Solar eclipse of November 27, 2095

An annular solar eclipse will occur at the Moon's descending node of orbit between Saturday, November 26 and Sunday, November 27, 2095,[1] with a magnitude of 0.933. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.8 days after apogee (on November 23, 2095, at 6:10 UTC), the Moon's apparent diameter will be smaller.[2]

Solar eclipse of November 27, 2095
Map
Type of eclipse
NatureAnnular
Gamma0.4903
Magnitude0.933
Maximum eclipse
Duration527 s (8 min 47 s)
Coordinates7°12′N 169°48′E / 7.2°N 169.8°E / 7.2; 169.8
Max. width of band285 km (177 mi)
Times (UTC)
Greatest eclipse1:02:57
References
Saros134 (48 of 71)
Catalog # (SE5000)9723

The path of annularity will be visible from parts of northeastern China, North Korea, South Korea, Japan, the Marshall Islands, and Kiribati. A partial solar eclipse will also be visible for parts of East Asia, Southeast Asia, Oceania, Hawaii, and southwestern Alaska.

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

November 27, 2095 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2095 November 26 at 22:08:18.5 UTC
First Umbral External Contact 2095 November 26 at 23:17:51.3 UTC
First Central Line 2095 November 26 at 23:21:03.1 UTC
First Umbral Internal Contact 2095 November 26 at 23:24:16.3 UTC
Equatorial Conjunction 2095 November 27 at 00:46:21.1 UTC
Ecliptic Conjunction 2095 November 27 at 00:57:09.8 UTC
Greatest Eclipse 2095 November 27 at 01:02:57.4 UTC
Greatest Duration 2095 November 27 at 01:13:24.5 UTC
Last Umbral Internal Contact 2095 November 27 at 02:41:51.2 UTC
Last Central Line 2095 November 27 at 02:45:02.1 UTC
Last Umbral External Contact 2095 November 27 at 02:48:11.5 UTC
Last Penumbral External Contact 2095 November 27 at 03:57:38.7 UTC
November 27, 2095 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.93303
Eclipse Obscuration 0.87054
Gamma 0.49030
Sun Right Ascension 16h12m24.6s
Sun Declination -21°07'41.4"
Sun Semi-Diameter 16'12.2"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 16h12m56.4s
Moon Declination -20°41'58.0"
Moon Semi-Diameter 14'55.2"
Moon Equatorial Horizontal Parallax 0°54'45.3"
ΔT 119.6 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of November–December 2095
November 27
Descending node (new moon)
December 11
Ascending node (full moon)
 
Annular solar eclipse
Solar Saros 134
Partial lunar eclipse
Lunar Saros 146
edit

Eclipses in 2095

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 134

edit

Inex

edit

Triad

edit

Solar eclipses of 2094–2098

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The solar eclipses on January 16, 2094 (total) and July 12, 2094 (partial) occur in the previous lunar year eclipse set, and the partial solar eclipses on April 1, 2098 and September 25, 2098 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2094 to 2098
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 June 13, 2094
 
Partial
−1.4613 124 December 7, 2094
 
Partial
1.1547
129 June 2, 2095
 
Total
−0.6396 134 November 27, 2095
 
Annular
0.4903
139 May 22, 2096
 
Total
0.1196 144 November 15, 2096
 
Annular
−0.20
149 May 11, 2097
 
Total
0.8516 154 November 4, 2097
 
Annular
−0.8926
159 May 1, 2098 164 October 24, 2098
 
Partial
−1.5407

Saros 134

edit

This eclipse is a part of Saros series 134, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 22, 1248. It contains total eclipses from October 9, 1428 through December 24, 1554; hybrid eclipses from January 3, 1573 through June 27, 1843; and annular eclipses from July 8, 1861 through May 21, 2384. The series ends at member 72 as a partial eclipse on August 6, 2510. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 11 at 1 minutes, 30 seconds on October 9, 1428, and the longest duration of annularity will be produced by member 52 at 10 minutes, 55 seconds on January 10, 2168. All eclipses in this series occur at the Moon’s descending node of orbit.[5]

Series members 32–53 occur between 1801 and 2200:
32 33 34
 
June 6, 1807
 
June 16, 1825
 
June 27, 1843
35 36 37
 
July 8, 1861
 
July 19, 1879
 
July 29, 1897
38 39 40
 
August 10, 1915
 
August 21, 1933
 
September 1, 1951
41 42 43
 
September 11, 1969
 
September 23, 1987
 
October 3, 2005
44 45 46
 
October 14, 2023
 
October 25, 2041
 
November 5, 2059
47 48 49
 
November 15, 2077
 
November 27, 2095
 
December 8, 2113
50 51 52
 
December 19, 2131
 
December 30, 2149
 
January 10, 2168
53
 
January 20, 2186

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between July 3, 2065 and November 26, 2152
July 3–4 April 21–23 February 7–8 November 26–27 September 13–15
118 120 122 124 126
 
July 3, 2065
 
April 21, 2069
 
February 7, 2073
 
November 26, 2076
 
September 13, 2080
128 130 132 134 136
 
July 3, 2084
 
April 21, 2088
 
February 7, 2092
 
November 27, 2095
 
September 14, 2099
138 140 142 144 146
 
July 4, 2103
 
April 23, 2107
 
February 8, 2111
 
November 27, 2114
 
September 15, 2118
148 150 152 154 156
 
July 4, 2122
 
April 22, 2126
 
February 8, 2130
 
November 26, 2133
 
September 15, 2137
158 160 162 164
 
July 3, 2141
 
November 26, 2152

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
March 14, 1801
(Saros 107)
 
February 12, 1812
(Saros 108)
 
January 12, 1823
(Saros 109)
 
November 10, 1844
(Saros 111)
 
August 9, 1877
(Saros 114)
 
July 9, 1888
(Saros 115)
 
June 8, 1899
(Saros 116)
 
May 9, 1910
(Saros 117)
 
April 8, 1921
(Saros 118)
 
March 7, 1932
(Saros 119)
 
February 4, 1943
(Saros 120)
 
January 5, 1954
(Saros 121)
 
December 4, 1964
(Saros 122)
 
November 3, 1975
(Saros 123)
 
October 3, 1986
(Saros 124)
 
September 2, 1997
(Saros 125)
 
August 1, 2008
(Saros 126)
 
July 2, 2019
(Saros 127)
 
June 1, 2030
(Saros 128)
 
April 30, 2041
(Saros 129)
 
March 30, 2052
(Saros 130)
 
February 28, 2063
(Saros 131)
 
January 27, 2074
(Saros 132)
 
December 27, 2084
(Saros 133)
 
November 27, 2095
(Saros 134)
 
October 26, 2106
(Saros 135)
 
September 26, 2117
(Saros 136)
 
August 25, 2128
(Saros 137)
 
July 25, 2139
(Saros 138)
 
June 25, 2150
(Saros 139)
 
May 25, 2161
(Saros 140)
 
April 23, 2172
(Saros 141)
 
March 23, 2183
(Saros 142)
 
February 21, 2194
(Saros 143)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
June 16, 1806
(Saros 124)
 
May 27, 1835
(Saros 125)
 
May 6, 1864
(Saros 126)
 
April 16, 1893
(Saros 127)
 
March 28, 1922
(Saros 128)
 
March 7, 1951
(Saros 129)
 
February 16, 1980
(Saros 130)
 
January 26, 2009
(Saros 131)
 
January 5, 2038
(Saros 132)
 
December 17, 2066
(Saros 133)
 
November 27, 2095
(Saros 134)
 
November 6, 2124
(Saros 135)
 
October 17, 2153
(Saros 136)
 
September 27, 2182
(Saros 137)

Notes

edit
  1. ^ "November 26–27, 2095 Annular Solar Eclipse". timeanddate. Retrieved 24 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 24 August 2024.
  3. ^ "Annular Solar Eclipse of 2095 Nov 27". EclipseWise.com. Retrieved 24 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 134". eclipse.gsfc.nasa.gov.

References

edit