Մաթեմատիկայում, Վորոնեի դիագրամը հատուկ տեսակ է դասավորումը տվյալ տարածության,օրինակ,մետրային տարածություն , կախված է տրված օբյեկտների (ենթաբազմությունների) ընտանիքից ունեցած հեռավորությունից տարածությյան մեջ:Այդ օբյեկտները սովորաբար անվանում են կայքեր կամ գեներատորներ (բայց օգտագործվում են ուրիշ անուններ, ինչպիսին է"սերմ") և ամեն մի այդպիսի օբյեկտի համար մեկը կապում է Վորոնեի համապատասխան բջջին, մասնավորապես տվյալ տարածության բոլոր կետերի փաթեթի հետ,որի հեռավորությունը տվյալ օբյեկտից այնքան էլ մեծ չէ,ինչքան այլ օբյեկտներից հեռավորությունը: Այն անվանվել է Գեորգի Վորոնեյ, և կոչվում է նաև Վորոնեի tessellation, Վորոնեի դասավորություն, կամ Dirichlet tessellation (հետոԼեժեն Դիրիխլե): Վորոնեի դիագրամները մեծ քանակությամբ կարելի է գտնել Գիտություն և Տեխնոլոգիա բնագավառներում, նույնիսկ Արվեստի բնագավառում, և նրանք գտան բազմաթիվ տեսական և գործնական ծրագրեր:[1][2]սա տեխնոլոգիա է,որը թույլ է տալիս բաժանել այդպիսի բազմաչափ տարածությունները ենթատարածությունների:


Ամենապարզ դեպքը

edit

Ամենապարզ և ամենածանոթ դեպքում (ցույց է տրված առաջին նկարում), մեզ տրվում է վերջավոր քանակությամբ կետեր {p1,...,pn} Էվկլիդյան հարթությունում Euclidean plane: Այդ դեպքում ամեն կայք pk դա ուղղակի կետ է և նրան համապատասխան Վորոնեի ցանցը (նաև անվանում են Վորոնեի շրջան կամ Դիրիխլեի բջիջ) Rk բաղկացած է բոլոր կետերից,հեռավորությունը մինչև pk ավել չէ,քան իրենց հեռավորությունը այլ կայքերից.Յուրաքանչյուր այդպիսի բջիջ ստացվում է տարածության կեսի խաչմերուկից,և հետևաբար դա Each such cell is obtained from the intersection of half-spaces, and hence it is a ուռուցիկ պոլիգոն: Վորոնեի դիագրամի տեղամասերը,հարթության բոլոր կետերը,որոնք երկու միմյանց մոտ օբյեկտների համար գտնվում են միևնույն հեոավորության վրա The segments of the Voronoi diagram are all the points in the plane that are equidistant to the two nearest sites. Վորոնեի գագաթները (հանգույցները)հանդիսանում են ....երեք are the points equidistant to three (կամ ավել)կայքերի.

Պաշտոնական սահմանումը

edit

Let  բացակով (ոչ դադարկ սահմանել) ապահովված հեռավորության ֆունկցիայով  . Թող   ինդեքսների ամբողջություն և թող   լինի tuple (դասավորված հավաքածու) ոչ դատարկենթաբազմությունից (կայքերի) տարածության մեջ  : Վորոնեի բջիջը կամ Վորոնեի շրջանը,  , կապված կայքից   այն բոլոր կետերի հավաքածուն է  ում որոնցից հեռավորությունը մինչև   մեծ չէ,քան այլ կայքերից հեռավորությունը  ,որտեղ   յուրաքնչյուր ինդեքս տարբերվում է  -ից: Այլ խոսքով,եթե   նշանակում է հեռավորություն   կետի և   ենթաբազմության, այնուհետև

 

Վորոնեի դիագրամը դա ուղղակի գնացք է   բջիջներից. Որոշ կայքեր կարող են խաչվել և նույնիսկ համընկնել(ստորև առաջարկված`կայքերի համար,որոնք խանութներ են ներկայացնում),բայց սովորաբար նրանք միացված չեն:Դրանից բացի, սահմանման մեջ կան մեծ թվով կայքեր (այդ պարամետրը կիրառվում է երկրաչափություն թվերից և բյուրեղագրությունում), բայց նորից, շատ դեպքերում միայն վերջավոր շատ կայքեր են համարվում:in many cases only finitely many sites are considered. Կոնկրետ դեպքում, երբ տարածությունը հանդես է գալիս վերջավոր ծավալային Էվկլիդյան տարածությունում, յուրաքանչյուր կայք`դա կետ է,կա վերջավոր շատ բալեր և նրանք բոլորը տարբեր են , ապա Վորոնեի բջիջներ են հանդիսանում ուռուցիկ polytopes многокрапивники և նրանք կարող են ներկայացվել համակցական ձևով`նրանց գագաթների ,կողմեր,երկկողմանի պատկերի և այլնի օգտագործմամբ:Հաճախ կանչված համակցված կառուցվածքը անվանվում է Վորոնեի դիագրամ:Սակայն ընդհանուր առմամբ Վորոնեի բջիջները կարող են չլինել ուռուցիկ կամ նույնիսկ կապված:

Նկարազարդում

edit

Որպես պարզ նկարազարդում, հաշվի աոեք խանութների խումբը հարթ քաղաքում:Ենթադրենք մենք ուզում ենք գնահատել տվյալ խանութի հաճախորդների քանակը: Բոլոր այլ հավասար պայմաններում(գին, ապրանքներ, մատակարարման որակ և այլն),հիմնավորված է ենթադրել,որ հաճախորդները կընտրեն իրենց նախընտրած խանութը պարզապես հեռավորության նկատառումներից ելնելով.նրանք գնում են այն խանութը,որը գտնվում է մոտակայքում:Այդ դեպքում Վորոնեի բջիջները   տվյալ խանութից   կարող է օգտագործվել այս խանութ գնացող պոտենցիալ հաճախորդների թվի մոտավոր գնահատական տալու համար,(որը մեր հարթ քաղաքում ձեւավորված է կետի միջոցով ): Մինչ այժմ ենթադրվում էր, որ քաղաքում կետերի միջեւ հեռավորությունը չափվում է ստանդարտ հեռավորության օգնությամբ,այն է,ծանոթ Էվկլիդյան հեռավորություն:  . Սակայն, եթե հաշվի առնենք այն դեպքն, ուր հաճախորդները գնում են խանութներ միայն տրանսպորտային միջոցներով, և ճանապարհային ուղիները զուգահեռ են   և   կացինների համար, ինչպես Մանհետոնում,ապա հեռավորության գործառույթը կլինի ավելի իրատեսական   հեռավորություն, իսկ ավելի կոնկրետ:  .

 
10 հարթ քաղաքի խանութները և նրանց Վորոնյան բջիջները (Էվկլիդըան հեռավորություն).
 
Նույն 10 խանութները և այժմ Մանհետն հեռավորություն. Վորոնեի բջիջները երկու դեպքում էլ տարբեր են.

Հատկություններ

edit
  • Երկակի գրաֆիկ Վորոնեի դիագրամի համար ( Էվկլիդյան տարածության համաձայն կայքի կետերից ) համապատասխան Delaunay triangulation նույն կետերի հավաքածուի համար:
  • Մոտակա կետերի զույգհամապատասխանում է երկու հարակից բջիջների Voronoi դիագրամում:
  • Ենթադրում են էվկլիդյան հարթության և խմբով տրված տարբեր կետերի հաստատում :Այդ դեպքում երկու կետեր հանդիսանում են կից ուռուցիկ կեղևիվրա, եթե միայն, նրանց Վորոնեի բջիջները բաժանվում են անսահման երկար մասերի:
  • Եթե տարածությունը նորմալացված տարածության և հեռավորությունը մինչ ամեն կայքը հասնում է(օրինակ, երբ կայքը գտնվում է կոմպակտ հավաքածուում կամ փակ գնդակ),ապա յուրաքանչյուր Վորոնյան բջիջ կարող է ներկայացվել որպես գծային հատվածների միասնություն`կայքերից ծագող [3].Ինչպես ցույց է տրված այստեղ,այս հատկությունը անպայման չի անցկացնում,երբ տարածությունները չեն հաղթահարված:
  • Under relatively general conditions (the space is a possibly infinite dimensional uniformly convex space, there can be infinitely many sites of a general form, etc.) Voronoi cells enjoy a certain stability property: a small change in the shapes of the sites, e.g., a change caused by some translation or distortion, yields a small change in the shape of the Voronoi cells. This is the geometric stability of Voronoi diagrams [4]. As shown there, this property does not hold in general, even if the space is two-dimensional (but non-uniformly convex, and, in particular, non-Euclidean) and the sites are points.

History and research

edit

Informal use of Voronoi diagrams can be traced back to Descartes in 1644. Dirichlet used 2-dimensional and 3-dimensional Voronoi diagrams in his study of quadratic forms in 1850. British physician John Snow used a Voronoi diagram in 1854 to illustrate how the majority of people who died in the Soho cholera epidemic lived closer to the infected Broad Street pump than to any other water pump.

Voronoi diagrams are named after Russian mathematician Georgy Fedoseevich Voronoi (or Voronoy) who defined and studied the general n-dimensional case in 1908. Voronoi diagrams that are used in geophysics and meteorology to analyse spatially distributed data (such as rainfall measurements) are called Thiessen polygons after American meteorologist Alfred H. Thiessen. In condensed matter physics, such tessellations are also known as Wigner–Seitz unit cells. Voronoi tessellations of the reciprocal lattice of momenta are called Brillouin zones. For general lattices in Lie groups, the cells are simply called fundamental domains. In the case of general metric spaces, the cells are often called metric fundamental polygons. Other equivalent names for this concept (or particular important cases of it) : Voronoi polyhedra, Voronoi polygons, domain(s) of influence, Voronoi decomposition, Voronoi tessellation(s), Dirichlet tessellation(s).

Examples

edit
 
This is a slice of the Voronoi diagram of a random set of points in a 3D box. In general a cross section of a 3D Voronoi tessellation is not a 2D Voronoi tessellation itself. (The cells are all convex polyhedra.)

Voronoi tessellations of regular lattices of points in two or three dimensions give rise to many familiar tessellations.

For the set of points (xy) with x in a discrete set X and y in a discrete set Y, we get rectangular tiles with the points not necessarily at their centers.

Higher-order Voronoi diagrams

edit

Although a normal Voronoi cell is defined as the set of points closest to a single point in S, an nth-order Voronoi cell is defined as the set of points having a particular set of n points in S as its n nearest neighbors. Higher-order Voronoi diagrams also subdivide space.

Higher-order Voronoi diagrams can be generated recursively. To generate the nth-order Voronoi diagram from set S, start with the (n − 1)th-order diagram and replace each cell generated by X = {x1x2, ..., xn−1} with a Voronoi diagram generated on the set S − X.

Farthest-point Voronoi diagram

edit

For a set of n points the (n−1)th-order Voronoi diagram is called a farthest-point Voronoi diagram.

For a given set of points S = {p1p2, ..., pn} the farthest-point Voronoi diagram divides the plane into cells in which the same point of P is the farthest point. Note that a point of P has a cell in the farthest-point Voronoi diagram if and only if it is a vertex of the convex hull of P. Thus, let H = {h1h2, ..., hk} be the convex hull of P we define the farthest-point Voronoi diagram as the subdivision of the plane into k cells, one for each point in H, with the property that a point q lies in the cell corresponding to a site hi if and only if dist(q, hi) > dist(q, pj) for each pj ∈ S with hipj. Where dist(p, q) is the euclidean distance between two points p and q.[5] [6]

Generalizations and variations

edit

As implied by the definition, Voronoi cells can be defined for metrics other than Euclidean (such as the Mahalanobis or Manhattan) distances. However in these cases the boundaries of the Voronoi cells may be more complicated than in the Euclidean case, since the equidistant locus for two points may fail to be subspace of codimension 1, even in the 2-dimensional case.

A weighted Voronoi diagram is the one in which the function of a pair of points to define a Voronoi cell is a distance function modified by multiplicative or additive weights assigned to generator points. In contrast to the case of Voronoi cells defined using a distance which is a metric, in this case some of the Voronoi cells may be empty.

 
Approximate Voronoi diagram of a set of points. Notice the blended colors in the fuzzy boundary of the Voronoi cells.

The Voronoi diagram of n points in d-dimensional space requires   storage space. Therefore, Voronoi diagrams are often not feasible for d > 2. An alternative is to use approximate Voronoi diagrams, where the Voronoi cells have a fuzzy boundary, which can be approximated.[7] Another alternative is when any site is a fuzzy circle and as a result the cells become fuzzy too.[8]

Voronoi diagram are also related to other geometric structures such as the medial axis (which has found applications in image segmentation, optical character recognition and other computational applications), straight skeleton, and zone diagrams.

Applications

edit
  • One of the early applications of Voronoi diagrams was by John Snow to study the epidemiology of the 1854 Broad Street cholera outbreak in Soho, England. He showed the correlation between areas on the map of London using a particular water pump, and the areas with most deaths due to the outbreak.
  • A point location data structure can be built on top of the Voronoi diagram in order to answer nearest neighbor queries, where one wants to find the object that is closest to a given query point. Nearest neighbor queries have numerous applications. For example, one might want to find the nearest hospital, or the most similar object in a database. A large application is vector quantization, commonly used in data compression.
  • With a given Voronoi diagram, one can also find the largest empty circle amongst a set of points, and in an enclosing polygon; e.g. to build a new supermarket as far as possible from all the existing ones, lying in a certain city.
  • Voronoi diagrams together with farthest-point Voronoi diagrams are used for efficient algorithms to compute the roundness of a set of points.[5]
  • The Voronoi diagram is useful in polymer physics. It can be used to represent free volume of the polymer.
  • In climatology, Voronoi diagrams are used to calculate the rainfall of an area, based on a series of point measurements. In this usage, they are generally referred to as Thiessen polygons.
  • Voronoi diagrams are used to study the growth patterns of forests and forest canopies, and may also be helpful in developing predictive models for forest fires.
  • Voronoi diagrams are also used in computer graphics to procedurally generate some kinds of organic looking textures.
  • In autonomous robot navigation, Voronoi diagrams are used to find clear routes. If the points are obstacles, then the edges of the graph will be the routes furthest from obstacles (and theoretically any collisions).
  • In materials science, polycrystalline microstructures in metallic alloys are commonly represented using Voronoi tessellations.
  • Voronoi polygons have been used in mining to estimate the reserves of valuable materials, minerals or other resources. Exploratory drillholes are used as the set of points in the Voronoi polygons.

See also

edit
Algorithms
Related subjects

Notes

edit
  1. ^ Ֆրանս Aurenhammer (1991). Վորոնեի դիագրամները –հիմնական երկրաչափական տվյալների կառուցվածքի հետազոտություն են: ACM հետազոտությունների թվարկում, 23(3):345–405, 1991
  2. ^ Atsuyuki Okabe, Barry Boots, Kokichi Sugihara & Sung Nok Chiu (2000). Տարածական տեսելյացիայի –Վորոնեի դիագրամների կիրառությունները և հասկացությունները : 2-րդ հրատարակություն. John Wiley, 2000, 671 էջ ISBN 0-471-98635-6
  3. ^ Daniel Reem, Վորոնեի դիագրամի ընդհանուր գեներատորի հաշվարկման ալգորիթմը ընդհանուր նորմալացված տարածությունում, Վեցերորդ միջազգային սիմպոզիումի աշխատանքում Վորոնեի դիագրամի համաձայն գիտության և տեխնիկայի ոլորտում (ISVD 2009), 2009, pp. 144–152
  4. ^ Daniel Reem, The geometric stability of Voronoi diagrams with respect to small changes of the sites, Full version: arXiv 1103.4125 (2011), Extended abstract in Proceedings of the 27th Annual ACM Symposium on Computational Geometry (SoCG ‏2011), pp. 254–263
  5. ^ a b Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf (2008). Computational Geometry (Third edition ed.). Springer-Verlag. {{cite book}}: |edition= has extra text (help)CS1 maint: multiple names: authors list (link) 7.4 Farthest-Point Voronoi Diagrams. Includes a description of the algorithm. Cite error: The named reference "berg2008" was defined multiple times with different content (see the help page).
  6. ^ Skyum, Sven (1991). "A simple algorithm for computing the smallest enclosing circle". Information Processing Letters 37(1991)121–125. {{cite journal}}: |first2= missing |last2= (help), Contains a simple algorithm to compute the farthest-point Voronoi diagram.
  7. ^ S. Arya, T. Malamatos, and D. M. Mount, Space-Efficient Approximate Voronoi Diagrams, Proc. 34th ACM Symp. on Theory of Computing (STOC 2002), pp. 721–730.
  8. ^ Jooyandeh, Mohammadreza; Mohades, Ali; Mirzakhah, Maryam (2009). "Uncertain Voronoi Diagram" (PDF). Information Processing Letters. 109 (13). Elsevier: 709–712. doi:10.1016/j.ipl.2009.03.007.
  9. ^ Tom M. Mitchell (1997). Machine Learning (International Edition 1997 ed.). McGraw-Hill. p. 233. ISBN 0-07-042807-7.

References

edit
edit