Open main menu

Wikipedia β

Vasopressin, also known as antidiuretic hormone (ADH), is a neurohypophysial hormone found in most mammals which is also used as a medication. In most species it contains arginine and is thus also called arginine vasopressin (AVP) or argipressin.[5] Its two primary functions are to retain water in the body and to constrict blood vessels.[6] Vasopressin regulates the body's retention of water by acting to increase water reabsorption in the kidney's collecting ducts, the tubules which receive the very dilute urine produced by the functional unit of the kidney, the nephrons.[7][8]

Vasopressin labeled.png
Arginine vasopressin3d.png
Pronunciation /ˌvzˈprsən/
Physiological data
Source tissues Supraoptic nucleus; Paraventricular nucleus of hypothalamus
Target tissues System-wide
Receptors V1A, V1B, V2, OXTR
Agonists Felypressin, Desmopressin
Antagonists Diuretics
Metabolism Predominantly in the liver and kidneys
Pharmacokinetic data
Protein binding 1%
Metabolism Predominantly in the liver and kidneys
Biological half-life 10-20 minutes
Excretion Urine
Synonyms Arginine Vasopressin; Argipressin
CAS Number
PubChem CID
Chemical and physical data
Formula C46H65N15O12S2
Molar mass 1,084.24 g·mol−1
3D model (JSmol)
Density 1.6±0.1 g/cm3
Arginine vasopressin3d.png
Aliases AVP, ADH, ARVP, AVP-NPII, AVRP, VP, arginine vasopressin, Vasopressin
External IDs OMIM: 192340 MGI: 88121 HomoloGene: 417 GeneCards: AVP
Gene location (Human)
Chromosome 20 (human)
Chr. Chromosome 20 (human)[1]
Chromosome 20 (human)
Genomic location for AVP
Genomic location for AVP
Band No data available Start 3,082,556 bp[1]
End 3,084,724 bp[1]
RNA expression pattern
PBB GE AVP 207848 at fs.png
More reference expression data
Species Human Mouse
RefSeq (mRNA)



RefSeq (protein)



Location (UCSC) Chr 20: 3.08 – 3.08 Mb Chr 2: 130.58 – 130.58 Mb
PubMed search [3] [4]
View/Edit Human View/Edit Mouse

Vasopressin is a peptide hormone that increases water permeability of the kidney's collecting duct and distal convoluted tubule by inducing translocation of aquaporin-CD water channels in the plasma membrane of collecting duct cells.[9] It also increases peripheral vascular resistance, which in turn increases arterial blood pressure. It plays a key role in homeostasis, by the regulation of water, glucose, and salts in the blood. It is derived from a preprohormone precursor that is synthesized in the hypothalamus and stored in vesicles at the posterior pituitary.

Most of vasopressin is stored in the posterior pituitary to be released into the bloodstream. However, some AVP may also be released directly into the brain, and accumulating evidence suggests it plays an important role in social behavior, sexual motivation and pair bonding, and maternal responses to stress.[10] It has a very short half-life between 16–24 minutes.[8]




Vasopressin regulates the body's water retention. It is released from the brain when the body is dehydrated and causes the kidneys to conserve water, thus concentrating the urine and reducing urine volume. At high concentrations, it also raises blood pressure by inducing moderate vasoconstriction. In addition, it has a variety of neurological effects on the brain, having been found, for example, to influence pair-bonding in voles. The high-density distributions of vasopressin receptor AVPr1a in prairie vole ventral forebrain regions have been shown to facilitate and coordinate reward circuits during partner preference formation, critical for pair bond formation.[11]

A very similar substance, lysine vasopressin (LVP) or lypressin, has the same function in pigs and is often used in human therapy.[12]


Vasopressin has three main effects:

  1. Increasing the water permeability of distal convoluted tubule and collecting duct cells in the kidney, thus allowing water reabsorption and excretion of more concentrated urine, i.e., antidiuresis. This occurs through increased transcription and insertion of water channels (Aquaporin-2) into the apical membrane of distal convoluted tubule and collecting duct epithelial cells. Aquaporins allow water to move down their osmotic gradient and out of the nephron, increasing the amount of water re-absorbed from the filtrate (forming urine) back into the bloodstream. This effect is mediated by V2 receptors. Vasopressin also increases the concentration of calcium in the collecting duct cells, by episodic release from intracellular stores. Vasopressin, acting through cAMP, also increases transcription of the aquaporin-2 gene, thus increasing the total number of aquaporin-2 molecules in collecting duct cells.[citation needed]
  2. Increasing permeability of the inner medullary portion of the collecting duct to urea by regulating the cell surface expression of urea transporters,[13] which facilitates its reabsorption into the medullary interstitium as it travels down the concentration gradient created by removing water from the connecting tubule, cortical collecting duct, and outer medullary collecting duct.
  3. Acute increase of sodium absorption across the ascending loop of henle. This adds to the countercurrent multiplication which aids in proper water reabsorption later in the distal tubule and collecting duct.[14]

Serum osmolarity/osmolality is also affected by vasopressin due to its role in keeping proper electrolytic balance in the blood stream. Improper balance can lead to dehydration, alkalosis, acidosis or other life-threatening changes. The hormone ADH is partly responsible for this process by controlling the amount of water the body retains from the kidney when filtering the blood stream.[15]

Central nervous systemEdit

Avp is expressed in the periventricular region of the hypothalamus in the adult mouse.[16] Allen Brain Atlases

Vasopressin released within the brain has many actions:

  • It is likely that vasopressin acts in conjunction with corticotropin-releasing hormone to modulate the release of corticosteroids from the adrenal gland in response to stress, particularly during pregnancy and lactation in mammals.[17][18][19]
  • Selective AVPr1a blockade in the ventral pallidum has been shown to prevent partner preference in prairie voles, suggesting that these receptors in this ventral forebrain region are crucial for pair bonding.[11]
  • Recent evidence suggests that vasopressin may have analgesic effects. The analgesia effects of vasopressin were found to be dependent on both stress and sex.[20]

One study has suggested that genetic variation in male humans affects pair-bonding behavior. The brain of males uses vasopressin as a reward for forming lasting bonds with a mate, and men with one or two of the genetic alleles are more likely to experience marital discord. The partners of the men with two of the alleles affecting vasopressin reception state disappointing levels of satisfaction, affection, and cohesion.[21]

Vasopressin receptors distributed along the reward circuit pathway, to be specific in the ventral pallidum, are activated when AVP is released during social interactions such as mating, in monogamous prairie voles. The activation of the reward circuitry reinforces this behavior, leading to conditioned partner preference, and thereby initiates the formation of a pair bond.[22]


Many factors influence the secretion of vasopressin:

  • Ethanol (alcohol) reduces the calcium-dependent secretion of AVP by blocking voltage-gated calcium channels in neurohypophyseal nerve terminals in rats.[23]
  • Angiotensin II stimulates AVP secretion, in keeping with its general pressor and pro-volumic effects on the body.[24]
  • Atrial natriuretic peptide inhibits AVP secretion, in part by inhibiting Angiotensin II-induced stimulation of AVP secretion.[24]
  • Cortisol inhibits secretion of antidiuretic hormone.[25]


The main stimulus for secretion of vasopressin is increased osmolality of plasma. Reduced volume of extracellular fluid also has this effect, but is a less sensitive mechanism.

The AVP that is measured in peripheral blood is almost all derived from secretion from the posterior pituitary gland (except in cases of AVP-secreting tumours). Vasopressin is produced by magnocellular neurosecretory neurons in the Paraventricular nucleus of hypothalamus (PVN) and Supraoptic nucleus (SON). It then travels down the axon through the infundibulum within neurosecretory granules that are found within Herring bodies, localized swellings of the axons and nerve terminals. These carry the peptide directly to the posterior pituitary gland, where it is stored until released into the blood. However, there are two other sources of AVP with important local effects:


The following describes the actions of AVP:

Type Second messenger system Locations Actions Agonists Antagonists
AVPR1A Phosphatidylinositol/calcium Liver, kidney, peripheral vasculature, brain Vasoconstriction, gluconeogenesis, platelet aggregation, and release of factor VIII and von Willebrand factor; social recognition,[27] circadian tau[28] Felypressin
AVPR1B or AVPR3 Phosphatidylinositol/calcium Pituitary gland, brain Adrenocorticotropic hormone secretion in response to stress;[29] social interpretation of olfactory cues[30]
AVPR2 Adenylate cyclase/cAMP Basolateral membrane of the cells lining the collecting ducts of the kidneys (especially the cortical and outer medullary collecting ducts) Insertion of aquaporin-2 (AQP2) channels (water channels). This allows water to be reabsorbed down an osmotic gradient, and so the urine is more concentrated. Release of von Willebrand factor and surface expression of P-selectin through exocytosis of Weibel-Palade bodies from endothelial cells[31][32] AVP, desmopressin "-vaptan" diuretics, i.e. tolvaptan

Medical usesEdit

Vasopressin is used to manage anti-diuretic hormone deficiency. It has off-label uses and is used in the treatment of vasodilatory shock, gastrointestinal bleeding, ventricular tachycardia and ventricular defibrillation. Vasopressin is used to treat diabetes insipidus related to low levels of antiduretic hormone.It is available as Pressyn.[33]

Vasopressin agonists are used therapeutically in various conditions, and its long-acting synthetic analogue desmopressin is used in conditions featuring low vasopressin secretion, as well as for control of bleeding (in some forms of von Willebrand disease and in mild haemophilia A) and in extreme cases of bedwetting by children. Terlipressin and related analogues are used as vasoconstrictors in certain conditions. Use of vasopressin analogues for esophageal varices commenced in 1970.[34]

Vasopressin infusions are also used as second line therapy in septic shock patients not responding to fluid resuscitation or infusions of catecholamines (e.g., dopamine or norepinephrine).

Side effectsEdit

The most common side effects during treatment with vasopressin are dizziness, angina, chest pain, abdominal cramps, heartburn, nausea, vomiting, trembling, fever, water intoxication, pounding sensation in the head, diarrhea, nausea, vomiting, sweating, and paleness.flatulence. The most severe adverse reactions are mycardial infarction and hypersensitivy.[33]


The use of vasopressin is contraindicated in the presence of hypersentivity to beef or pork proteins, increased BUN and chronic renal failure. It recommended that it be cautiously used in instances of perioperative polyuria, sensitivity to the drug, asthma, seizures, heart failure, a comatose state, migraine headaches, and cardiovascular disease.[33]


Structure and relation to oxytocinEdit

Chemical structure of the arginine vasopressin (argipressin) with an arginine at the 8th amino acid position. Lysine vasopressin differs only in having a lysine in this position.
Chemical structure of oxytocin

The vasopressins are peptides consisting of nine amino acids (nonapeptides). (NB: the value in the table above of 164 amino acids is that obtained before the hormone is activated by cleavage.) The amino acid sequence of arginine vasopressin (argipressin) is Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Arg-Gly-NH2, with the cysteine residues forming a disulfide bond and the C-terminus of the sequence converted to a primary amide.[35] Lysine vasopressin (lypressin) has a lysine in place of the arginine as the eighth amino acid, and is found in pigs and some related animals, whereas arginine vasopressin is found in humans.[36]

The structure of oxytocin is very similar to that of the vasopressins: It is also a nonapeptide with a disulfide bridge and its amino acid sequence differs at only two positions (see table below). The two genes are located on the same chromosome separated by a relatively small distance of less than 15,000 bases in most species. The magnocellular neurons that secrete vasopressin are adjacent to magnocellular neurons that secrete oxytocin, and are similar in many respects. The similarity of the two peptides can cause some cross-reactions: oxytocin has a slight antidiuretic function, and high levels of AVP can cause uterine contractions.[37][38]

Below is a table showing the superfamily of vasopressin and oxytocin neuropeptides:

Vertebrate Vasopressin Family
Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Arg-Gly-NH2 Argipressin (AVP, ADH) Most mammals
Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Lys-Gly-NH2 Lypressin (LVP) Pigs, hippos, warthogs, some marsupials
Cys-Phe-Phe-Gln-Asn-Cys-Pro-Arg-Gly-NH2 Phenypressin Some marsupials
Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Arg-Gly-NH2 Vasotocin Non-mammals
Vertebrate Oxytocin Family
Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2 Oxytocin (OXT) Most mammals, ratfish
Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Pro-Gly-NH2 Prol-Oxytocin Some New World monkeys, northern tree shrews
Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Ile-Gly-NH2 Mesotocin Most marsupials, all birds, reptiles, amphibians, lungfishes, coelacanths
Cys-Tyr-Ile-Gln-Ser-Cys-Pro-Ile-Gly-NH2 Seritocin Frogs
Cys-Tyr-Ile-Ser-Asn-Cys-Pro-Ile-Gly-NH2 Isotocin Bony fishes
Cys-Tyr-Ile-Ser-Asn-Cys-Pro-Gln-Gly-NH2 Glumitocin skates
Cys-Tyr-Ile-Asn/Gln-Asn-Cys-Pro-Leu/Val-Gly-NH2 Various tocins Sharks
Invertebrate VP/OT Superfamily
Cys-Leu-Ile-Thr-Asn-Cys-Pro-Arg-Gly-NH2 Diuretic Hormone Locust
Cys-Phe-Val-Arg-Asn-Cys-Pro-Thr-Gly-NH2 Annetocin Earthworm
Cys-Phe-Ile-Arg-Asn-Cys-Pro-Lys-Gly-NH2 Lys-Connopressin Geography & imperial cone snail, pond snail, sea hare, leech
Cys-Ile-Ile-Arg-Asn-Cys-Pro-Arg-Gly-NH2 Arg-Connopressin Striped cone snail
Cys-Tyr-Phe-Arg-Asn-Cys-Pro-Ile-Gly-NH2 Cephalotocin Octopus
Cys-Phe-Trp-Thr-Ser-Cys-Pro-Ile-Gly-NH2 Octopressin Octopus
†Vasotocin is the evolutionary progenitor of all the vertebrate neurohypophysial hormones.[39]

Role in diseaseEdit

There may be a connection between arginine vasopressin and autism.[40]

Lack of vasopressinEdit

Decreased AVP release (neurogenic — i.e. due to alcohol intoxication or tumour) or decreased renal sensitivity to AVP (nephrogenic, i.e. by mutation of V2 receptor or AQP) leads to diabetes insipidus, a condition featuring hypernatremia (increased blood sodium concentration), polyuria (excess urine production), and polydipsia (thirst).

Excess vasopressinEdit

Syndrome of Inappropriate Antidiuretic Hormone secretion (SIADH) in turn can be caused by a number of problems. Some forms of cancer can cause SIADH, particularly small cell lung carcinoma but also a number of other tumors. A variety of diseases affecting the brain or the lung (infections, bleeding) can be the driver behind SIADH. A number of drugs has been associated with SIADH, such as certain antidepressants (serotonin reuptake inhibitors and tricyclic antidepressants), the anticonvulsant carbamazepine, oxytocin (used to induce and stimulate labor), and the chemotherapy drug vincristine. It has also been associated with fluoroquinolones (including ciprofloxacin and moxifloxacin).[8] Finally, it can occur without a clear explanation.[41] Hyponatremia can be treated pharmaceutically through the use of vasopressin receptor antagonists.[41]


Vasopressin is administered through an intravenous device, intramuscular injection or a subcutaneous injection. The duration of action depends on the mode of administration and ranges from thirty minutes to two hours. It has a half life of ten to twenty minutes. It is widely distributed throughout the body and remains in the extracellular fluid. It is degraded by the liver and excreted through the kidneys.[33]


Vasopressin was elucidated and synthesized for the first time by Vincent du Vigneaud. Injection of vasopressors for the treatment of cardiac arrest was first suggested in the literature in 1896 when Austrian scientist Dr. R. Gottlieb described the vasopressor epinephrine as an "infusion of a solution of suprarenal extract [that] would restore circulation when the blood pressure had been lowered to unrecordable levels by chloral hydrate."[42]

Animal studiesEdit

Evidence for this[which?] comes from experimental studies in several species, which indicate that the precise distribution of vasopressin and vasopressin receptors in the brain is associated with species-typical patterns of social behavior. In particular, there are consistent differences between monogamous species and promiscuous species in the distribution of AVP receptors, and sometimes in the distribution of vasopressin-containing axons, even when closely related species are compared.[43]

See alsoEdit


  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000101200 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000037727 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". 
  4. ^ "Mouse PubMed Reference:". 
  5. ^ Anderson DA (2012). Dorland's Illustrated Medical Dictionary (32nd ed.). Elsevier. ISBN 978-1-4160-6257-8. 
  6. ^ Marieb E (2014). Anatomy & physiology. Glenview, IL: Pearson Education, Inc. ISBN 978-0-321-86158-0. 
  7. ^ Caldwell HK, Young WS III (2006). "Oxytocin and Vasopressin: Genetics and Behavioral Implications" (PDF). In Lajtha A, Lim R. Handbook of Neurochemistry and Molecular Neurobiology: Neuroactive Proteins and Peptides (3rd ed.). Berlin: Springer. pp. 573–607. ISBN 0-387-30348-0. 
  8. ^ a b c Babar SM (October 2013). "SIADH associated with ciprofloxacin". The Annals of Pharmacotherapy. 47 (10): 1359–63. PMID 24259701. doi:10.1177/1060028013502457. 
  9. ^ Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA (February 1995). "Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane". Proceedings of the National Academy of Sciences of the United States of America. 92 (4): 1013–7. PMC 42627 . PMID 7532304. doi:10.1073/pnas.92.4.1013. 
  10. ^ Insel TR (March 2010). "The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior". Neuron. 65 (6): 768–79. PMC 2847497 . PMID 20346754. doi:10.1016/j.neuron.2010.03.005. 
  11. ^ a b Lim MM, Young LJ (2004). "Vasopressin-dependent neural circuits underlying pair bond formation in the monogamous prairie vole". Neuroscience. 125 (1): 35–45. PMID 15051143. doi:10.1016/j.neuroscience.2003.12.008. 
  12. ^ Chapman, MBBS, PhD, University of Adelaide, Royal Adelaide Hospital, Ian. "Central Diabetes Insipidus". 
  13. ^ Sands JM, Blount MA, Klein JD (2011). "Regulation of renal urea transport by vasopressin". Transactions of the American Clinical and Climatological Association. 122: 82–92. PMC 3116377 . PMID 21686211. 
  14. ^ Knepper MA, Kim GH, Fernández-Llama P, Ecelbarger CA (March 1999). "Regulation of thick ascending limb transport by vasopressin". Journal of the American Society of Nephrology. 10 (3): 628–34. PMID 10073614. 
  15. ^ Earley LE, Sanders CA (March 1959). "The effect of changing serum osmolality on the release of antidiuretic hormone in certain patients with decompensated cirrhosis of the liver and low serum osmolality". The Journal of Clinical Investigation. 38 (3): 545–50. PMC 293190 . PMID 13641405. doi:10.1172/jci103832. 
  16. ^ Liu Z, Yan SF, Walker JR, Zwingman TA, Jiang T, Li J, Zhou Y (2007). "Study of gene function based on spatial co-expression in a high-resolution mouse brain atlas". BMC Systems Biology. 1: 19. PMC 1863433 . PMID 17437647. doi:10.1186/1752-0509-1-19. 
  17. ^ Goland RS, Wardlaw SL, MacCarter G, Warren WB, Stark RI (August 1991). "Adrenocorticotropin and cortisol responses to vasopressin during pregnancy". The Journal of Clinical Endocrinology and Metabolism. 73 (2): 257–61. PMID 1649836. doi:10.1210/jcem-73-2-257. 
  18. ^ Ma S, Shipston MJ, Morilak D, Russell JA (March 2005). "Reduced hypothalamic vasopressin secretion underlies attenuated adrenocorticotropin stress responses in pregnant rats". Endocrinology. 146 (3): 1626–37. PMID 15591137. doi:10.1210/en.2004-1368. 
  19. ^ Toufexis DJ, Tesolin S, Huang N, Walker C (October 1999). "Altered pituitary sensitivity to corticotropin-releasing factor and arginine vasopressin participates in the stress hyporesponsiveness of lactation in the rat". Journal of Neuroendocrinology. 11 (10): 757–64. PMID 10520124. doi:10.1046/j.1365-2826.1999.00381.x. 
  20. ^ Wiltshire T, Maixner W, Diatchenko L (December 2011). "Relax, you won't feel the pain". Nature Neuroscience. 14 (12): 1496–7. PMID 22119947. doi:10.1038/nn.2987. 
  21. ^ Walum H, Westberg L, Henningsson S, Neiderhiser JM, Reiss D, Igl W, Ganiban JM, Spotts EL, Pedersen NL, Eriksson E, Lichtenstein P (September 2008). "Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans". Proceedings of the National Academy of Sciences of the United States of America. 105 (37): 14153–6. PMC 2533683 . PMID 18765804. doi:10.1073/pnas.0803081105. 
  22. ^ Pitkow LJ, Sharer CA, Ren X, Insel TR, Terwilliger EF, Young LJ (September 2001). "Facilitation of affiliation and pair-bond formation by vasopressin receptor gene transfer into the ventral forebrain of a monogamous vole". The Journal of Neuroscience. 21 (18): 7392–6. PMID 11549749. 
  23. ^ Wang XM, Dayanithi G, Lemos JR, Nordmann JJ, Treistman SN (November 1991). "Calcium currents and peptide release from neurohypophysial terminals are inhibited by ethanol". The Journal of Pharmacology and Experimental Therapeutics. 259 (2): 705–11. PMID 1941619. 
  24. ^ a b Matsukawa T, Miyamoto T (March 2011). "Angiotensin II-stimulated secretion of arginine vasopressin is inhibited by atrial natriuretic peptide in humans". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 300 (3): R624–9. PMID 21123762. doi:10.1152/ajpregu.00324.2010. 
  25. ^ Collège des enseignants d'endocrinologie, diabète et maladie (2012-01-30). Endocrinologie, diabétologie et maladies métaboliques. Elsevier Masson. ISBN 978-2-294-72233-2. 
  26. ^ Salata RA, Jarrett DB, Verbalis JG, Robinson AG (March 1988). "Vasopressin stimulation of adrenocorticotropin hormone (ACTH) in humans. In vivo bioassay of corticotropin-releasing factor (CRF) which provides evidence for CRF mediation of the diurnal rhythm of ACTH". The Journal of Clinical Investigation. 81 (3): 766–74. PMC 442524 . PMID 2830315. doi:10.1172/JCI113382. 
  27. ^ Bielsky IF, Hu SB, Szegda KL, Westphal H, Young LJ (March 2004). "Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice". Neuropsychopharmacology. 29 (3): 483–93. PMID 14647484. doi:10.1038/sj.npp.1300360. 
  28. ^ Wersinger SR, Caldwell HK, Martinez L, Gold P, Hu SB, Young WS (August 2007). "Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression". Genes, Brain, and Behavior. 6 (6): 540–51. PMID 17083331. doi:10.1111/j.1601-183X.2006.00281.x. 
  29. ^ Lolait SJ, Stewart LQ, Jessop DS, Young WS, O'Carroll AM (February 2007). "The hypothalamic-pituitary-adrenal axis response to stress in mice lacking functional vasopressin V1b receptors". Endocrinology. 148 (2): 849–56. PMC 2040022 . PMID 17122081. doi:10.1210/en.2006-1309. 
  30. ^ Wersinger SR, Kelliher KR, Zufall F, Lolait SJ, O'Carroll AM, Young WS (December 2004). "Social motivation is reduced in vasopressin 1b receptor null mice despite normal performance in an olfactory discrimination task". Hormones and Behavior. 46 (5): 638–45. PMID 15555506. doi:10.1016/j.yhbeh.2004.07.004. 
  31. ^ Kanwar S, Woodman RC, Poon MC, Murohara T, Lefer AM, Davenpeck KL, Kubes P (October 1995). "Desmopressin induces endothelial P-selectin expression and leukocyte rolling in postcapillary venules". Blood. 86 (7): 2760–6. PMID 7545469. 
  32. ^ Kaufmann JE, Oksche A, Wollheim CB, Günther G, Rosenthal W, Vischer UM (July 2000). "Vasopressin-induced von Willebrand factor secretion from endothelial cells involves V2 receptors and cAMP". The Journal of Clinical Investigation. 106 (1): 107–16. PMC 314363 . PMID 10880054. doi:10.1172/JCI9516. 
  33. ^ a b c d e "Vasopressin" (PDF). F.A. Davis Company. 2017. Retrieved 2017-03-13. 
  34. ^ Baum S, Nusbaum M, Tumen HJ (1970). "The control of gastrointestinal hemorrhage by selective mesenteric infusion of pitressin". Gastroenterology. 58: 926. 
  35. ^ Burtis CA, Ashwood ER, Bruns DE (2012). Tietz Textbook of Clinical Chemistry and Molecular Diagnostics (5th ed.). Elsevier Health Sciences. p. 1833. ISBN 978-1-4557-5942-2. 
  36. ^ Donaldson D (2014). "Polyuria and Disorders of Thirst". In Williams DL, Marks V. Scientific Foundations of Biochemistry in Clinical Practice (2nd ed.). Butterworth-Heinemann. pp. 76–102. ISBN 978-1-4831-9362-5. 
  37. ^ Li C, Wang W, Summer SN, Westfall TD, Brooks DP, Falk S, Schrier RW (February 2008). "Molecular mechanisms of antidiuretic effect of oxytocin". Journal of the American Society of Nephrology. 19 (2): 225–32. PMC 2396735 . PMID 18057218. doi:10.1681/ASN.2007010029. 
  38. ^ Joo KW, Jeon US, Kim GH, Park J, Oh YK, Kim YS, Ahn C, Kim S, Kim SY, Lee JS, Han JS (October 2004). "Antidiuretic action of oxytocin is associated with increased urinary excretion of aquaporin-2". Nephrology, Dialysis, Transplantation. 19 (10): 2480–6. PMID 15280526. doi:10.1093/ndt/gfh413. 
  39. ^ Acher R, Chauvet J (July 1995). "The neurohypophysial endocrine regulatory cascade: precursors, mediators, receptors, and effectors". Frontiers in Neuroendocrinology. 16 (3): 237–89. PMID 7556852. doi:10.1006/frne.1995.1009. 
  40. ^ Carson DS, Garner JP, Hyde SA, Libove RA, Berquist SW, Hornbeak KB, Jackson LP, Sumiyoshi RD, Howerton CL, Hannah SL, Partap S, Phillips JM, Hardan AY, Parker KJ (2015). "Arginine Vasopressin Is a Blood-Based Biomarker of Social Functioning in Children with Autism". Plos One. 10 (7): e0132224. PMC 4511760 . PMID 26200852. doi:10.1371/journal.pone.0132224. Lay summaryScientific American. 
  41. ^ a b Verbalis JG, Goldsmith SR, Greenberg A, Schrier RW, Sterns RH (November 2007). "Hyponatremia treatment guidelines 2007: expert panel recommendations". The American Journal of Medicine. 120 (11 Suppl 1): S1–21. PMID 17981159. doi:10.1016/j.amjmed.2007.09.001. 
  42. ^ Pearson JW, Redding JS (Sep–Oct 1963). "THE ROLE OF EPINEPHRINE IN CARDIAC RESUSCITATION". Anesthesia and Analgesia. 42 (5): 599–606. PMID 14061643. doi:10.1213/00000539-196309000-00022. 
  43. ^ Young LJ (October 2009). "The neuroendocrinology of the social brain". Frontiers in Neuroendocrinology. 30 (4): 425–8. PMID 19596026. doi:10.1016/j.yfrne.2009.06.002. 

Further readingEdit