- Class 0 and 1
- Class 2
- Class 3
- Class 4
- Class 5
- Tetration level
- Up-arrow notation level
- Linear omega level
- Quadratic omega level
- Polynomial omega level
- Exponentiated linear omega level
- Exponentiated polynomial omega level
- Double exponentiated polynomial omega level
- Triple exponentiated polynomial omega level
- Iterated Cantor normal form level
- Epsilon level
- Binary phi level
- Bachmann's collapsing level
- Higher computable level
- Uncomputable numbers
This is a list of googolisms in ascending order.
This list contains ill-defined large numbers, e.g. BEAF numbers beyond tetrational arrays, BIG FOOT, Little Bigeddon, Sasquatch, and large numbers whose well-definedness is not known, e.g. large numbers defined by Taranovsky's ordinal notation and Bashicu matrix number with respect to Bashicu matrix system version 2.3.
This page (the main list) lists the more notable googolisms on each class; click the "More..." link at the end of each section to see more googolisms in that class.
Class 0 (0 - 6)
editName | Value | Approximation (Fast-growing hierarchy) |
---|---|---|
Zero | 0 | N/A |
Googolplexianminex | \(10^{-(10^{10^{10^{100}}})}\) | N/A |
Googolplexminex | \(10^{-(10^{10^{100}})}\) | N/A |
Googolminex | \(10^{-(10^{100})}\) or 1/googolplex | N/A |
One | 1 | f0(0) |
Two | 2 | f0(1) |
Three | 3 | f0(2) |
Four | 4 | f0(3) |
Five | 5 | f0(4) |
Six | 6 | f0(5) |
Class 1 (7 - 1,000,000)
editName | Value | Approximation (Fast-growing hierarchy) |
---|---|---|
Seven | 7 | f0(6) |
Eight | 8 | f0(7) |
Nine | 9 | f0(8) |
Ten | 10 | f1(5) |
Dozen | 12 | f1(6) |
Hundred | 100 (102) | f1(50) |
Eleventy | 110 | f1(55) |
Twelfty (or long hundred) | 120 | f1(60) |
Gross | 144 (122) | f1(72) |
Baker's gross | 169 (132) | f2(5) |
Poulter's gross | 196 (142) | f1(98) |
Short ream | 480 | f2(6) |
Ream | 500 | f2(6) |
Beast number | 666 | f2(7) |
Thousand / Niloogol | 1,000 (103) | f2(7) |
Great gross | 1,728 (123) | f2(8) |
Great Baker's gross | 2,197 (133) | f2(8) |
Poulter's great gross | 2,744 (143) | f2(8) |
Myriad | 10,000 | f2(10) |
Lakh | 100,000 | f2(13) |
Class 2 (1,000,000 - \(10^{1,000,000}\))
editName | Value | |
---|---|---|
Million | 1,000,000 | f2(16) |
Crore | 10,000,000 | f2(19) |
Myllion | 100,000,000 | f2(22) |
Billion(S)[1] / Milliard | 1,000,000,000 | f2(25) |
Dialogue | 1010 | f2(29) |
Trillion(S) / Billion(L) | 1012 | f2(35) |
Quadrillion(S) / Billiard | 1015 | f2(45) |
Byllion | 1016 | f2(48) |
Quintillion(S) / Trillion(L) | 1018 | f2(54) |
Sextillion(S) / Trilliard | 1021 | f2(64) |
Avogadro's number | ~6.02214076*1023 | f2(73) |
Septillion(S) / Quadrillion(L) | 1024 | f2(74) |
Octillion(S) / Quadrilliard | 1027 | f2(83) |
Nonillion(S) / Quintillion(L) | 1030 | f2(93) |
Belphegor's prime | ~1.00000000000007*1030 | f2(93) |
Tryllion | 1032 | f2(100) |
Decillion(S) / Quintilliard | 1033 | f2(103) |
Undecillion(S) / Sextillion(L) | 1036 | f2(113) |
Duodecillion(S) / Sextilliard | 1039 | f2(123) |
Tredecillion(S) / Septillion(L) | 1042 | f2(133) |
Quattuordecillion(S) / Septilliard | 1045 | f2(143) |
Quindecillion(S) / Octillion(L) | 1048 | f2(151) |
Sexdecillion(S) / Octilliard | 1051 | f2(162) |
Septendecillion(S) / Nonillion(L) | 1054 | f2(171) |
Octodecillion(S) / Nonilliard | 1057 | f2(182) |
Novemdecillion(S) / Decillion(L) | 1060 | f2(192) |
Vigintillion(S) / Decilliard | 1063 | f2(202) |
Quadryllion | 1064 | f2(205) |
Eddington number | 136*2256 ~ 1.5747724136275*1079 | f2(256) |
Trigintillion(S) | 1093 | f2(301) |
Googol | 10100 | f2(323) |
Vigintillion(L) | 10120 | f2(390) |
Quadragintillion(S) | 10123 | f2(400) |
Googolex | 12060 ~ 5.6347514353165*10124 | f2(405) |
Quintyllion | 10128 | f2(417) |
Quinquagintillion(S) | 10153 | f2(499) |
Trigintillion(L) | 10180 | f2(589) |
Sexagintillion(S) | 10183 | f2(599) |
Number of Planck volumes in the observable universe | ~4.6*10185 | f2(607) |
Gargoogol | 10200 | f2(656) |
Septuagintillion(S) | 10213 | f2(698) |
Hundertime | 4.71193079990*10219 | f2(721) |
Googoc | 200100 ~ 1.2676506002282*10230 | f2(754) |
Quadragintillion(L) | 10240 | f2(787) |
Octogintillion(S) | 10243 | f2(797) |
Nonagintillion(S) | 10273 | f2(897) |
Quinquagintillion(L) | 10300 | f2(996) |
Centillion(S) | 10303 | f2(997) |
Sexagintillion(L) | 10360 | f2(1,185) |
Primo-vigesimo-centillion(S) | 10366 | f2(1,205) |
Faxul | 200! ~ 7.88657867364*10374 | f2(1,235) |
Septuagintillion(L) | 10420 | f2(1,384) |
Octogintillion(L) | 10480 | f2(1,584) |
Googocci | 402201 ~ 2.814729533583*10523 | f2(1,728) |
Nonagintillion(L) | 10540 | f2(1,783) |
Centillion(L) | 10600 | f2(1,982) |
Primo-vigesimo-centillion(L) | 10726 | f2(2,400) |
Googolchime | 101,000 | f2(3,310) |
Millillion(S) | 103,003 | f2(9,962) |
Decyllion | 104,096 | f2(13,592) |
Millillion(L) | 106,000 | f2(19,917) |
Googoltoll | 1010,000 | f2(33,204) |
Hitchhiker's number | 2276,709 ~ 5.117645330517*1083,297 | f2(f2(14)) |
Googolgong | 10100,000 | f2(f2(15)) |
Class 3 (\(10^{1,000,000} - 10^{10^{1,000,000}}\))
editName | Value | Approximation (fast-growing hierarchy) |
---|---|---|
Maximusmillion | 101,000,000 | f2(f2(17)) |
Milli-millillion(S) | 103,000,003 | f2(f2(19)) |
Vigintyllion | 104,194,304 | f2(f2(19)) |
Milli-millillion(L) | 106,000,000 | f2(f2(20)) |
Largest known prime | 282,589,933-1 ~ 1.488944*1024,862,047 | f2(f2(22)) |
Nanillion | 103,000,000,003 | f2(f2(28)) |
Trialogue | 101010 | f2(f2(30)) |
Ballium's number | ~ 2.03542*10138,732,019,349 | f2(f2(33)) |
Picillion | 103*1012+3 | f2(f2(37)) |
Femtillion | 103*1015+3 | f2(f2(48)) |
Attillion | 103*1018+3 | f2(f2(57)) |
Zeptillion | 103*1021+3 | f2(f2(67)) |
Yoctillion | 103*1024+3 | f2(f2(76)) |
Xonillion | 103*1027+3 | f2(f2(86)) |
Vecillion | 103*1030+3 | f2(f2(96)) |
Mecillion | 103*1033+3 | f2(f2(106)) |
Duecillion | 103*1036+3 | f2(f2(116)) |
Trecillion | 103*1039+3 | f2(f2(125)) |
Tetrecillion | 103*1042+3 | f2(f2(135)) |
Icosillion | 103*1060+3 | f2(f2(195)) |
Triacontillion | 103*1090+3 | f2(f2(294)) |
Googolplex | 1010100 | f2(f2(325)) |
Gargoogolplex | googolplex2 = 102*10100 | f2(f2(326)) |
Googolbang | (10100)! ~ 109.957*10101 | f2(f2(332)) |
Tetracontillion | 103*10120+3 | f2(f2(393)) |
Pentacontillion | 103*10150+3 | f2(f2(492)) |
Hexacontillion | 103*10180+3 | f2(f2(592)) |
Heptacontillion | 103*10210+3 | f2(f2(691)) |
Octacontillion | 103*10240+3 | f2(f2(791)) |
Ennacontillion | 103*10270+3 | f2(f2(890)) |
Hectillion | 103*10300+3 | f2(f2(989)) |
Ecetonplex | 1010303 | f2(f2(998)) |
Kilofaxul | (200!)! ~ 1010379 | f2(f2(1245)) |
Dohectillion | 103*10600+3 | f2(f2(1985)) |
Googolplexichime | 10101,000 | f2(f2(3311)) |
Killillion | 103*103,000+3 | f2(f2(9955)) |
Googolplexigong | 1010100,000 | f2(f2(f2(14))) |
Class 4
editName | Value | Approximation (fast-growing hierarchy) |
---|---|---|
Millionduplex | 10101,000,000 | f23(17) |
Megillion | 103*103,000,000+3 | f23(21) |
Gigillion | 103*103,000,000,000+3 | f23(32) |
Tetralogue | 10101010 | f23(35) |
Terillion | 103*103*1012+3 | f23(37) |
Petillion | 103*103*1015+3 | f23(47) |
Exillion | 103*103*1018+3 | f23(57) |
Zettillion | 103*103*1021+3 | f23(67) |
Yottillion | 103*103*1024+3 | f23(76) |
Xennillion | 103*103*1027+3 | f23(86) |
Dakillion | 103*103*1030+3 | f23(96) |
Hendillion | 103*103*1033+3 | f23(106) |
First Skewes number | eee79 ~ 10101034 | f23(108) |
Dokillion | 103*103*1036+3 | f23(116) |
Tradakillion | 103*103*1042+3 | f23(126) |
Ikillion | 103*103*1060+3 | f23(195) |
Trakillion | 103*103*1090+3 | f23(294) |
Googolduplex | 101010100 | f23(324) |
Fzgoogolplex | (1010100)1010100 = 101010100+100 | f23(326) |
Tekillion | 103*103*10120+3 | f23(393) |
Hotillion | 103*103*10300+3 | f23(990) |
Ecetonduplex | 101010303 | |
Megafaxul | ((200!)!)! ~ 101010379 | f23(1235) |
Botillion | 103*103*10600+3 | f23(1986) |
Trotillion | 103*103*10900+3 | f23(2982) |
Second Skewes number | eeee7.705 ~ 101010963 | |
Totillion | 103*103*101,200+3 | f23(3978) |
Kalillion | 103*103*103,000+3 | f23(9956) |
Dalillion | 103*103*106,000+3 | f23(19921) |
Tralillion | 103*103*109,000+3 | f23(29886) |
Talillion | 103*103*1012,000+3 | f23(39851) |
Dakalillion | 103*103*1030,000+3 | f23(99645) |
Googolduplexigong | 101010100,000 | f24(14) |
Hotalillion | 103*103*10300,000+3 | f24(16) |
Class 5
editName | Value |
---|---|
Mejillion | 103*103*103,000,000+3 |
Gijillion | 103*103*10300,000,0000+3 |
Pentalogue | 1010101010 |
Astillion | 103*103*103*1012+3 |
Lunillion | 103*103*103*1015+3 |
Fermillion | 103*103*103*1018+3 |
Multillion | 103*103*103*1042+3 |
Googoltriplex | 10101010100 |
Fzgargoogolplex | googolduplexgoogolduplex |
Ecetontriplex | 10101010303 |
Gigafaxul | (((200!)!)!)! ~ 10101010379 |
Googoltriplexigong | 10101010100,000 |
Tetration level
editName | Value |
---|---|
Hexalogue | 10↑↑6 |
Googolquadriplex | E100#5 |
Fzgargantugoogolplex | googoltriplexgoogoltriplex |
Heptalogue | 10↑↑7 |
Googolquinplex | E100#6 |
Octalogue | 10↑↑8 |
Googolsextiplex | E100#7 |
Ennalogue | 10↑↑9 |
Bentley's Number | \(\sum^{9}_{i = 0} 10 \uparrow\uparrow i\) |
Googolseptiplex | E100#8 |
Decker | {10,10,2} = 10↑↑10 |
Googoloctiplex | E100#9 |
Endekalogue | 10↑↑11 |
Equinoxal | 10(≡) = 10(10)(10) |
Googolnoniplex | E100#10 |
Dodekalogue | 10↑↑12 |
Googoldeciplex | E100#11 |
Triadekalogue | 10↑↑13 |
Tetradekalogue | 10↑↑14 |
Giggol | {10,100,2} = 10↑↑100 |
Grangol | E100#100 |
Expofaxul | 200!1 |
Mega | 2[5] = 256[4] ~ 10↑↑258 |
Chilialogue | 10↑↑1,000 |
Grangolgong | E100,000#100,000 |
Tritri | {3,3,3} = {3,7625597484987,2} = 3↑↑7,625,597,484,987 |
Googolgoogolplex | 10↑↑(10100) |
Googoldex | E100#(10100) = E100#1#2 |
Ecetondex | E303#1#2 |
Grand Faxul | ~ 10↑↑10379 |
Up-arrow notation level
editName | Value |
---|---|
Zootzootplex | Exponential factorial of googolplex = googolplexgoogolplex-1googolplex-2...432. |
Googolplexstack | 10↑↑(1010100) |
Googolplexidex | E100#(1010100) = E100#2#2 |
Grand Kilofaxul | ~ 10↑↑1010379 |
Tria-teraksys | E1#1#3 = 10↑↑↑3 = 10↑↑10↑↑10 |
Equiduoxal | 10(≡≡) = 10(10(≡))(10(≡)) |
Giggolplex | {10,giggol,2} = 10↑↑10↑↑100 |
Grangoldex | E100#100#2 |
Kiloexpofaxul | (200!1)!1 |
Grangoldexigong | E100,000#100,000#2 |
Googolgoogolduplex | 10↑↑10↑↑(10100) |
Ecetondudex | E303#1#3 |
Bigrand Faxul | ~ 10↑↑10↑↑(10379) |
Tetra-teraksys | E1#1#4 = 10↑↑↑4 |
Giggolduplex | {10,giggolplex,2} = 10↑↑10↑↑10↑↑100 |
Grangoldudex | E100#100#3 |
Megaexpofaxul | ((200!1)!1)!1 |
Grangoldudexigong | E100,000#100,000#3 |
Googolgoogoltriplex | 10↑↑10↑↑10↑↑(10100) |
Deka-teraksys | E1#1#10 = 10↑↑↑10 |
Megiston | 10[5] ~ 10↑↑↑11 |
Gaggol | {10,100,3} = 10↑↑↑100 |
Greagol | E100#100#100 |
Tetrofaxul | 200!2 |
Greagolgong | E100,000#100,000#100,000 |
Googol-3-flex | 10↑↑↑(10100) |
Ecetonthrex | E303#1#1#2 |
Folkman's number | 2↑↑↑(2901) |
Grand expofaxul | ~ 10↑↑↑10↑↑198 |
A-ooga | 2[6] |
Grahal | g1 = 3↑↑↑↑3 |
Tria-petaksys | 10↑↑↑↑3 |
Gaggolplex | {10,gaggol,3} |
Greagolthrex | E100#100#100#2 |
Kilotetrofaxul | (200!2)!2 |
Greagolthrexigong | E100,000#100,000#100,000#2 |
Ecetonduthrex | E303#1#1#3 |
Tritet | {4,4,4} = 4↑↑↑↑4 |
Greagolduthrex | E100#100#100#3 |
Greagolduthrexigong | E100,000#100,000#100,000#3 |
Equitrioxal | 10(≡≡≡) = 10(10(≡≡))(10(≡≡)) |
Hexar | \(Q_{1,0}(6)\) = 6↑↑↑↑6 |
Geegol | {10,100,4} = 10↑↑↑↑100 |
Gigangol | E100#100#100#100 |
Pentofaxul | 200!3 |
Geegolplex | {10,geegol,4} |
Gigangoltetrex | E100#100#100#100#2 |
Tripent | {5,5,5} = 5↑↑↑↑↑5 |
Gigol | {10,100,5} = 10↑↑↑↑↑100 |
Gorgegol | E100#100#100#100#100 |
Hexofaxul | 200!4 |
Gigolplex | {10,gigol,5} |
Gorgegolpentex | E100#100#100#100#100#2 |
Goggol | {10,100,6}= 10↑↑↑↑↑↑100 |
Gulgol | E100#100#100#100#100#100 |
Goggolplex | {10,goggol,6} |
Gulgolhex | E100#100#100#100#100#100#2 |
Trisept | {7,7,7} = 7↑77 |
Gagol | {10,100,7} = 10↑7100 |
Gaspgol | E100#100#100#100#100#100#100 |
Gagolplex | {10,gagol,7} |
Gaspgolheptex | E100#100#100#100#100#100#100#2 |
Ginorgol | E100#100#100#100#100#100#100#100 |
Ginorgoloctex | E100#100#100#100#100#100#100#100#2 |
Tridecal | {10,10,10} |
Boogol | {10,10,100} |
Gugold | E100##100 |
Hyperfaxul | 200![1] |
Gugoldagong | E100,000##100,000 |
Gongol | hyper(10,10100,100) |
Googoldiflux | \(10 \underbrace{\uparrow\uparrow\ldots\uparrow\uparrow}_{10^{100}} (10^{100})\) |
Equiquioxal | 10(≡{≡}≡) |
Linear omega level
editName | Value |
---|---|
\(q(6)\) (lower bound) | |
Moser | 2[2[5]] using Steinhaus-Moser notation, ~ 3 ↑Mega 3 |
Boogolplex | {10,10,{10,10,100}} |
Gugolda-suplex | E100##100#2 |
Kilohyperfaxul | (200![1])![1] |
Gongolplex | hyper(10,gongol,100) |
Dihexar | \(Q_{1,1}(6) \approx 6\rightarrow 6\rightarrow 6\rightarrow 2\) |
Graham's number | g64, where g1 = 3 ↑4 3 and gn = 3 ↑gn-1 3, ~ {3,65,1,2} |
xkcd number | A(G,G), where G is Graham's number, ~ {3,66,1,2} |
Corporal | {10,100,1,2} |
Graatagold | E100##100#100 |
Forcal | g1,000,000 |
Conway's Tetratri | 3→3→3→3 ~ {33,3,2,2} |
Corporalplex | {10,{10,100,1,2},1,2} |
Graatagolda-sudex | E100##100#100#2 |
Force forcal | gforcal |
Trihexar | \(Q_{1,2}(6)\) |
Greegold | E100##100#100#100 |
Suporcal | Forcal(1,000,000) |
Greegolda-suthrex | E100##100#100#100#2 |
Grinningold | E100##100##4 |
Megocal | Forcal2(1,000,000) |
Golaagold | E100##100##5 |
Gruelohgold | E100##100##6 |
Gaspgold | E100##100##7 |
Ginorgold | E100##100##8 |
Grand tridecal | {10,10,10,2} |
Gugolthra | E100##100##100 |
Biggol | {10,10,100,2} |
Giaxul | 200![200] = 200![1,2] |
Ultron | \(\approx f_{\omega+200} (100)\) |
Terribocal | Forcal1,2(1) |
Biggolplex | {10,10,{10,10,100,2},2} |
Graatagolthra | E100##100##100##2 |
Tetratri | {3,3,3,3} |
Septasexahexar | \(Q_{3,0}(6)\) |
Gugoltesla | E100##100##100##100 |
Baggol | {10,10,100,3} |
Tribocal | Forcal1,3(1) |
Baggolplex | {10,10,{10,10,100,3},3} |
Graatagoltesla | E100##100##100##100##2 |
Supertet | {4,4,4,4} |
Gugolpeta | E100##100##100##100##100 |
Beegol | {10,10,100,4} |
Beegolplex | {10,10,{10,10,100,4},4} |
Gugolhexa | E100###6 |
Bigol | {10,10,100,5} |
Bigolplex | {10,10,{10,10,100,5},5} |
Gugolhepta | E100###7 |
Boggol | {10,10,100,6} |
Boggolplex | {10,10,{10,10,100,6},6} |
Gugolocta | E100###8 |
Bagol | {10,10,100,7} |
Bagolplex | {10,10,{10,10,100,7},7} |
General | {10,10,10,10} |
Kaboodol | \(\underbrace{10 \rightarrow\ldots\rightarrow 10}_{102} < \text{kaboodol} < \underbrace{10 \rightarrow\ldots\rightarrow 10}_{103}\) |
Throogol | E100###100 |
Troogol | {10,10,10,100} |
Giabixul | 200![200,200] |
Quadratic omega level
editName | Value |
---|---|
Generalplex | {10,10,10,{10,10,10,10}} = {10,3,1,1,2} |
Kaboodolplex | \(\underbrace{10 \rightarrow\ldots\rightarrow 10}_{\text{kaboodol}+2} < \text{kaboodolplex} < \underbrace{10 \rightarrow\ldots\rightarrow 10}_{\text{kaboodol}+3}\) |
Troogolplex | {10,10,10,{10,10,10,100}} |
BOX_M̃ | |
Thrangol | E100###100#100 |
Threagol | E100###100##3 |
Thrugold | E100###100##100 |
Thrugolthra | E100###100###3 |
Thrugoltesla | E100###100###4 |
Throotrigol | E100###100###100 |
Triggol | {10,10,10,100,2} |
Triggolplex | {10,10,10,{10,10,10,100,2},2} |
Thrantrigol | E100###100###100#100 |
Thrutrigold | E100###100###100##100 |
Pentatri | {3,3,3,3,3} |
Throotergol | E100###100###100###100 |
Traggol | {10,10,10,100,3} |
Throopetol | E100###100###100###100###100 |
Treegol | {10,10,10,100,4} |
Superpent | {5,5,5,5,5} |
Throohexol | E100####6 |
Trigol | {10,10,10,100,5} |
Throoheptgol | E100####7 |
Troggol | {10,10,10,100,6} |
Throogogdol | E100####8 |
Tragol | {10,10,10,100,7} |
Pentadecal | {10,10,10,10,10} |
Tetroogol | E100####100 |
Quadroogol | {10,10,10,10,100} |
Polynomial omega level
editName | Value |
---|---|
Pentadecalplex | {10,10,10,10,{10,10,10,10,10}} |
Quadroogolplex | {10,10,10,10,{10,10,10,10,100}} |
Tetrangol | E100####100#100 |
Tetrugold | E100####100##100 |
Tetrithroogol | E100####100###100 |
Tetrootrigol | E100####100####100 |
Quadriggol | {10,10,10,10,100,2} |
Hexatri | {3,3,3,3,3,3} |
Tetrootergol | E100####100####100####100 |
Quadraggol | {10,10,10,10,100,3} |
Tetroopetol | E100####100####100####100####100 |
Quadreegol | {10,10,10,10,100,4} |
Tetroohexol | E100#####6 |
Quadrigol | {10,10,10,10,100,5} |
Superhex | {6,6,6,6,6,6} |
Tetrooheptgol | E100#####7 |
Quadroggol | {10,10,10,10,100,6} |
Tetroogogdol | E100#####8 |
Quadragol | {10,10,10,10,100,7} |
Hexadecal | {10,10,10,10,10,10} |
Pentoogol | E100#####100 |
Quintoogol | {10,10,10,10,10,100} |
Quintiggol | {10,10,10,10,10,100,2} |
Quintaggol | {10,10,10,10,10,100,3} |
Quinteegol | {10,10,10,10,10,100,4} |
Quintigol | {10,10,10,10,10,100,5} |
Quintoggol | {10,10,10,10,10,100,6} |
Supersept | {7,7,7,7,7,7,7} |
Quintagol | {10,10,10,10,10,100,7} |
Heptadecal | {10,10,10,10,10,10,10} |
Hexoogol | E100######100 |
Sextoogol | {10,10,10,10,10,10,100} |
Superoct | {8,8,8,8,8,8,8,8} |
Octadecal | {10,10,10,10,10,10,10,10} |
Heptoogol | E100#######100 |
Septoogol | {10,10,10,10,10,10,10,100} |
Superenn | {9,9,9,9,9,9,9,9,9} |
Ennadecal | {10,10,10,10,10,10,10,10,10} |
Ogdoogol | E100########100 |
Octoogol | {10,10,10,10,10,10,10,10,100} |
Iteral | {10,10,10,10,10,10,10,10,10,10} = {10,10 (1) 2} = {10,2,2 (1) 2} |
Ultatri | {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} = {3,27 (1) 2} |
Goobol | {10,100(1)2} |
Godgahlah | E100#100100 = E100#^#100 |
Giatrixul | 200![200,200,200] |
Godgahlahgong | E100,000#100,000100,000 |
Exponentiated linear omega level
editName | Value |
---|---|
Dupertri | {3,{3,3,3}(1)2} = {3,3,2 (1) 2} |
Duperdecal | {10,{10,10(1)2}(1)2} |
Goobolplex | {10,{10,100(1)2}(1)2} |
Grand godgahlah | E100#godgahlah100 = E100#^#100#2 |
Grand godgahlahgong | E100,000#godgahlahgong100,000 |
Grand grand godgahlah | E100#^#100#3 |
Gibbol | {10,100,2(1)2} |
Grandgahlah | E100#^#100#100 |
Latri | {3,3,3(1)2} |
Gabbol | {10,100,3(1)2} |
Greagahlah | E100#^#100#100#100 |
Boobol | {10,10,100(1)2} |
Gugoldgahlah | E100#^#100##100 |
Bibbol | {10,10,100,2(1)2} |
Gugolthragahlah | E100#^#100##100##100 |
Troobol | {10,10,10,100(1)2} |
Throogahlah | E100#^#100###100 |
Quadroobol | {10,10,10,10,100(1)2} |
Tetroogahlah | E100#^#100####100 |
Gootrol | {10,100(1)3} |
Gotrigahlah | E100#^#100#^#100 |
Bootrol | {10,10,100(1)3} |
Gooquadrol | {10,100(1)4} |
Gotergahlah | E100#^#100#^#100#^#100 |
Emperal | {10,10(1)10} |
Gossol | {10,10(1)100} |
Godgoldgahlah | E100#^#*#100 |
Emperalplex | {10,10(1){10,10(1)10}} |
Gossolplex | {10,10(1){10,10(1)100}} |
Gotrigoldgahlah | E100#^#*##3 |
Gissol | {10,10(1)100,2} |
Gassol | {10,10(1)100,3} |
Hyperal | {10,10(1)10,10} |
Mossol | {10,10(1)10,100} |
Godthroogahlah | E100#^#*##100 |
Mossolplex | {10,10(1)10,{10,10(1)10,100}} |
Bossol | {10,10(1)10,10,100} |
Godtetroogahlah | E100#^#*###100 |
Trossol | {10,10(1)10,10,10,100} |
Godpentoogahlah | E100#^#*####100 |
Quadrossol | {10,10(1)10,10,10,10,100} |
Quintossol | {10,10(1)10,10,10,10,10,100} |
Diteral | {10,10 (1)(1) 2} |
Dubol | {10,100 (1)(1) 2} |
Deutero-godgahlah | E100#^#*#^#100 |
Diteralplex | {10,diteral (1)(1) 2} |
Dutrol | {10,100 (1)(1) 3} |
Duquadrol | {10,100 (1)(1) 4} |
Admiral | {10,10 (1)(1) 10} |
Dossol | {10,10 (1)(1) 100} |
Deutero-godgoldgahlah | E100#^#*#^#*#100 |
Dossolplex | {10,10 (1)(1) dossol} |
Dutritri | {3,3,3 (1) 3,3,3 (1) 3,3,3} |
Dutridecal | {10,10,10 (1) 10,10,10 (1) 10,10,10} |
Trito-godgahlah | E100#^#*#^#*#^#100 |
Teterto-godgahlah | E100#^#*#^#*#^#*#^#100 |
Xappol | {10,10 (2) 2} |
Gridgahlah | E100#^##100 |
Exponentiated polynomial omega level
editName | Number |
---|---|
Xappolplex | {10,xappol (2) 2} |
Grand xappol | {10,10 (2) 3} |
Dimentri | {3,3 (3) 2} |
Colossol | {10,10 (3) 2} |
Kubikahlah | E100#^###100 |
Colossolplex | {10,colossol (3) 2} |
Terossol | {10,10 (4) 2} |
Quarticahlah | E100#^####100 |
Terossolplex | {10,terossol (4) 2} |
Petossol | {10,10 (5) 2} |
Quinticahlah | E100#^#^#5 |
Petossolplex | {10,petossol (5) 2} |
Ectossol | {10,10 (6) 2} |
Sexticahlah | E100#^#^#6 |
Ectossolplex | {10,ectossol (6) 2} |
Zettossol | {10,10 (7) 2} |
Septicahlah | E100#^#^#7 |
Zettossolplex | {10,zettossol (7) 2} |
Yottossol | {10,10 (8) 2} |
Octicahlah | E100#^#^#8 |
Yottossolplex | {10,yottossol (8) 2} |
Xennossol | {10,10 (9) 2} |
Xennossolplex | {10,xennossol (9) 2} |
Dimendecal | {10,10 (10) 2} |
Gongulus | {10,10 (100) 2} |
Godgathor | E100#^#^#100 |
Double exponentiated polynomial omega level
editName | Value |
---|---|
Gongulusplex | {10,10 (gongulus) 2} |
Gongulusduplex | {10,10 (gongulusplex) 2} |
Deutero-godgathor | E100#^#^#*#^#^#100 |
Trito-godgathor | E100#^#^#*#^#^#*#^#^#100 |
Hecato-godgathor | E100#^(#^#*#)100 |
Godgridgathor | E100#^(#^#*##)100 |
Dulatri | {3,3 (0,2) 2} |
Godkubikgathor | E100#^(#^#*###)100 |
Gingulus | {10,100 (0,2) 2} |
Godgathordeus | E100#^(#^#*#^#)100 |
Trilatri | {3,3 (0,3) 2} |
Gangulus | {10,100 (0,3) 2} |
Godgathortruce | E100#^(#^#*#^#*#^#)100 |
Geengulus | {10,100 (0,4) 2} |
Godgathorquad | E100#^(#^#*#^#*#^#*#^#)100 |
Gowngulus | {10,100 (0,5) 2} |
Gungulus | {10,100 (0,6) 2} |
Bongulus | {10,100 (0,0,1) 2} |
Gralgathor | E100#^#^##100 |
Bingulus | {10,100 (0,0,2) 2} |
Gralgathordeus | E100#^(#^##*#^##)100 |
Trimentri | {3,3 (0,0,0,1) 2} = {3,3 ((1)1) 2} |
Bangulus | {10,100 (0,0,3) 2} |
Gralgathortruce | E100#^(#^##*#^##*#^##)100 |
Beengulus | {10,100 (0,0,4) 2} |
Gralgathorquad | E100#^(#^##*#^##*#^##*#^##)100 |
Trongulus | {10,100 (0,0,0,1) 2} |
Thraelgathor | E100#^#^###100 |
Quadrongulus | {10,100 (0,0,0,0,1) 2} |
Terinngathor | E100#^#^####100 |
Pentaelgathor | E100#^#^#####100 |
Quintongulus | {10,100 (0,0,0,0,0,1) 2} |
Sextongulus | {10,100 (0,0,0,0,0,0,1) 2} |
Septongulus | {10,100 (0,0,0,0,0,0,0,1) 2} |
Octongulus | {10,100 (0,0,0,0,0,0,0,0,1) 2} |
Goplexulus | \(\lbrace10,100 (\underbrace{0,0,\ldots ,0,0,}_{100 \text{ zeroes}}1) 2\rbrace\) = {10,100 ((1)1) 2} |
Godtothol | E100#^#^#^#100 |
Triple exponentiated polynomial omega level
editName | Value |
---|---|
Extendol | s(3,3{1`2}2) |
Graltothol | E100#^#^#^##100 |
Goduplexulus | {10,100 ((100)1) 2} |
Thraeltothol | E100#^#^#^###100 |
Terinntothol | E100#^#^#^####100 |
Pentaeltothol | E100#^#^#^#####100 |
Godtertol | E100#^#^#^#^#100 |
Gotriplexulus | \(\lbrace 10,100 ((\underbrace{0,0,\ldots ,0,0,}_{100 \text{ zeroes}}1)1) 2\rbrace\) = {10,100 (((1)1)1) 2} |
Iterated Cantor normal form level
editName | Value |
---|---|
Graltertol | E100#^#^#^#^##100 |
Thraeltertol | E100#^#^#^#^###100 |
Godtopol | E100#^#^#^#^#^#100 |
Graltopol | E100#^#^#^#^#^##100 |
Godhathor | E100#^#^#^#^#^#^#100 |
Godheptol | E100#^#^#^#^#^#^#^#100 |
Godoctol | E100#^#^#^#^#^#^#^#^#100 |
Godentol | E100#^#^#^#^#^#^#^#^#^#100 |
Goddekathol | E100#^#^#^#^#^#^#^#^#^#^#100 |
Tethrathoth | E100#^^#100 |
Goppatoth | 10↑↑100 & 10 |
Nucleaxul | 200![200200] |
Giaquaxul | 200![200,200,200,200] |
Epsilon level
editName | Value |
---|---|
Grand tethrathoth | E100#^^#100#2 |
Goppatothplex | 10↑↑(goppatoth) & 10 |
Grantethrathoth | E100#^^#100#100 |
Tethratrithoth | E100#^^#100#^^#100 |
Deutero-tethrathoth | E100#^^#*#^^#100 |
Hecato-tethrathoth | E100(#^^#)^#100 |
Monster-Giant | E100(#^^#)^(#^^#)^#100 |
Super Monster-Giant | E100(#^^#)^(#^^#)^(#^^#)^#100 |
Terrible tethrathoth | E100(#^^#)^^#100 |
Terrible terrible tethrathoth | E100((#^^#)^^#)^^#100 |
Tethrathoth ba'al | E100#^^#>#100 |
Great and Terrible Tethrathoth | E100#^^#>#100#2 |
Gippatoth | 100↑↑(2 × 100) & 10 |
Gappatoth | 100↑↑(3 × 100) & 10 |
Geepatoth | 100↑↑(4 × 100) & 10 |
Grangol-carta-tethriterator | E100#^^#>#100#100 |
Tethriterhecate | E100#^^#>#*#100 |
Deutero-tethriterator | E100#^^#>#*#^^#>#100 |
Tethriterfact | E100(#^^#>#)^#100 |
Terrible tethriterator | E100(#^^#>#)^^#100 |
Tethriditerator | E100#^^#>(#+#)100 |
Tethrigriditerator | E100#^^#>##100 |
Tethrispatialator | E100#^^#>#^#100 |
Dustaculated-tethrathoth | E100#^^#>#^^#100 |
Tristaculated-tethrathoth | E100#^^#>#^^#>#^^#100 |
Tethracross | E100#^^##100 |
Boppatoth | 100↑↑(1002) & 10 |
Binary phi level
editName | Value |
---|---|
Terrible tethracross | E100(#^^##)^^#100 |
Secundotethrated-tethracross | E100(#^^##)^^##100 |
Tethritercross | E100#^^##>#100 |
Dustaculated-tethracross | E100#^^##>#^^##100 |
Tethracubor | E100#^^###100 |
Troppatoth | 100↑↑(1003) & 10 |
Terrible tethracubor | E100(#^^###)^^#100 |
Tethraducubor | E100(#^^###)^^###100 |
Tethritercubor | E100#^^###>#100 |
Dustaculated-tethracubor | E100#^^###>#^^###100 |
Tethrateron | E100#^^####100 |
Quadroppatoth | 100↑↑(1004) & 10 |
Terrible tethrateron | E100(#^^####)^^#100 |
Tethraduteron | E100(#^^####)^^####100 |
Tethra-hectateron | E100#^^####>#100 |
Dustaculated-tethrateron | E100#^^####>#^^####100 |
Tethrapeton | E100#^^#^#5 |
Tethrahexon | E100#^^#^#6 |
Tethrahepton | E100#^^#^#7 |
Tethra-ogdon | E100#^^#^#8 |
Tethrennon | E100#^^#^#9 |
Tethradekon | E100#^^#^#10 |
Tethrafact | E100#^^#^#100 |
Tethrato-tethrathoth | E100#^^#^^#100 |
Tethrarxitet | E100#^^#^^#^^#100 |
Pentacthulhum | E100#^^^#100 |
Bachmann's collapsing level
editName | Value |
---|---|
Pentacthuldugon | E100(#^^^#)^^^#100 |
Pentacthuliterator | E100#^^^#>#100 |
Hugexul | 200![200(1)200] |
Superior Hugexul | 200![200(1)200,200] |
Dustaculated-pentacthulhum | E100#^^^#>#^^^#100 |
Pentacthulcross | E100#^^^##100 |
Bisuperior Hugexul | 200![200(1)200,200,200] |
Pentacthulcubor | E100#^^^###100 |
Pentacthulteron | E100#^^^####100 |
Pentacthultope | E100#^^^#^#100 |
Pentacthularxitri | E100#^^^#^^^#100 |
Hexacthulhum | E100#^^^^#100 |
Hugebixul | 200![200(1)200(1)200] |
Hexacthuliterator | E100#^^^^#>#100 |
Superior Hugebixul | 200![200(1)200(1)200,200] |
Hexacthulcross | E100#^^^^##100 |
Heptacthulhum | E100#{5}#100 |
Hugetrixul | 200![200(1)200(1)200(1)200] |
Ogdacthulhum | E100#{6}#100 |
Hugequaxul | 200![200(1)200(1)200(1)200(1)200] |
Ennacthulhum | E100#{7}#100 |
Dekacthulhum | E100#{8}#100 |
Goliath | E100#{10}#100 |
Godsgodgulus | E100#{#}#100 |
Godsgodgulcross | E100#{#}##100 |
Godsgodeus | E100#{#+#}#100 |
The centurion | E100#{#^#}#100 |
Ohmygosh-ohmygosh-ohmygooosh | E100#{#{#}#}#100 |
Blasphemorgulus | E100{#,#,1,2}100 |
Hundrelasphemorgue | E100{#,#+1,1,2}100 |
Enormaxul | 200![200(2)200] |
Superior Enormaxul | 200![200(2)200,200] |
Bisuperior Enormaxul | 200![200(2)200,200,200] |
Enormabixul | 200![200(2)200(2)200] |
Enormatrixul | 200![200(2)200(2)200(2)200] |
Enormaquaxul | 200![200(2)200(2)200(2)200(2)200] |
Destruxul | 200![200(200)200] |
Great Destruxul | 200![200(200)200(200)200] |
Bigreat Destruxul | 200![200(200)200(200)200(200)200] |
Bird's number | \(f_{\vartheta(\Omega^{\omega})+2}(f_{\vartheta(\Omega^{\omega})+1}(f_{\vartheta(\Omega^{\omega})}(f_{\vartheta(\Omega^{\omega})}(7))))\) |
TREE[3] (lower bound) | |
Destrubixul | 200![200([200(200)200])200] |
Destrutrixul | 200![200([200([200(200)200])200])200] |
Destruquaxul | 200![200([200([200([200(200)200])200])200])200] |
Golapulus | 10100&10&10 |
Extremexul | 200![1(1)[2200,200,200,200]] |
Higher computable level
editSince the comparison (or even the well-definedness) of numbers of this level is unknown, the order of entries does not necessarily imply the order of the sizes. Also, several numbers are defined by an OCF, which is uncomputable, and are not known to be computable.
Name | Value |
---|---|
Extremebixul | 200![1(1)[2200,200,200,200,200]] |
Extremetrixul | 200![1(1)[2200,200,200,200,200,200]] |
Extremequaxul | 200![1(1)[2200,200,200,200,200,200,200]] |
Gigantixul | 200![1(1)[3200,200,200]] |
Gigantibixul | 200![1(1)[3200,200,200,200]] |
Gigantitrixul | 200!1(1)[3200,200,200,200,200]] |
Gigantiquaxul | 200![1(1)[3200,200,200,200,200,200]] |
Nucleabixul | 200![[200200]200] |
SCG(13) (lower bound) | |
段階配列数 | g100(100) |
Nucleatrixul | 200![[[200200]200]200] |
Nucleaquaxul | 200![[[[200200]200]200]200] |
BIGG | 200? |
Kumakuma 3 variables ψ number | F10100(10100) |
グラハム数ver ε.0.1.0 | G64(4) |
Loader's number | D5(99) |
Bashicu matrix number with respect to Bashicu matrix system version 2.3 | |
6 (N primitive) | |
Y sequence number | f2000(1) |
the least transcendental integer |
Uncomputable numbers
editThe term "uncomputable number" here refers to the numbers defined in terms of uncomputably fast-growing functions. This table contains large numbers which are known to be ill-defined. For more details on the ill-definedness, click the "More..." link below.
Name | Value | Ill-defined? |
---|---|---|
1919-th busy beaver | \(\Sigma(1919)\) | No |
Fish number 4 | F463(3) | No |
\(\Xi(10^6)\) | No | |
\(\Sigma_\infty(10^9)\) | No | |
Rayo's number | Rayo(10100) | Partially |
Fish number 7 | F763(10100) | Partially |
BIG FOOT | FOOT10(10100) | Yes |
Little Bigeddon | Yes | |
Sasquatch | Yes | |
Large Number Garden Number | \(f^{10}(10 \uparrow^{10} 10)\) | Not determined yet |
Notes
edit- ^ (S) means "in the short scale", and (L) means "in the long scale".