Open main menu

The inex is an eclipse cycle of 10,571.95 days (about 29 years minus 20 days). The cycle was first described in modern times by Crommelin in 1901, but was named by George van den Bergh who studied it half a century later. It has been suggested that the cycle was known to Hipparchos.[1] One inex after an eclipse of a particular saros series there will be an eclipse in the next saros series, unless the latter saros series has come to an end.

It corresponds to:

The 30.5 eclipse years means that if there is a solar eclipse (or lunar eclipse), then after one inex a New Moon (resp. Full Moon) will take place at the opposite node of the orbit of the Moon, and under these circumstances another eclipse can occur.

Unlike the saros, the inex is not close to an integer number of anomalistic months so successive eclipses are not very similar in their appearance and characteristics. From the remainder of 0.67351, being near ​23, every third eclipse will have a similar position in the moon's elliptical orbit and apparent diameter, so the quality of the solar eclipse (total versus annular) will repeat in these groupings of 3 cycles (87 years minus 2 months), called triads.

Inex series last much longer than saros series. For example, inex series 30 started in saros series −245 in 9435 BC and will continue well beyond 15,000 AD. But inex series are not unbroken: at the beginning and end of a series, eclipses may fail to occur. However once settled down, inex series are very stable and run for many thousands of years. For example, series 30 has produced eclipses every 29 years since saros series −197 in 8045 BC, including most recently the solar eclipse of February 5, 2000.[2]

An inex also is close to an integer number of days (10,571.95) so solar eclipses on average take place at about the same geographical longitude at successive events, although variations of the moon's revolutionary speed at different points of the eclipse mask this relation. In addition sequential events occur at opposite geographical latitudes because the eclipses occur at opposite nodes. This is in contrast to the better known saros, which has a period of about ​6,585 13 days, so successive solar eclipses tend to take place about 120° in longitude apart on the globe (although at the same node and hence at about the same geographical latitude).

The significance of the inex cycle is not in the prediction, but in the organization of eclipses: any eclipse cycle, and indeed the interval between any two eclipses, can be expressed as a combination of saros and inex intervals.


An example partial inex solar eclipse seriesEdit

The following seven eclipses form part of inex series 48, which has been yielding eclipses every 29 years since saros series −115 in 5275 BC and will continue to do so beyond 15,000 AD.[3]

An example partial inex lunar eclipse seriesEdit

Solar Saros-Inex panoramaEdit

A saros-inex panorama has been produced by Luca Quaglia and John Tilley. It shows 61775 solar eclipses from −11000 (11001 BC) to +15000.[4]

Each column of the graph is a complete Saros series which progresses smoothly from partial eclipses into total or annular eclipses and back into partials. Each graph row represents an inex series.

The lifetime and form of each inex series is not simple due to long term period variations: the synodic, draconic and anomalistic months. One can see from the data file that in the future (around saros series 300) the graph is horizontal (meaning that after an interval of an inex the moon will be at the same latitude), whereas at the beginning of the panorama around 11,000 BC for the moon to come back to the same latitude at another eclipse required about one saros for every ten inex. This implies that back then 3580+223 or 3803 synodic months equaled 3885+242 or 4127 draconic months. So a synodic month was about 1.0851960 draconic months, as compared to 1.0851958 today. This decrease by about 0.2 ppm can be compared to the decrease in the length of a tropical year by about 1 ppm in the last 10,000 years (see Tropical year). (Note that if the length of a sidereal month were constant, then a decrease in the length of a year would cause an increase in the length of a synodic month.)

Solar eclipses from –11000 to +15000.

From the data file we can see that eclipses recur with a period of a combination of 15 inex and 1 saros (5593 synodic months, 165164.58 days, or 452.2 tropical years) throughout the whole panorama (26,000 years), for example from the eclipse of saros series −290, inex series 2 (slightly off the panorama to the left) to the eclipse of saros series 580, inex series 60 on the right-side edge of the panorama. Similar cycles with more or less than 15 inex per saros also cover the whole panorama.

Lunar Saros-Inex panoramaEdit

Lunar eclipses can also be plotted in a similar diagram, this diagram covering 1000 AD to 2500 AD. The yellow diagonal band represents all the eclipses from 1900 to 2100. This graph immediately illuminates that this 1900–2100 period contains an above average number of total lunar eclipses compared to other adjacent centuries.


See alsoEdit


  • A.C.D. Crommelin (1901): The 29-year eclipse cycle. Observatory xxiv nr.310,379, Oct-1901
  • G. van den Bergh (1954): Eclipses in the second millennium B.C. Tjeenk Willink & Zn NV, Haarlem 1954
  • G. van den Bergh (1955): Periodicity and Variation of Solar (and Lunar) Eclipses, 2 vols. Tjeenk Willink & Zn NV, Haarlem 1955
  • Mathematical Astronomy Morsels, Jean Meeus, Willmann-Bell, Inc., 1997 (Chapter 9, p. 51, Table 9. A Some eclipse Periodicities)