Edition 1).
  10. ^ Betancur-Rodriguez; et al. (2016). "Phylogenetic Classification of Bony Fishes Version 4". Deepfin. Retrieved 30 December 2016.
  11. ^ Stewart, J.D. (1996), "Cretaceous acanthomorphs of North America", in Arratia, Gloria; Viohl, Günter, Mesozoic Fishes – Systematics and Paleoecology, Verlag Dr. Friedrich Pfeil, pp. 383–394, ISBN 3-923871-90-2
  12. ^ Antczak, Mateusz; Bodzioch, Adam (January 2018). "Diversity of Fish Scales in Late Triassic Deposits of Krasiejów (SW Poland)". Paleontological Research. 22 (1): 91–100. doi:10.2517/2017pr012. ISSN 1342-8144.

Sources