Solar eclipse of June 11, 2086

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 11, 2086, with a magnitude of 1.0174. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

Solar eclipse of June 11, 2086
Map
Type of eclipse
NatureTotal
Gamma−0.7215
Magnitude1.0174
Maximum eclipse
Duration108 s (1 min 48 s)
Coordinates23°12′S 12°30′E / 23.2°S 12.5°E / -23.2; 12.5
Max. width of band86 km (53 mi)
Times (UTC)
Greatest eclipse11:07:14
References
Saros148 (25 of 75)
Catalog # (SE5000)9701
edit

Eclipses in 2086

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 148

edit

Inex

edit

Triad

edit

Solar eclipses of 2083–2087

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Solar eclipse series sets from 2083 to 2087
Descending node   Ascending node
118 July 15, 2083
 
Partial
123 January 7, 2084
 
Partial
128 July 3, 2084
 
Annular
133 December 27, 2084
 
Total
138 June 22, 2085
 
Annular
143 December 16, 2085
 
Annular
148 June 11, 2086
 
Total
153 December 6, 2086
 
Partial
158 June 1, 2087
 
Partial

Saros 148

edit

This eclipse is a part of Saros series 148, repeating every 18 years, 11 days, and containing 75 events. The series started with a partial solar eclipse on September 21, 1653. It contains annular eclipses on April 29, 2014 and May 9, 2032; a hybrid eclipse on May 20, 2050; and total eclipses from May 31, 2068 through August 3, 2771. The series ends at member 75 as a partial eclipse on December 12, 2987. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 22 at 22 seconds (by default) on May 9, 2032, and the longest duration of totality will be produced by member 54 at 5 minutes, 23 seconds on April 26, 2609. All eclipses in this series occur at the Moon’s descending node of orbit.[2]

Series members 10–31 occur between 1801 and 2200:
10 11 12
 
December 30, 1815
 
January 9, 1834
 
January 21, 1852
13 14 15
 
January 31, 1870
 
February 11, 1888
 
February 23, 1906
16 17 18
 
March 5, 1924
 
March 16, 1942
 
March 27, 1960
19 20 21
 
April 7, 1978
 
April 17, 1996
 
April 29, 2014
22 23 24
 
May 9, 2032
 
May 20, 2050
 
May 31, 2068
25 26 27
 
June 11, 2086
 
June 22, 2104
 
July 4, 2122
28 29 30
 
July 14, 2140
 
July 25, 2158
 
August 4, 2176
31
 
August 16, 2194

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days).

Notes

edit
  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 148". eclipse.gsfc.nasa.gov.

References

edit