Effects of climate change on humans

The effects of climate change on humans are far reaching and include effects on health, environment, displacement, migration, security, society, human settlement, energy, and transport. Climate change has brought about possibly irreversible alterations to Earth's geological, biological, and ecological systems.[1] These changes have led to the emergence of large-scale environmental hazards to human health; such as extreme weather,[2] increased danger of wildfires,[3] loss of biodiversity,[4] stresses to food-producing systems, and the global spread of infectious diseases.[5] In addition, climatic changes were estimated to cause over 150,000 deaths annually in 2002, with the World Health Organization estimating this number will increase to 250,000 deaths annually between 2030 and 2050.[6][7]

Flooding in the Midwestern United States, June 2008

A growing body of research explores the many impacts of climate change on human health, food supply, economic growth, migration, security, societal change, and public goods, such as drinking water. The consequences of these changes are most likely detrimental in the long term. For example, Bangladesh has experienced an increase in climate-sensitive diseases; such as malaria, dengue fever, childhood diarrhea, and pneumonia, among vulnerable communities.[8] Numerous studies suggest that the net current and future impacts of climate change on human society will continue being overwhelmingly negative.[9][10]

Most adverse effects of climate change are experienced by poor and low-income communities around the world, who have much higher levels of vulnerability to environmental determinants of health, wealth and other factors. They also have much lower levels of capacity available for coping with environmental change. A report on the global human impact of climate change published by the Global Humanitarian Forum in 2009, estimated more than 300,000 deaths and about $125 billion in economic losses each year. This indicates how most climate change induced mortality is due to worsening floods and droughts in developing countries.

Key vulnerabilitiesEdit

The IPCC Sixth Assessment Report (2021) projected multiplicative increases in the frequency of extreme events compared to the pre-industrial era for heat waves, droughts and heavy precipitation events, for various global warming scenarios.[11]

Most of the key vulnerabilities to climate change are related to climate phenomena that exceed thresholds for adaptation; such as extreme weather events or abrupt climate change, as well as limited access to resources (financial, technical, human, institutional) to cope. In 2007, the IPCC published a report of key vulnerabilities of industry, settlements, and society to climate change.[12] This assessment included a level of confidence for each key vulnerability:

  • Very high confidence: Interactions between climate change and urbanization: this is most notable in developing countries, where urbanization is often focused in vulnerable coastal areas.
  • High confidence:
    • Interactions between climate change and global economic growth: Stresses due to climate change are not only linked to the impacts of climate change, but also to the impacts of climate change policies. For example, these policies might affect development paths by requiring high cost fuel choices.
    • Fixed physical infrastructures that are important in meeting human needs: These include infrastructures that are susceptible to damage from extreme weather events or sea level rise, and infrastructures that are already close to being inadequate.
  • Medium confidence: Interactions with governmental and social cultural structures that already face other pressures (e.g., limited economic resources).

It has been estimated in the year 2020 that for every degree of temperature rise there will be 1 billion people that will live in areas with temperatures considered as too high for a normal life.[13] Humans generally live in areas where the average temperature is between 6 °C and 28 °C, with the majority of life in regions with a temperature of 11 °C – 15 °C. A temperature of 29 degrees or higher is considered as too hot for normal life and currently found only in 0.8% of the land surface (mainly in Sahara desert). However, according to the study by the year 2070 in the RCP8.5 (business as usual) scenario, 30% of human population will live in this area.[14][13] In the supplementary materials of the study, it is said that according to this scenario the global average temperature will be 3.2-degree higher in the year 2070 relatively to the pre – industrial baseline.[15] According to the United Nations Environmental Program report, the temperature will rise by 3.2 degrees by the end of the century. Even if all the pledges in Paris Agreement (as they were in 2019) will be accomplished.[16]


Climate Crisis = Health Crisis

Climate change poses a wide range of risks to population health. If global climate change continues on its current trajectory, these risks will increase in future decades to potentially critical levels.[17] The three main categories of health risks include: (i) direct-acting effects (e.g. due to heat waves, amplified air pollution, and physical weather disasters), (ii) impacts mediated via climate-related changes in ecological systems and relationships (e.g. crop yields, mosquito ecology, marine productivity), and (iii) the more diffuse (indirect) consequences relating to impoverishment, displacement, resource conflicts (e.g. water), and post-disaster mental health problems.

Climate change threatens to slow, halt or reverse international progress towards reducing child under-nutrition, deaths from diarrheal diseases and the spread of other infectious diseases. Climate change acts predominantly by exacerbating the existing, often enormous, health problems, especially in the poorer parts of the world. Current variations in weather conditions already have many adverse impacts on the health of poor people in developing nations,[18] and these too are likely to be 'multiplied' by the added stresses of climate change.

A changing climate thus affects the prerequisites of population health: clean air and water, sufficient food, natural constraints on infectious disease agents, and the adequacy and security of shelter. A warmer and more variable climate leads to higher levels of some air pollutants. It increases the rates and ranges of transmission of infectious diseases through unclean water and contaminated food, and by affecting vector organisms (such as mosquitoes) and intermediate or reservoir host species that harbour the infectious agent (such as cattle,[19] bats and rodents). Changes in temperature, rainfall and seasonality compromise agricultural production in many regions, including some of the least developed countries, thus jeopardising child health and growth and the overall health and functional capacity of adults. As warming proceeds, the severity (and perhaps frequency) of weather-related disasters will increase – and appears to have done so in a number of regions of the world over the past several decades.[20]

Health equity and climate change have a major impact on human health and quality of life, and are interlinked in a number of ways. The report of the WHO Commission on Social Determinants of Health points out that disadvantaged communities are likely to shoulder a disproportionate share of the burden of climate change because of their increased exposure and vulnerability to health threats. Over 90 percent of malaria and diarrhea deaths are borne by children aged 5 years or younger, mostly in developing countries.[21] Other severely affected population groups include women, the elderly and people living in small island developing states and other coastal regions, mega-cities or mountainous areas.[22]

Psychological impactsEdit

The USNS Comfort on its way to deliver relief after Hurricane Katrina. Rapid assistance and restoration of security for those affected by extreme weather reduces the risk of long term psychological impact.

Climate change causes a number of psychological effects on the earth's inhabitants. These include emotional states such as eco-anxiety, eco-grief and eco-anger. While unpleasant, such emotions are often not harmful, and can be rational responses to the degradation of the natural world, motivating adaptive action. Other effects, such as Post-traumatic stress (PTS), can be more dangerous. In the 21st century, academics, medical professionals and various other actors are seeking to understand these impacts, to assist in their relief, make more accurate predictions, and to assist efforts to mitigate and adapt to global warming.

There are three broad channels by which climate change affects people's mental state: directly, indirectly or via awareness. The direct channel includes stress related conditions being caused by exposure to extreme weather events. The indirect pathway can be via disruption to economic and social activities, such as when an area of farmland is less able to produce food. And the third channel can be of mere awareness of the climate change threat, even by individuals who are not otherwise affected by it. There are many exceptions, but generally it is people in developing countries who are more exposed to the direct impact and economic disruption caused by climate changes. Whereas recently identified climate related psychological conditions like eco-anxiety, which can result just from awareness of the threat, tend to affect people across the planet.

Infectious diseasesEdit

Global climate change has resulted a wide range of impacts on the spread of infectious diseases. Like other climate change impacts on human health, climate change exacerbates existing inequalities and challenges in managing infectious disease. It also increases the likelihood of certain kinds of new infectious disease challenges. Infectious diseases whose transmission can be impacted by climate change include dengue fever, malaria, tick-borne disease, leishmaniasis, ebola. There is no direct evidence that the spread of COVID-19 is worsened or is caused by climate change, although investigations continue.


Climate change may dramatically impact habitat loss, for example, arid conditions may cause the deforestation of rainforests, as has occurred in the past.[23]

Temperature changesEdit

A sustained wet-bulb temperature exceeding 35 °C is a threshold at which the resilience of human systems is no longer able to adequately cool the skin. A study by NOAA from 2013 concluded that heat stress will reduce labor capacity considerably under current emissions scenarios.[24] One study found that limiting warming to 1.5 degrees is necessary for avoiding from large and densely populated territories in tropical regions to pass the threshold of 35 °C of wet bulb temperature[25] There is evidence to show that high temperatures can increase mortality rates among fetuses and children.[26] Although the main focus is often on the health impacts and risks of higher temperatures, it should be remembered that they also reduce learning and worker productivity, which can impact a country's economy and development.

Low temperatureEdit

Climate change contributes to cold snaps due to disruptions in the polar vortex caused by a decline in Arctic sea ice.[27] This causes frigid, cold air to spill from the Arctic and into areas of the northern hemisphere that usually don't experience such cold temperatures, such as the North American southeast, midwest, northeast, and parts of Europe.[27] This is a predicted short-term effect of climate change in the winter. This brings along extreme cold temperatures for a short period of time, and results in large scale disruption to human life. A statistic from data on the winter season of 2013-14 found that of the most notable of the winter storms – most of which were caused by the disruption of the polar vortex – caused $263 million in damage, 32 fatalities, and 9 injuries.[28] Furthermore, infrastructure damage in the form of closed roads, schools, airports, and other civil functions occurred throughout the northeast, and in some parts of the Midwestern and Southeastern United States. A commercial airliner skidded off the runway and into a nearby snowbank at John F. Kennedy International Airport in New York during the 2014 cold snap.[28] The winter season of 2013-2014 also caused some crop damage as shown in Ohio losing 97% of their grape harvest.[29] Further harvests in the following years were also affected as freeze damage reached deep into the trunks of some plants killing off the plant. The total damages extended to roughly $4 million, impacting Ohio's economy and wine production. Cold events are expected to increase in the short term while in the long term the increasing global temperature is going to give way to more heat-related events.


Baseline water stress per region: the ratio of total annual water withdrawals to total available annual renewable supply, accounting for upstream consumptive use

The freshwater resources that humans rely on are highly sensitive to variations in weather and climate.[30] The sustained alteration of climate directly impacts the hydrosphere and hydrologic cycle changing how humans interact with water across the globe In 2007, the IPCC reported with high confidence that climate change has a net negative impact on water resources and freshwater ecosystems in all regions.[31] The IPCC also found with very high confidence that arid and semi-arid areas are particularly exposed to freshwater impacts.[31] In addition, the IPCC forecasts increased uncertainty in the amount and frequency of precipitation from the year 2000 to 2100.[32]

As the climate warms, it changes the nature of global rainfall, evaporation, snow, stream flow and other factors that affect water supply and quality. Specific impacts include:

  • Warmer water temperatures affect water quality and accelerate water pollution.[33]
  • Sea level rise is projected to increase salt-water intrusion into groundwater in some regions. This reduces the amount of freshwater available for drinking and farming.[33][34]
  • In some areas, shrinking glaciers and snow deposits threaten the water supply.[35] Areas that depend on melted water runoff will likely see that runoff depleted, with less flow in the late summer and spring peaks occurring earlier.[33] This can affect the ability to irrigate crops. (This situation is particularly acute for irrigation in South America,[36] for irrigation and drinking supplies in Central Asia, and for hydropower in Norway, the Alps, and the Pacific Northwest of North America.)
  • Increased extreme weather means more water falls on hardened ground unable to absorb it, leading to flash floods instead of a replenishment of soil moisture or groundwater levels.[37]
  • Increased evaporation will reduce the effectiveness of reservoirs.
  • At the same time, human demand for water will grow for the purposes of cooling and hydration.
  • Increased precipitation can lead to changes in water-borne and vector-borne diseases.[38]

Changes in freshwater availability extend to groundwater as well and human activities in conjunction with climate change interfere with groundwater recharge patterns. One of the leading anthropogenic activities resulting in the depletion of groundwater includes irrigation. Roughly 40% of global irrigation is supported by groundwater and irrigation is the primary activity resulting in groundwater storage loss across the U.S.[39] Furthermore, in the US an estimated 800 km^3 of groundwater was depleted in the past century.[39] The development of cities and other areas of highly concentrated water usage has created a strain on groundwater resources. Surface water and groundwater interactions experience reduced "interflow" between the surface and subsurface in post- development scenarios leading to depleted water tables.[40] Groundwater recharge rates are also affected by rising temperatures which increase surface evaporation and transpiration resulting in decreased soil water content.[41] These anthropogenic changes to groundwater storage, such as over pumping and the depletion of water tables combined with climate change, effectively reshape the hydrosphere and impact the ecosystems that depend on the groundwater.[42]


Researchers found that there is a strong correlation between higher temperatures and drowning accidents in large lakes, and that's because the ice gets thinner and weaker. In fact Canadian studies show that since 1990, around 4000 cases of drowning were detected. Study leader Sapna Sharma, from York University in Toronto, Canada conformed that "We can confidently say that there is a quite a strong correlation between warmer winter air temperatures and more winter drownings".[43] Even though not all drowning accidents lead to death, drowning itself could be a very harmful experience, especially since most victims are children or young adults. Due to very cold water, children suffer from cardiac arrest and later from neurological damages.

In addition, the fear of drowning affects the lifestyle of indigenous people, who rely on icy lakes to hunt, fish and travel.

Although authorities are spreading awareness about the danger of drowning, prohibiting snowmobiles on lakes, and limiting access until ice is safe, researchers predict that the cases will still increase, especially during the lockdown, because people are spending more time outdoor.

Lack of oxygenEdit

The possibility has been discussed of a massive mortality of humans due to lack of oxygen in case of a temperature rise of 6 degrees above preindustrial levels. This is because such conditions can harm phytoplankton which produces a large part of the oxygen on Earth.[44][45]

Displacement and migrationEdit

A refugee camp north of Goma near the Rwandan border

Climate change causes displacement of people in several ways, the most obvious—and dramatic—being through the increased number and severity of weather-related disasters which destroy homes and habitats causing people to seek shelter or livelihoods elsewhere. Effects of climate change such as desertification and rising sea levels gradually erode livelihood and force communities to abandon traditional homelands for more accommodating environments. This is currently happening in areas of Africa's Sahel, the semi-arid belt that spans the continent just below its northern deserts. Deteriorating environments triggered by climate change can also lead to increased conflict over resources which in turn can displace people.[46]

The IPCC has estimated that 150 million environmental migrants will exist by the year 2050, due mainly to the effects of coastal flooding, shoreline erosion and agricultural disruption.[47] However, the IPCC also cautions that it is extremely difficult to measure the extent of environmental migration due to the complexity of the issue and a lack of data.[12]

According to the Internal Displacement Monitoring Centre, more than 42 million people were displaced in Asia and the Pacific during 2010 and 2011, more than twice the population of Sri Lanka. This figure includes those displaced by storms, floods, and heat and cold waves. Still others were displaced by drought and sea-level rise. Most of those compelled to leave their homes eventually returned when conditions improved, but an undetermined number became migrants, usually within their country, but also across national borders.[48] The same organization issued a report in 2021, saying that in 2020 approximately 30 million people were displaced by extreme weather events while approximately 10 million by violence and wars and climate change significantly contributed to this.[49][50]

Asia and the Pacific is the global area most prone to natural disasters, both in terms of the absolute number of disasters and of populations affected. It is highly exposed to climate impacts, and is home to highly vulnerable population groups, who are disproportionately poor and marginalized. A recent Asian Development Bank report highlights "environmental hot spots" that are particular risk of flooding, cyclones, typhoons, and water stress.[51]

Some Pacific Ocean island nations, such as Tuvalu, Kiribati, and the Maldives,[52] are considering the eventual possibility of evacuation, as flood defense may become economically unrealistic. Tuvalu already has an ad hoc agreement with New Zealand to allow phased relocation.[53] However, for some islanders relocation is not an option. They are not willing to leave their homes, land and families. Some simply don't know the threat that climate change has on their island and this is mainly down to the lack of awareness that climate change even exists. In Vutia on Viti Levu, Fiji's main island, half the respondents to a survey had not heard of climate change (Lata and Nuun 2012). Even where there is awareness many believe that it is a problem caused by developed countries and should therefore be solved by developed countries.[54] As of 2020 many Pacific islands are growing in size, contradicting earlier claims.[55]

Governments have considered various approaches to reduce migration compelled by environmental conditions in at-risk communities, including programs of social protection, livelihoods development, basic urban infrastructure development, and disaster risk management. Some experts even support migration as an appropriate way for people to cope with environmental changes. However, this is controversial because migrants – particularly low-skilled ones – are among the most vulnerable people in society and are often denied basic protections and access to services.[51]

Climate change is only one factor that may contribute to a household's decision to migrate; other factors may include poverty, population growth or employment options.[56] For this reason, it is difficult to classify environmental migrants as actual "refugees" as legally defined by the UNHCR.[57] Neither the UN Framework Convention on Climate Change nor its Kyoto Protocol, an international agreement on climate change, includes any provisions concerning specific assistance or protection for those who will be directly affected by climate change.[58]

In small islands and megadeltas, inundation as a result of sea level rise is expected to threaten vital infrastructure and human settlements.[59][60] This could lead to issues of statelessness for populations in countries such as the Maldives and Tuvalu[61] and homelessness in countries with low-lying areas such as Bangladesh.

The World Bank predicts that a "severe hit" will spur conflict and migration across the Middle East, Central Asia, and Africa.[62]


Climate change has the potential to exacerbate existing tensions or create new ones – serving as a threat multiplier. It can be a catalyst for violent conflict and a threat to international security.[63][64] A meta-analysis of over 50 quantitative studies that examine the link between climate and conflict found that "for each 1 standard deviation (1σ) change in climate toward warmer temperatures or more extreme rainfall, median estimates indicate that the frequency of interpersonal violence rises 4% and the frequency of intergroup conflict rises 14%."[65][66] The IPCC has suggested that the disruption of environmental migration may serve to exacerbate conflicts,[67] though they are less confident of the role of increased resource scarcity.[12] Of course, climate change does not always lead to violence, and conflicts are often caused by multiple interconnected factors.[68]

A variety of experts have warned that climate change may lead to increased conflict. The Military Advisory Board, a panel of retired U.S. generals and admirals, predicted that global warming will serve as a "threat multiplier" in already volatile regions.[69] The Center for Strategic and International Studies and the Center for a New American Security, two Washington think tanks, have reported that flooding "has the potential to challenge regional and even national identities," leading to "armed conflict over resources." They indicate that the greatest threat would come from "large-scale migrations of people – both inside nations and across existing national borders."[70] However, other researchers have been more skeptical: One study found no statistically meaningful relationship between climate and conflict using data from Europe between the years 1000 and 2000.[71]

The link between climate change and security is a concern for authorities across the world, including United Nations Security Council and the G77 group of developing nations. Climate change's impact as a security threat is expected to hit developing nations particularly hard. In Britain, Foreign Secretary Margaret Beckett has argued that "An unstable climate will exacerbate some of the core drivers of conflict, such as migratory pressures and competition for resources."[72] The links between the human impact of climate change and the threat of violence and armed conflict are particularly important because multiple destabilizing conditions are affected simultaneously.

Experts have suggested links to climate change in several major conflicts:

Additionally, paleoclimatologists have determined the connections between war frequencies and population changes which have led to the various cycles in temperatures since the preindustrial era.[88] Securitization is a slow process that builds on an issue resulting from a variety of political actions and choices.[89] A 2016 study finds that "drought can contribute to sustaining conflict, especially for agriculturally dependent groups and politically excluded groups in very poor countries. These results suggest a reciprocal nature–society interaction in which violent conflict and environmental shock constitute a vicious circle, each phenomenon increasing the group’s vulnerability to the other."[90] Different researchers have done several analyses regarding whether or not climate change has been securitized. It's essential to understand securitization because it could lead to the placing of certain policies. The disasters leading to this process include the vast disturbances in certain communities that have become unsafe and have made them more vulnerable to economic, human, and environmental losses.[89] Different cases have been able to prove this problem in many communities.

Social impactsEdit

The consequences of climate change and poverty are not distributed uniformly within communities. Individual and social factors such as gender, age, education, ethnicity, geography and language lead to differential vulnerability and capacity to adapt to the effects of climate change.

Disproportionate effects on childrenEdit

Climate change effects such as hunger, poverty and diseases like diarrhea and malaria, disproportionately impact children; about 90 percent of malaria and diarrhea deaths are among young children. Children are also 14–44 percent more likely to die from environmental factors,[91] again leaving them the most vulnerable. Those in urban areas will be affected by lower air quality and overcrowding, and will struggle the most to better their situation.[21]

Nearly every child in the world is at risk from climate change and pollution. Almost half are at extreme risk.[92]

Social effects of extreme weatherEdit

As the World Meteorological Organization explains, "recent increase in societal impact from tropical cyclones has largely been caused by rising concentrations of population and infrastructure in coastal regions."[93] Pielke et al. (2008) normalized mainland U.S. hurricane damage from 1900 to 2005 to 2005 values and found no remaining trend of increasing absolute damage. The 1970s and 1980s were notable because of the extremely low amounts of damage compared to other decades. The decade 1996–2005 has the second most damage among the past 11 decades, with only the decade 1926–1935 surpassing its costs. The most damaging single storm is the 1926 Miami hurricane, with $157 billion of normalized damage.[94]

Environmental racismEdit

Climate change disproportionately affects racial minorities, with non-white and lower-income communities being disproportionately exposed to pollution and toxic waste, a trend known as environmental racism. Landfills, mines, power plants, sewage, and large highways are all more prevalent in majority-minority neighborhoods. Corporations tend to build factories and warehouses near poorer communities which are often more diverse, resulting in poorer air and water quality. Latino Americans are exposed to 63% more pollution than they produce and African Americans to 56% more, while White Americans are exposed to 17% less pollution than they produce.[95] A 2007 report by the Natural Resources Defense Council found that more than 50% of people who live 1.86 miles (3 kilometers) from a toxic waste facility are people of color.[96][97] Lower land value means Black homeowners receive less aid from the government than White homeowners after natural disasters such as Hurricane Katrina, after which Black homeowners received on average $8,000 less than White homeowners.[96]

Human settlementEdit

A major challenge for human settlements is sea level rise, indicated by ongoing observation and research of rapid declines in ice-mass balance from both Greenland and Antarctica. Estimates for 2100 are at least twice as large as previously estimated by IPCC AR4, with an upper limit of about two meters.[98] Depending on regional changes, increased precipitation patterns can cause more flooding or extended drought stresses water resources.

Coasts and low-lying areasEdit

Floodplains and low-lying coastal areas will flood more frequently due to climate change, like this area of Myanmar which was submerged by Cyclone Nargis

For historical reasons to do with trade, many of the world's largest and most prosperous cities are on the coast. In developing countries, the poorest often live on floodplains, because it is the only available space, or fertile agricultural land. These settlements often lack infrastructure such as dykes and early warning systems. Poorer communities also tend to lack the insurance, savings, or access to credit needed to recover from disasters.

In a journal paper, Nicholls and Tol (2006) considered the effects of sea level rise:[99]

The most vulnerable future worlds to sea-level rise appear to be the A2 and B2 [IPCC] scenarios, which primarily reflects differences in the socio-economic situation (coastal population, Gross Domestic Product (GDP) and GDP/capita), rather than the magnitude of sea-level rise. Small islands and deltaic settings stand out as being more vulnerable as shown in many earlier analyses. Collectively, these results suggest that human societies will have more choice in how they respond to sea-level rise than is often assumed. However, this conclusion needs to be tempered by recognition that we still do not understand these choices and significant impacts remain possible.

The IPCC reported that socioeconomic impacts of climate change in coastal and low-lying areas would be overwhelmingly adverse. The following impacts were projected with very high confidence:[100]

  • Coastal and low-lying areas would be exposed to increasing risks including coastal erosion due to climate change and sea level rise.
  • By the 2080s, millions of people would experience floods every year due to sea level rise. The numbers affected were projected to be largest in the densely populated and low-lying mega-deltas of Asia and Africa; and smaller islands were judged to be especially vulnerable.

A study in the April 2007 issue of Environment and Urbanization reports that 634 million people live in coastal areas within 30 feet (9.1 m) of sea level.[101] The study also reported that about two-thirds of the world's cities with over five million people are located in these low-lying coastal areas.

Projections for cities in 2050Edit

In 2019 the Crowther Lab from ETH Zürich paired the climatic conditions of 520 major cities worldwide with the predicted climatic conditions of cities in 2050. 22% of the major cities are predicted to have climatic conditions that do not exist in any city today. 2050 London will have a climate similar to 2019 Melbourne, Athens and Madrid like Fez, Morocco, Nairobi like Maputo. New York will have a climate similar to Virginia Beach today, Virginia Beach like Podgorica, Montenegro. 2050 Seattle will be like 2019 San Francisco, Toronto like Washington D.C., Washington D.C. like Nashville. Berlin and Paris like Canberra, Australia. Canberra and Vienna will be like Skopje. The Indian city Pune will be like Bamako in Mali, Bamako will be like Niamey in Niger. Brasilia will be like Goiania. [102][103][104][105]

By sectorEdit



Climate change increases the risk of wildfires that can be caused by power lines. In 2019, after a "red flag" warning about the possibility of wildfires was declared in some areas of California, the electricity company "Pacific Gas and Electric (PG&E)" begun to shut down power, for preventing inflammation of trees that touch the electricity lines. The 2019 incident was preceded by the widely documented "Camp Fire" in Northern California. This 2018 wild fire resulted from the failure to "de-energize" power lines during high wildfire risk times. The New York Times reported 86 deaths and nearly $17 billion in damages from "Camp Fire".[106] As a result, arguably climate change forces public – private partnerships such as PG&E to re-evaluate insurability and liability for damages from their utilities since climate change has altered the predictability of service delivery in this circumstance.

Increased climatic variability creates a liability burden on the ability of public utilities to perform reliably and how their services are ensured by insurance companies. An example of the issues public utilities face from unexpected climate disasters can be observed in the failure of ERCOT (Electric Reliability Council of Texas) to deliver electricity during unexpected freezing weather in Texas. Electric utilities failing to deliver under rare circumstances poses difficulties for Insurance companies in managing loses. In this case, The Houston Chronicle reported that the insurance company for ERCOT refused to pay damages as it does not view the damages from the freeze as an accident rather a result of mismanagement.[107] The ERCOT and PG&E cases provide evidence of electric utilities facing new challenges as affected by climate change. The climatic conditions that caused these events are expected to become more frequent because of climate change. Related effects such as power outages could become more common and as a result millions of people would be impacted.

Oil, coal and natural gasEdit

Oil and natural gas infrastructure is vulnerable to the effects of climate change and the increased risk[citation needed] of disasters such as storm, cyclones, flooding and long-term increases in sea level. Minimising these risks by building in less disaster prone areas, can be expensive and impossible in countries with coastal locations or island states. All thermal power stations depend on water to cool them. Not only is there increased demand for fresh water, but climate change can increase the likelihood of drought and fresh water shortages. Another impact for thermal power plants, is that increasing the temperatures in which they operate reduces their efficiency and hence their output. The source of oil often comes from areas prone to high natural disaster risks; such as tropical storms, hurricanes, cyclones, and floods. An example is Hurricane Katrina's impact on oil extraction in the Gulf of Mexico, as it destroyed 126 oil and gas platforms and damaged 183 more.[108]

However, previously pristine arctic areas will now be available for resource extraction.[109]


Climate change, along with extreme weather and natural disasters can affect nuclear power plants in a similar way to those using oil, coal, and natural gas. However, the impact of water shortages on nuclear power plants cooled by rivers will be greater than on other thermal power plants. This is because old reactor designs with water-cooled cores must run at lower internal temperatures and thus, paradoxically, must dump more heat to the environment to produce a given amount of electricity. This situation has forced some nuclear reactors to be shut down and will do so again unless the cooling systems of these plants are enhanced to provide more capacity. Nuclear power supply was diminished by low river flow rates and droughts, which meant rivers had reached the maximum temperatures for cooling. Such shutdowns happened in France during the 2003 and 2006 heat waves. During the heat waves, 17 reactors had to limit output or shut down. 77% of French electricity is produced by nuclear power; and in 2009 a similar situation created a 8GW shortage, and forced the French government to import electricity. Other cases have been reported from Germany, where extreme temperatures have reduced nuclear power production 9 times due to high temperatures between 1979 and 2007. In particular:

Similar events have happened elsewhere in Europe during those same hot summers. Many scientists agree that if global warming continues, this disruption is likely to increase.[108]


Changes in the amount of river flow will correlate with the amount of energy produced by a dam. Lower river flows because of drought, climate change, or upstream dams and diversions, will reduce the amount of live storage in a reservoir; therefore reducing the amount of water that can be used for hydroelectricity. The result of diminished river flow can be a power shortage in areas that depend heavily on hydroelectric power. The risk of flow shortage may increase as a result of climate change. Studies from the Colorado River in the United States suggests that modest climate changes (such as a 2-degree change in Celsius that could result in a 10% decline in precipitation), might reduce river run-off by up to 40%. Brazil in particular, is vulnerable due to its having reliance on hydroelectricity as increasing temperatures, lower water flow, and alterations in the rainfall regime, could reduce total energy production by 7% annually by the end of the century.[108]


Climate change and agriculture are interrelated processes, both of which take place on a global scale, with the adverse effects of climate change affecting agriculture both directly and indirectly. This can take place through changes in average temperatures, rainfall, and climate extremes (e.g., heat waves); changes in pests and diseases;[110] changes in atmospheric carbon dioxide and ground-level ozone concentrations; changes in the nutritional quality of some foods;[111] and changes in sea level.[112]

Climate change is already affecting agriculture, with effects unevenly distributed across the world.[113] Future climate changes will most likely affect crop production in low latitude countries negatively, while effects in northern latitudes may be positive or negative.[113] Animal husbandry also contributes towards climate change through greenhouse gas emissions.

Agriculture contributes towards climate change through anthropogenic greenhouse gas emissions and by the conversion of non-agricultural land such as forests into agricultural land.[114][115] In 2010, agriculture, forestry and land-use change were estimated to contribute 20–25% of global annual emissions.[116] In 2020, the European Union's Scientific Advice Mechanism estimated that the food system as a whole contributed 37% of total greenhouse gas emissions, and that this figure was on course to increase by 30–40% by 2050 due to population growth and dietary change.[117]


New Orleans submerged after Hurricane Katrina

The insurance industry is predicated on managing the risks associated with damages to property and since climate change has direct consequences on the safety of society; insurers must adapt to these changes.[118] According to a 2005 report from the Association of British Insurers, limiting carbon emissions could avoid 80% of the projected additional annual cost of tropical cyclones by the 2080s.[119] A June 2004 report by the Association of British Insurers declared "Climate change is not a remote issue for future generations to deal with; it is, in various forms here already, impacting on insurers' businesses now."[120] The report noted that weather-related risks for households and property were already increasing by 2–4% per year due to the changing weather conditions, and claims for storm and flood damages in the UK had doubled to over £6 billion over the period from 1998 to 2003 compared to the previous five years. The results are rising insurance premiums, and the risk that in some areas flood insurance will become unaffordable for those in the lower income brackets. There is a measured decrease in the capacity of the insurance industry to "absorb weather-related natural disasters" as the ratio of weather related property loss to total property loss has steadily increased since the 1980s.[121]  The total global cost of climate change related natural disasters from 1980 to 2004 was an estimated US$1.4 trillion of which only $340 billion was insured.[121] The roughly $1 trillion in uninsured property loss is damaging to both insurers and customers.

Financial institutions, including the world's two largest insurance companies: Munich Re and Swiss Re, warned in a 2002 study that "the increasing frequency of severe climatic events, coupled with social trends could cost almost 150 billion US$ each year in the next decade."[122] These costs would burden customers, taxpayers, and the insurance industry, with increased costs related to insurance and disaster relief.

In the United States, insurance losses have also greatly increased. It has been shown that a 1% climb in annual precipitation can increase catastrophe loss by as much as 2.8%.[123] Gross increases are mostly attributed to increased population and property values in vulnerable coastal areas; though there was also an increase in frequency of weather-related events like heavy rainfalls since the 1950s.[124]

In March 2019, Munich Re noted that climate change could cause home insurance to become unaffordable for households at or below average incomes.[125]


Roads, airport runways, railway lines and pipelines, (including oil pipelines, sewers, water mains etc.) may require increased maintenance and renewal as they become subject to greater temperature variation. Regions already adversely affected include areas of permafrost, which are subject to high levels of subsidence, resulting in buckling roads, sunken foundations, and severely cracked runways.[126]

See alsoEdit


  1. ^ America's Climate Choices. Washington, D.C.: The National Academies Press. 2011. p. 15. doi:10.17226/12781. ISBN 978-0-309-14585-5. The average temperature of the Earth’s surface increased by about 1.4 °F (0.8 °C) over the past 100 years, with about 1.0 °F (0.6 °C) of this warming occurring over just the past three decades
  2. ^ MPIBGC/PH (2013). "Extreme meteorological events and global warming: a vicious cycle?". Max Planck Research.
  3. ^ Tang, Ying; S. Zhong; L. Luo; X. Bian; W.E. Heilman; J. Winkler (2015). "The Potential Impact of Regional Climate Change on Fire Weather in the United States". Annals of the Association of American Geographers. 105 (1): 1–21. doi:10.1080/00045608.2014.968892. S2CID 129057246.
  4. ^ Sahney, S.; Benton, M.J.; Ferry, P.A. (2010). "Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land". Biology Letters. 6 (4): 544–547. doi:10.1098/rsbl.2009.1024. PMC 2936204. PMID 20106856.
  5. ^ A. J. McMichael (2003). A. McMichael; D. Campbell-Lendrum; C. Corvalan; K. Ebi; A. Githeko; J. Scheraga; A. Woodward (eds.). Global Climate Change and Health: An Old Story Writ Large. World Health Organization. ISBN 9789241562485.
  6. ^ "WHO | Climate change". WHO. Retrieved 25 July 2019.
  7. ^ "Climate change and health". who.int. Retrieved 5 October 2020.
  8. ^ Kabir, M. I., Rahman, M. B., Smith, W., Lusha, M. A. F., & Milton, A. H. (2016). Climate change and health in Bangladesh: a baseline cross-sectional survey. Global Health Action, 9, 29609. doi:10.3402/gha.v9.29609
  9. ^ "Ghfgeneva.org" (PDF). Archived from the original (PDF) on 10 April 2011.
  10. ^ "Oxfam GB – leading UK charity fighting global poverty" (PDF). Oxfam GB. Archived from the original (PDF) on 2 March 2012. Retrieved 10 November 2009.
  11. ^ "Climate Change 2021 / The Physical Science Basis / Working Group I contribution to the WGI Sixth Assessment Report of the Intergovernmental Panel on Climate Change / Summary for Policymakers" (PDF). IPCC.ch. Fig. SPM.6: Intergovernmental Panel on Climate Change. 9 August 2021. p. SPM-23. Archived (PDF) from the original on 11 August 2021.CS1 maint: location (link)
  12. ^ a b c Wilbanks, T.J.; et al. (2007). "Industry, settlement and society. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Parry et al. (eds.)". Cambridge University Press, Cambridge, U.K., and New York, N.Y., U.S.A. Archived from the original on 16 March 2013. Retrieved 20 May 2009.. PDF version with page numbers.
  13. ^ a b Xu, Chi; M. Lenton, Timothy; Svenning, Jens-Christian; Scheffer, Marten (26 May 2020). "Future of the human climate niche". Proceedings of the National Academy of Sciences of the United States of America. 117 (21): 11350–11355. doi:10.1073/pnas.1910114117. PMC 7260949. PMID 32366654.
  14. ^ Watts, Jonathan (5 May 2020). "One billion people will live in insufferable heat within 50 years – study". Guardian. Retrieved 7 May 2020.
  15. ^ Supplementary Materials Future of the human climate niche (PDF). p. 21. Retrieved 14 June 2020.
  16. ^ Emissions Gap Report 2019 Global progress report on climate action UNEP Nov 2019
  17. ^ A.J. McMichael; R. Woodruff; S. Hales (2006). "Climate Change and Human Health: Present and Future Risks". Lancet. 367 (9513): 859–69. doi:10.1016/S0140-6736(06)68079-3. PMID 16530580. S2CID 11220212.
  18. ^ "Bulletin". World Meteorological Organization. 21 September 2015. Retrieved 22 March 2019.
  19. ^ Lunde, T.M.; Lindtjørn, B. (2013). "Cattle and climate in Africa: How climate variability has influenced national cattle holdings from 1961–2008". PeerJ. 1 (1): e55. doi:10.7717/peerj.55. PMC 3629083. PMID 23638393.
  20. ^ Munich Climate-Insurance Initiative (2013). "Climate Change and Rising Weather Related Disasters". Archived from the original on 19 September 2013. Retrieved 30 August 2013.
  21. ^ a b "WHO | The global burden of disease: 2004 update". WHO.
  22. ^ "- Human Development Reports" (PDF). Archived from the original (PDF) on 29 April 2011.
  23. ^ Sahney, S.; Benton, M.J.; Falcon-Lang, H.J. (2010). "Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica". Geology. 38 (12): 1079–1082. Bibcode:2010Geo....38.1079S. doi:10.1130/G31182.1. S2CID 128642769.
  24. ^ John P. Dunne; Ronald J. Stouffer; Jasmin G. John (2013). "Heat stress reduces labor capacity under climate warming". Geophysical Fluid Dynamics Laboratory. 3 (6): 563. Bibcode:2013NatCC...3..563D. doi:10.1038/nclimate1827.
  25. ^ "Global heating pushes tropical regions towards limits of human livability". The Guardian. 8 March 2021. Retrieved 24 June 2021.
  26. ^ Currie, Janet; Deschênes, Olivier (Spring 2016). "The Future of Children". Children and Climate Change: Introducing the Issue. 26 (1): 3–9. doi:10.1353/foc.2016.0000. JSTOR 43755227. S2CID 77559783.
  27. ^ a b "Polar Vortex: How the Jet Stream and Climate Change Bring on Cold Snaps". InsideClimate News. 2 February 2018. Retrieved 29 November 2018.
  28. ^ a b Ryan, Michael (15 May 2014). "Major Winter Weather Events during the 2013-2014 Cold Season" (PDF). NOAA/NWS/Weather Prediction Center. Retrieved 28 November 2018.
  29. ^ "Most of Ohio's 2014 Wine Grape Crop Lost Due to Polar Vortex, Ohio State Survey Finds". cfaes.osu.edu. Retrieved 28 November 2018.
  30. ^ Heidari, Hadi; Arabi, Mazdak; Warziniack, Travis; Kao, Shih-Chieh (2020). "Assessing Shifts in Regional Hydroclimatic Conditions of U.S. River Basins in Response to Climate Change over the 21st Century". Earth's Future. 8 (10): e2020EF001657. doi:10.1029/2020EF001657. ISSN 2328-4277.
  31. ^ a b Kundzewicz Z.W.; et al. (2007). "Freshwater resources and their management. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change M.L. Parry et al. (eds.)". Cambridge University Press, Cambridge, U.K., and New York, N.Y., U.S.A. pp. 173–210. Retrieved 20 May 2009.
  32. ^ "Glossary – Global Warming of 1.5 °C". Retrieved 20 April 2021.
  33. ^ a b c "Dr. Kathleen Miller's Research: Climate Change Impacts on Water". Archived from the original on 31 October 2015. Retrieved 10 November 2009.
  34. ^ "EPA : Global Warming : Resource Center : Publications : Sea Level Rise : Sea Level Rise Reports". Archived from the original on 10 July 2009.
  35. ^ Kazakhstan: glaciers and geopolitics Archived 6 January 2018 at the Wayback Machine Stephan Harrison openDemocracy May 2005
  36. ^ News, BBC (9 October 2003). "Melting glaciers threaten Peru". BBC News.
  37. ^ "Climate Change and Mental Health". Psychiatry.org. Retrieved 26 February 2018.
  38. ^ Rahman, A. (2008). "Climate Change and its Impact on health in Bangladesh" (PDF). Regional Health Forum. 12: 16–26.
  39. ^ a b Condon, Laura E.; Maxwell, Reed M. (June 2019). "Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion". Science Advances. 5 (6): eaav4574. Bibcode:2019SciA....5.4574C. doi:10.1126/sciadv.aav4574. ISSN 2375-2548. PMC 6584623. PMID 31223647.
  40. ^ Sophocleous, Marios (February 2002). "Interactions between groundwater and surface water: the state of the science". Hydrogeology Journal. 10 (1): 52–67. Bibcode:2002HydJ...10...52S. doi:10.1007/s10040-001-0170-8. ISSN 1431-2174. S2CID 2891081.
  41. ^ Green, Timothy R.; Taniguchi, Makoto; Kooi, Henk; Gurdak, Jason J.; Allen, Diana M.; Hiscock, Kevin M.; Treidel, Holger; Aureli, Alice (August 2011). "Beneath the surface of global change: Impacts of climate change on groundwater". Journal of Hydrology. 405 (3–4): 532–560. Bibcode:2011JHyd..405..532G. doi:10.1016/j.jhydrol.2011.05.002.
  42. ^ Orellana, Felipe; Verma, Parikshit; Loheide, Steven P.; Daly, Edoardo (September 2012). "Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems: GROUNDWATER-DEPENDENT ECOSYSTEMS". Reviews of Geophysics. 50 (3). doi:10.1029/2011RG000383.
  43. ^ "Climate change: Warmer winters linked to increased drowning risk". BBC News. 18 November 2020. Retrieved 9 May 2021.
  44. ^ Sekerci, Yadigar; Petrovskii, Sergei (3 June 2018). "Global Warming Can Lead to Depletion of Oxygen by Disrupting Phytoplankton Photosynthesis: A Mathematical Modelling Approach". Geosciences. 8 (6): 201. Bibcode:2018Geosc...8..201S. doi:10.3390/geosciences8060201. ISSN 2076-3263.
  45. ^ "Failing phytoplankton, failing oxygen: Global warming disaster could suffocate life on planet Earth". Science daily. University of Leicester. 1 December 2015. Retrieved 1 July 2021.
  46. ^ "Environment a Growing Driver in Displacement of People". Archived from the original on 5 January 2018. Retrieved 10 November 2009.
  47. ^ Hidden statistics: environmental refugees Hidden statistics: environmental refugees.
  48. ^ Bogumil Terminski, Environmentally-Induced Displacement. Theoretical Frameworks and Current Challenges. CEDEM, Université de Liège, 2012
  49. ^ GRID Internal displacement in a changing climate (PDF). Internal Displacement Monitoring Center. 2021. pp. 42–53. Retrieved 24 May 2021.
  50. ^ Niranjan, Ajit (21 May 2021). "Extreme Weather Displaces Record Numbers of People as Temperatures Rise". Ecowatch. Retrieved 24 May 2021.
  51. ^ a b "Addressing Climate Change and Migration in Asia and the Pacific: Final Report" (PDF). Asian Development Bank. 6 April 2015. Archived from the original (PDF) on 6 April 2015. Retrieved 22 March 2019.
  52. ^ "First wave". Science News. 28 February 2009. Archived from the original on 28 March 2012. Retrieved 23 September 2013.
  53. ^ Unnatural disasters Andrew Simms The Guardian October 2003
  54. ^ Betzold, Carola (2015). Climatic Change: Adapting to climate change in small island developing states. Springer Netherlands.
  55. ^ "Why are hundreds of Pacific Islands growing despite rising sea levels?". abc.net.au. 7 January 2021. Retrieved 26 April 2021.
  56. ^ Bogumil Terminski, Environmentally-Induced Displacement. Theoretical Frameworks and Current Challenges, CEDEM, University of Liège, 2012
  57. ^ "UNHCR – Environmental refugees: myth or reality?, Richard Black" (PDF). UNHCR.
  58. ^ Ferris, Elizabeth (14 December 2007). "Making Sense of Climate Change, Natural Disasters, and Displacement: A Work in Progress". Brookings Institution. Archived from the original on 6 June 2011.
  59. ^ Pachauri, R.K.; Reisinger, A. (eds.). "3.3.3 Especially affected systems, sectors and regions". Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC.
  60. ^ Mimura, N.; et al. (2007). "Chapter 16: Small Islands: Executive summary". In Parry, M.L.; et al. (eds.). Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: IPCC; Cambridge University Press. ISBN 978-0521880107.
  61. ^ "Climate change and the risk of statelessness" (PDF). May 2011. Retrieved 13 April 2012.
  62. ^ Lois Parshley (9 June 2016). "When the State Wilts Away; In weak nations, environmental stress can tip society into catastrophe". Bloomberg.com. Retrieved 17 June 2016.
  63. ^ Smith, Dan; Vivekananda, Janani (2007). "A climate of conflict". International Alert. Archived from the original on 24 May 2013.
  64. ^ "World in Transition: Climate Change as a Security Risk". German Advisory Council on Global Change. 2007. Archived from the original on 16 December 2017. Retrieved 19 October 2014.
  65. ^ Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward (1 January 2015). "Climate and Conflict". Annual Review of Economics. 7 (1): 577–617. doi:10.1146/annurev-economics-080614-115430. S2CID 17657019.
  66. ^ Hsiang, S. M.; Burke, M.; Miguel, E. (13 September 2013). "Quantifying the Influence of Climate on Human Conflict". Science. 341 (6151): 1235367. doi:10.1126/science.1235367. PMID 24031020. S2CID 1277105.
  67. ^ Schneider, S.H.; et al. (2007). "Assessing key vulnerabilities and the risk from climate change. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M.L. Parry et al. (eds.)]". Cambridge University Press, Cambridge, U.K., and New York, N.Y., U.S.A. pp. 779–810. Retrieved 20 May 2009.
  68. ^ Ryan P. Harrod and Martin, Debra L. The Bioarchaeology of Climate Change and Violence. New York: Springer, 2013.
  69. ^ "National Security and the Threat of Climate Change Archived 11 August 2011 at the Wayback Machine". Military Advisory Board, 15 April 2007.
  70. ^ Kurt M. Campbell; Jay Gulledge; J.R. McNeill; John Podesta; Peter Ogden; Leon Fuerth; R. James Woolsey; Alexander T.J. Lennon; Julianne Smith; Richard Weitz; Derek Mix (October 2007). "The Age of Consequences: The Foreign Policy and National Security Implications of Global Climate Change" (PDF). Retrieved 14 July 2009.
  71. ^ "Cool heads or heated conflicts?". The Economist. 10 October 2009. p. 88.
  72. ^ Reuters. U.N. Council Hits Impasse Over Debate on Warming. The New York Times, 17 April 2007. Retrieved on 29 May 2007.
  73. ^ Borger, Julian (22 June 2007). "Darfur conflict heralds era of wars triggered by climate change, UN report warns". The Guardian.
  74. ^ Biello, David (23 November 2009). "Can Climate Change Cause Conflict? Recent History Suggests So". Scientific American.
  75. ^ "Sudan Post-Conflict Environmental Assessment" (PDF). United Nations Environment Programme. June 2007.
  76. ^ Merchant, Brian (4 September 2014). "How Climate Change Warmed Syria Up for War". Motherboard. Archived from the original on 16 October 2014.
  77. ^ Plumer, Brad (10 September 2013). "Drought helped cause Syria's war. Will climate change bring more like it?". The Washington Post.
  78. ^ Gleick, Peter (July 2014). "Water, Drought, Climate Change, and Conflict in Syria". Weather, Climate, and Society. 6 (3): 331–340. doi:10.1175/WCAS-D-13-00059.1. ISSN 1948-8335. S2CID 153715885.
  79. ^ Selby, Jan; Dahi, Omar S.; Fröhlich, Christiane; Hulme, Mike (1 September 2017). "Climate change and the Syrian civil war revisited". Political Geography. 60: 232–244. doi:10.1016/j.polgeo.2017.05.007. ISSN 0962-6298.
  80. ^ "On Blaming Climate Change for the Syrian Civil War". MERIP. 29 September 2020. Retrieved 11 February 2021.
  81. ^ Ahmed, Nafeez (9 May 2014). "Behind the rise of Boko Haram – ecological disaster, oil crisis, spy games". The Guardian.
  82. ^ Sayne, Aaron (2011). "Climate Change Adaptation and Conflict in Nigeria" (PDF). United States Institute of Peace.
  83. ^ Maystadt, Jean-François; Ecker, Olivier (October 2014). "Extreme Weather and Civil War: Does Drought Fuel Conflict in Somalia through Livestock Price Shocks?". American Journal of Agricultural Economics. 96 (5): 1157–1182. doi:10.1093/ajae/aau010.
  84. ^ "Climate variability and conflict risk in East Africa measured". University of Colorado Boulder. 22 October 2012. Archived from the original on 3 June 2016. Retrieved 28 September 2014.
  85. ^ "How Climate Change Is Spurring Land Conflict in Nigeria". Time. 28 June 2018.
  86. ^ "The battle on the frontline of climate change in Mali". BBC News. 22 January 2019.
  87. ^ "Climate change, food shortages, and conflict in Mali". Al-Jazeera. 27 April 2015.
  88. ^ Zhang, D.; Brecke, P.; Lee, H.; He, Y.; Zhang, J. (2007). "Global climate change, war, and population decline in recent human history". Proceedings of the National Academy of Sciences of the United States of America. 104 (49): 19214–19219. Bibcode:2007PNAS..10419214Z. doi:10.1073/pnas.0703073104. PMC 2148270. PMID 18048343.
  89. ^ a b Peters, Katie (2018). "Disasters, climate change, and securitisation: the United Nations Security Council and the United Kingdom's security policy". Disasters. 42 (S2): S196–S214. doi:10.1111/disa.12307. ISSN 1467-7717. PMID 30113710.
  90. ^ Uexkull, Nina von; Croicu, Mihai; Fjelde, Hanne; Buhaug, Halvard (1 November 2016). "Civil conflict sensitivity to growing-season drought". Proceedings of the National Academy of Sciences. 113 (44): 12391–12396. doi:10.1073/pnas.1607542113. ISSN 0027-8424. PMC 5098672. PMID 27791091.
  91. ^ Bartlett, Sheridan (2008). "Climate change and urban children: Impacts and implications for adaptation in low- and middle-income countries". Environment and Urbanization. 20 (2): 501–519. doi:10.1177/0956247808096125. S2CID 55860349.
  92. ^ Carrington, Damian (20 August 2021). "A billion children at 'extreme risk' from climate impacts – Unicef". The Guardian. Retrieved 29 August 2021.
  93. ^ "Summary Statement on Tropical Cyclones and Climate Change" (PDF) (Press release). World Meteorological Organization. 4 December 2006. Archived from the original (PDF) on 25 March 2009.
  94. ^ Pielke, Roger A. Jr; Gratz, Joel; et al. (2008). "Normalized Hurricane Damage in the United States: 1900–2005" (PDF). Natural Hazards Review. 9 (1): 29–42. doi:10.1061/(ASCE)1527-6988(2008)9:1(29). Archived from the original (PDF) on 17 June 2013.
  95. ^ Beech, Peter (31 July 2020). "What is environmental racism and how can we fight it?". World Economic Forum. Retrieved 24 May 2021.
  96. ^ a b Bell, Jasmine (25 April 2016). "5 Things to Know About Communities of Color and Environmental Justice". Center for American Progress. Retrieved 3 June 2021.
  97. ^ Bullard, Robert D.; Mohai, Paul; Saha, Robin; Wright, Beverly (March 2007). "Toxic Wastes and Race at Twenty 1987—2007" (PDF). Natural Resources Defense Council. Retrieved 24 May 2021.
  98. ^ I. Allison; et al. (2009). The Copenhagen Diagnosis, 2009: Updating the World on the Latest Climate Science (PDF).
  99. ^ Nicholls, R.J.; R.S.J. Tol (2006). "Impacts and responses to sea-level rise: a global analysis of the SRES scenarios over the twenty-first century" (PDF). Phil. Trans. R. Soc. A. 364 (1841): 1073–1095. Bibcode:2006RSPTA.364.1073N. doi:10.1098/rsta.2006.1754. PMID 16537156. S2CID 15458190. Archived from the original (PDF) on 2 September 2009. Retrieved 20 May 2009.
  100. ^ Nicholls, Robert J.; et al. (2007). "Coastal systems and low-lying areas". In Parry, M.L.; et al. (eds.). Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: IPCC; Cambridge University Press. pp. 315–356. ISBN 978-0521880107.
  101. ^ McGranahan, G.; Balk, D.; Anderson, B. (2007). "The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones". Environment and Urbanization. 19: 17–37. doi:10.1177/0956247807076960. S2CID 154588933.
  102. ^ Global heating: London to have climate similar to Barcelona by 2050, The Guardian, 2019-07-10.
  103. ^ Wien wird so heiß wie Skopje, orf.at, 2019-07-11.
  104. ^ Cities of the future: visualizing climate change to inspire action, current vs future cities, Crowther Lab, Department für Umweltsystemwissenschaften, Institut für integrative Biologie, ETH Zürich, zugegriffen: 2019-07-11.
  105. ^ Understanding climate change from a global analysis of city analogues, Bastin J-F, Clark E, Elliott T, Hart S, van den Hoogen J, Hordijk I, et al. (2019), PLoS ONE 14(7): e0217592, Crowther Lab, Department for Environmental Systems Science, Institut for Integrative Biology, ETH Zürich, 2019-07-10.
  106. ^ Eavis, Peter (28 February 2019). "PG&E Says It Probably Caused the Fire That Destroyed Paradise, Calif". The New York Times. ISSN 0362-4331. Retrieved 20 April 2021.
  107. ^ Takahashi, Paul (8 April 2021). "ERCOT insurer says it shouldn't have to cover storm damages". Houston Chronicle. Retrieved 20 April 2021.
  108. ^ a b c Dr. Frauke Urban and Dr. Tom Mitchell 2011. Climate change, disasters and electricity generation Archived 20 September 2012 at the Wayback Machine. London: Overseas Development Institute and Institute of Development Studies
  109. ^ "Ice-Breaking: U.S. Oil Drilling Starts as Nations Mull the Changed Arctic". National Geographic. 12 September 2012.
  110. ^ Luck, J.; Spackman, M.; Freeman, A.; Tre˛bicki, P.; Griffiths, W.; Finlay, K.; Chakraborty, S. (10 January 2011). "Climate change and diseases of food crops". Plant Pathology. British Society for Plant Pathology (Wiley-Blackwell). 60 (1): 113–121. doi:10.1111/j.1365-3059.2010.02414.x. ISSN 0032-0862.
  111. ^ Milius S (13 December 2017). "Worries grow that climate change will quietly steal nutrients from major food crops". Science News. Retrieved 21 January 2018.
  112. ^ Hoffmann, U., Section B: Agriculture - a key driver and a major victim of global warming, in: Lead Article, in: Chapter 1, in Hoffmann 2013, pp. 3, 5
  113. ^ a b Porter, J.R., et al., Executive summary, in: Chapter 7: Food security and food production systems (archived 5 November 2014), in IPCC AR5 WG2 A 2014, pp. 488–489
  114. ^ Section 4.2: Agriculture's current contribution to greenhouse gas emissions, in: HLPE 2012, pp. 67–69
  115. ^ Sarkodie, Samuel A.; Ntiamoah, Evans B.; Li, Dongmei (2019). "Panel heterogeneous distribution analysis of trade and modernized agriculture on CO2 emissions: The role of renewable and fossil fuel energy consumption". Natural Resources Forum. 43 (3): 135–153. doi:10.1111/1477-8947.12183. ISSN 1477-8947.
  116. ^ Blanco, G., et al., Section Agriculture, Forestry, Other Land Use, in: Chapter 5: Drivers, Trends and Mitigation (archived 30 December 2014), in: IPCC AR5 WG3 2014, p. 383 Emissions aggregated using 100-year global warming potentials from the IPCC Second Assessment Report
  117. ^ Science Advice for Policy by European Academies (2020). A sustainable food system for the European Union (PDF). Berlin: SAPEA. p. 39. doi:10.26356/sustainablefood. ISBN 978-3-9820301-7-3. Archived from the original (PDF) on 18 April 2020. Retrieved 14 April 2020.
  118. ^ Viewpoint Archived 1 March 2012 at the Wayback Machine American Association of Insurance Services
  119. ^ Association of British Insurers (2005) "Financial Risks of Climate Change" Archived 5 June 2013 at the Wayback Machine summary report
  120. ^ Association of British Insurers (June 2005) "A Changing Climate for Insurance: Archived 20 March 2009 at the Wayback Machine A Summary Report for Chief Executives and Policymakers"
  121. ^ a b Mills, E. (12 August 2005). "Insurance in a Climate of Change". Science. 309 (5737): 1040–1044. Bibcode:2005Sci...309.1040M. doi:10.1126/science.1112121. ISSN 0036-8075. PMID 16099975. S2CID 20420521.
  122. ^ UNEP (2002) "Key findings of UNEP’s Finance Initiatives study" CEObriefing
  123. ^ Choi, O.; A. Fisher (2003). "The Impacts of Socioeconomic Development and Climate Change on Severe Weather Catastrophe Losses: Mid-Atlantic Region (MAR) and the U.S". Climatic Change. 58 (1–2): 149–170. doi:10.1023/A:1023459216609. S2CID 151074531.
  124. ^ Board on Natural Disasters (1999). "Mitigation Emerges as Major Strategy for Reducing Losses Caused by Natural Disasters". Science. 284 (5422): 1943–7. doi:10.1126/science.284.5422.1943. PMID 10373106.
  125. ^ Neslen, Arthur (21 March 2019). "Climate change could make insurance too expensive for most people – report". Theguardian.com. Retrieved 22 March 2019.
  126. ^ Studies Show Climate Change Melting Permafrost Under Runways in Western Arctic Archived 27 September 2011 at the Wayback Machine Weber, Bob Airportbusiness.com October 2007

External linksEdit