Solar eclipse of November 4, 2078

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, November 4, 2078, with a magnitude of 0.9255. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity will cross the Pacific Ocean, South America, and the Atlantic Ocean.

Solar eclipse of November 4, 2078
Map
Type of eclipse
NatureAnnular
Gamma−0.2285
Magnitude0.9255
Maximum eclipse
Duration509 s (8 min 29 s)
Coordinates27°48′S 83°18′W / 27.8°S 83.3°W / -27.8; -83.3
Max. width of band287 km (178 mi)
Times (UTC)
Greatest eclipse16:55:44
References
Saros144 (20 of 70)
Catalog # (SE5000)9684

Eclipse details

edit
  • Eclipse Magnitude = 0.92551
  • Eclipse Obscuration = 0.85657
  • Gamma = -0.22852
  • Greatest Eclipse = 04 Nov 2078 16:53:57.5 UTC (16:55:44.4 TD)
  • Delta T = 1 minute, 46.9 seconds
  • Annularity Duration at Greatest Eclipse = 8 minutes, 29 seconds, 80 milliseconds
  • Annularity Duration at Greatest Duration = 8 minutes, 31 seconds, 940 milliseconds
  • Path Width at Greatest Eclipse = 287.5 km (178.6 mi)
  • Path Width at Greatest Duration = 286.0 km (177.7 mi)
  • Moon diameter = 1764.8 arcseconds
  • Sun diameter = 1935.0 arcseconds
  • Moon declination = 15 degrees, 49 minutes, 24.5 seconds south of the Celestial equator
  • Sun declination = 15 degrees, 38 minutes, 7.6 seconds south of the Celestial equator
  • Moon right ascension = 14 hours, 40 minutes, 33.5 seconds
  • Sun right ascension = 14 hours, 40 minutes, 53.9 seconds
edit

Eclipses in 2078

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 144

edit

Inex

edit

Triad

edit

Solar eclipses of 2076–2079

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

The partial solar eclipses on January 6, 2076 and July 1, 2076 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2076 to 2079
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 June 1, 2076
 
Partial
−1.3897 124 November 26, 2076
 
Partial
1.1401
129 May 22, 2077
 
Total
−0.5725 134 November 15, 2077
 
Annular
0.4705
139 May 11, 2078
 
Total
0.1838 144 November 4, 2078
 
Annular
−0.2285
149 May 1, 2079
 
Total
0.9081 154 October 24, 2079
 
Annular
−0.9243

Saros 144

edit

This eclipse is a part of Saros series 144, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 11, 1736. It contains annular eclipses from July 7, 1880 through August 27, 2565. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on May 5, 2980. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 51 at 9 minutes, 52 seconds on December 29, 2168. All eclipses in this series occur at the Moon’s descending node of orbit.[2]

Series members 5–26 occur between 1801 and 2200:
5 6 7
 
May 25, 1808
 
June 5, 1826
 
June 16, 1844
8 9 10
 
June 27, 1862
 
July 7, 1880
 
July 18, 1898
11 12 13
 
July 30, 1916
 
August 10, 1934
 
August 20, 1952
14 15 16
 
August 31, 1970
 
September 11, 1988
 
September 22, 2006
17 18 19
 
October 2, 2024
 
October 14, 2042
 
October 24, 2060
20 21 22
 
November 4, 2078
 
November 15, 2096
 
November 27, 2114
23 24 25
 
December 7, 2132
 
December 19, 2150
 
December 29, 2168
26
 
January 9, 2187

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between June 12, 2029 and November 4, 2116
June 11–12 March 30–31 January 16 November 4–5 August 23–24
118 120 122 124 126
 
June 12, 2029
 
March 30, 2033
 
January 16, 2037
 
November 4, 2040
 
August 23, 2044
128 130 132 134 136
 
June 11, 2048
 
March 30, 2052
 
January 16, 2056
 
November 5, 2059
 
August 24, 2063
138 140 142 144 146
 
June 11, 2067
 
March 31, 2071
 
January 16, 2075
 
November 4, 2078
 
August 24, 2082
148 150 152 154 156
 
June 11, 2086
 
March 31, 2090
 
January 16, 2094
 
November 4, 2097
 
August 24, 2101
158 160 162 164
 
June 12, 2105
 
November 4, 2116

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
December 21, 1805
(Saros 119)
 
November 19, 1816
(Saros 120)
 
October 20, 1827
(Saros 121)
 
September 18, 1838
(Saros 122)
 
August 18, 1849
(Saros 123)
 
July 18, 1860
(Saros 124)
 
June 18, 1871
(Saros 125)
 
May 17, 1882
(Saros 126)
 
April 16, 1893
(Saros 127)
 
March 17, 1904
(Saros 128)
 
February 14, 1915
(Saros 129)
 
January 14, 1926
(Saros 130)
 
December 13, 1936
(Saros 131)
 
November 12, 1947
(Saros 132)
 
October 12, 1958
(Saros 133)
 
September 11, 1969
(Saros 134)
 
August 10, 1980
(Saros 135)
 
July 11, 1991
(Saros 136)
 
June 10, 2002
(Saros 137)
 
May 10, 2013
(Saros 138)
 
April 8, 2024
(Saros 139)
 
March 9, 2035
(Saros 140)
 
February 5, 2046
(Saros 141)
 
January 5, 2057
(Saros 142)
 
December 6, 2067
(Saros 143)
 
November 4, 2078
(Saros 144)
 
October 4, 2089
(Saros 145)
 
September 4, 2100
(Saros 146)
 
August 4, 2111
(Saros 147)
 
July 4, 2122
(Saros 148)
 
June 3, 2133
(Saros 149)
 
May 3, 2144
(Saros 150)
 
April 2, 2155
(Saros 151)
 
March 2, 2166
(Saros 152)
 
January 29, 2177
(Saros 153)
 
December 29, 2187
(Saros 154)
 
November 28, 2198
(Saros 155)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
May 5, 1818
(Saros 135)
 
April 15, 1847
(Saros 136)
 
March 25, 1876
(Saros 137)
 
March 6, 1905
(Saros 138)
 
February 14, 1934
(Saros 139)
 
January 25, 1963
(Saros 140)
 
January 4, 1992
(Saros 141)
 
December 14, 2020
(Saros 142)
 
November 25, 2049
(Saros 143)
 
November 4, 2078
(Saros 144)
 
October 16, 2107
(Saros 145)
 
September 26, 2136
(Saros 146)
 
September 5, 2165
(Saros 147)
 
August 16, 2194
(Saros 148)

References

edit
  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 144". eclipse.gsfc.nasa.gov.
edit