Bridge (dentistry)
ICD-9-CM23.42-23.43
MeSHD003829
A three unit porcelain fused to metal bridge (PFM) made by a dental technician.
A semi-precision attachment between teeth #3 and #4, with the mortise on #4. Note the lingual buttons extending, in the photo, upward on #2 (on the left) and downward on #4. These are used to grasp the crowns with a hemostat and make them easier to handle. They can also be used to aid in removal of the crown in case there is an excessive amount of retention during the try-in. They are cut off prior to final cementation.
The proximal surfaces of the pre-solder index abutment and pontic, showing lab-processed grooves for added retention of the GC pattern resin.
The abument and pontic joined with GC pattern resin in a solder index and reinforced with an old bur (lying horizontally across the occlusal surface of the copings).

A bridge is a fixed dental restoration (a fixed dental prosthesis) used to replace a missing tooth (or several teeth) by joining an artificial tooth permanently to adjacent teeth or dental implants.

Types of bridges may vary, depending upon how they are fabricated and the way they anchor to the adjacent teeth. Conventionally, bridges are made using the indirect method of restoration. However, bridges can be fabricated directly in the mouth using such materials as composite resin.

A bridge is fabricated by reducing the teeth on either side of the missing tooth or teeth by a preparation pattern determined by the location of the teeth and by the material from which the bridge is fabricated. In other words, the abutment teeth—including portions which are otherwise perfectly healthy—are "reduced" in size using a high-speed rotary tool to accommodate the material to be used to restore the size and shape of the original teeth in a correct alignment and contact with the opposing teeth. The dimensions of the bridge are defined by Ante's Law: "The root surface area of the abutment teeth has to equal or surpass that of the teeth being replaced with pontics".[1]

The materials used for the bridges include gold, porcelain fused to metal, or in the correct situation porcelain alone. The amount and type of reduction done to the abutment teeth varies slightly with the different materials used. The recipient of such a bridge must be careful to clean well under this prosthesis.

When restoring an edentulous space with a fixed partial denture that will crown the teeth adjacent to the space and bridge the gap with a pontic, or "dummy tooth", the restoration is referred to as a bridge. Besides all of the preceding information that concerns single-unit crowns, bridges possess a few additional considerations when it comes to case selection and treatment planning, tooth preparation and restoration fabrication.

Definitions edit

Fixed Bridge: A dental prosthesis that is definitively attached to natural teeth and replaces missing teeth [2]

Abutment: The tooth that supports and retains a dental prosthesis [3].

Pontic: The artificial tooth that replaces a missing natural tooth [3].

Retainer: The component attached to the abutment for retention of the prosthesis [3].

Unit: Pontics and abutment teeth are referred to as units. The total number of units in a bridge is equal to the number of pontics plus the number of abutment teeth [2].

Case selection and treatment planning edit

meera

Indications and contraindications for replacement of missing teeth edit

Treatment options edit

Treatment planning edit

Appropriate case selection is important when considering the provision of fixed bridgework. Patient expectations should be discussed and a thorough patient history should be obtained. Replacement of missing teeth with fixed bridgework may not always be indicated and both patient factors alongside restorative factors should be considered before deciding if providing fixed bridgework is appropriate. [4] The survival rate of bridgework can be affected by the span of bridge needed, the proposed position of the bridge, and the size, shape, number and condition of planned abutment teeth. [5] Furthermore, any active disease including caries or periodontal disease should be treated and followed by a period of maintenance to ensure patient compliance in maintaining appropriate oral hygiene. [6] [7]

Types of bridge edit

Conventional bridge edit

Conventional bridges are bridges that are done with extensive tooth reduction, obtain primary retention through retentively shaped preparation and secondary retention by luting cement. Unlike conventional bridges, Resin Retained Bridges require little to none tooth reduction which is much preferred due to the irreversible damage caused by drilling of teeth. The 3 designs of conventional bridges are fixed-fixed, cantilever (spring cantilever as a subclass), and fixed-movable. They are named depending on the way the pontic (false teeth) is attached to the retainer (indirect restoration on the abutment teeth/tooth).[8]

Fixed-fixed bridges edit

A fixed-fixed bridge refers to a pontic which is attached to the retainer at both sides with only one path of insertion. To achieve a single path of insertion, both abutment teeth must be prepared parallel to each other in the long axis and undercuts must be avoided.

Cantilever edit

A cantilever is a bridge where a pontic is only attached to a retainer only at one side. This type of bridge is rather similar to the resin bonded bridge as both have retainers on one side. This allows for conservation of tooth tissue as the other abutment tooth is spared.

Spring cantilever edit

Spring cantilever bridge are historical methods used when replacing an anterior tooth where the adjacent tooth are unrestored or there was anterior spacing. The anterior tooth replaced are usually attached to a molar teeth with a long spanning palatal connector.

Fixed-movable edit

A fixed-movable bridge are bridges with 2 attachable parts,

i) pontic which is firmly attached to a retainer at one end (major retainer)

ii) a movable joint at the other end (minor retainer)

A major advantage of this type of bridge is that the movable joint can accommodate the angulation differences in the abutment teeth in long axis which enables the path of insertion to be irrespective of the alignment of the abutment tooth. [8]

The Maryland bridge edit

An alternative to the tradition bridge is the Maryland bridge (also called an adhesive bridge). A Maryland bridge utilizes "wings" on the sides of the pontic which attach it to the abutment teeth, meaning that little or no damage is done to these teeth in the process. They are most often used in the front of the mouth and only if the abutment teeth are whole and sound (i.e., no crowns or major fillings). They are not considered as strong as conventional bridges, and unlike other tooth replacement options the Maryland bridge cannot be made translucent: their structure requires them to be completely opaque, making them look somewhat artificial in the mouth. [9]

Types of pontic edit

meera

Selection and evaluation of abutment teeth edit

emily

When a single tooth requires a crown, the prosthetic crown will in most instances rest upon whatever tooth structure was originally supporting the crown of the natural tooth. However, when restoring an edentulous (without teeth) area with a bridge, the bridge is almost always restoring more teeth than there are root structures to support, for instance a 5-tooth bridge supported on three abutment teeth.

To determine whether or not the abutment teeth can support a bridge without failure from lack of support from remaining root structures, the dentist employs Ante's rule—which states that the roots of abutment teeth must have a combined surface area in three dimensions that is more than that of the missing root structures of the teeth replaced with a bridge. When the situation yields a poor prognosis for proper support, double abutments may be required to properly conform to Ante's rule.

When a posterior tooth intended for an abutment tooth already possesses an intracoronal restoration, it might be better to make that bridge abutment into an inlay or an onlay, instead of a crown. However, this may concentrate the torque of the masticatory forces onto a less enveloping restoration, thus making the bridge more prone to failure.

In some situations, a cantilever bridge may be constructed to restore an edentulous area that only has adequate teeth for abutments either mesially or distally. This must also conform to Ante's rule but, because there are only abutments on one side, a modification to the rule must be applied, and these bridges possess double abutments in the majority of cases, and the occlusal surface area of the pontic is generally decreased by making the pontic smaller than the original tooth.

Clinical stages of bridge preparation edit

1. Tooth Preparation: This should be completed in reference to radiographs and study casts obtained during treatment planning. Tooth preparation should aim to conserve tooth tissue, ensure a parallel path of insertion, achieve clearance in the occlusion and ensuring well defined preparation margins[10]. If multiple abutment teeth are being used, the taper of each preparation on the abutment teeth must match. This is known as parallelism among the abutments and allows the bridge to fit onto the abutment teeth simultaneously.

When this is not possible, due to severe tipping of one of more of the abutments, for example, an attachment may be used so that one of the abutments may be cemented first, and the other abutment, attached to the pontic, can then be inserted.

2. Master impressions: An accurate impression should be made of the prepared teeth, along with an impression of the opposing arch. The master casts are used to construct the prothesis and provides accurate information about the occlusion to the laboratory. [10]

3. Occlusal registration: An occlusal registration is needed when providing extensive bridgework to allow the opposing casts to be related accurately. This may not be necessary if only a small number of teeth are to be restored. [10]

4. Temporary restoration: Temporary restorations should be fabricated if possible to protect and maintain the prepared teeth until placement of the final restoration. [10]

5. Try in: Confirm the clinical acceptability before cementing definitively. Assess the prosthesis on the master casts and identify the cause of any problems if present. A period of temporary cementation to assess clinical acceptability prior to definitive placement is sometimes used. [10]

6. Final placement: Once satisfied the prosthesis is clincially acceptable, cement and bond the bridgework definitvley. [10]

7. Review: Assess the bridgework and manage any post operative issues. [10]

Restoration fabrication edit

 
Full dental bridge being machined using WorkNC Dental CAD/CAM software.

As with single-unit crowns, bridges may be fabricated using the lost-wax technique if the restoration is to be either a multiple-unit FGC or PFM. Another fabrication technique is to use CAD/CAM software to machine the bridge.[11] As mentioned above, there are special considerations when preparing for a multiple-unit restoration in that the relationship between the two or more abutments must be maintained in the restoration. That is, there must be proper parallelism for the bridge to seat properly on the margins.

Sometimes, the bridge does not seat, but the dentist is unsure whether or not it is only because the spatial relationship of the two or more abutments is incorrect, or whether the abutments do not actually fit the preparations. The only way to determine this is to section the bridge and try in each abutment by itself. If they all fit individually, it must have simply been that the spatial relationship was incorrect, and the abutment that was sectioned from the pontic must now be reattached to the pontic according to the newly confirmed spatial relationship. This is accomplished with a solder index.

The proximal surfaces of the sectioned units (that is, the adjacent surfaces of the metal at the cut) are roughened and the relationship is preserved with a material that will hold on to both sides, such as GC pattern resin. With the two bridge abutments individually seated on their prepared abutment teeth, the resin is applied to the location of the sectioning to reestablish a proper spatial relationship between the two pieces. This can then be sent to the lab where the two pieces will be soldered and returned for another try-in or final cementation.

Bridge failures edit

Common reasons for bridge failures: edit

1. Poor oral hygiene: As with any fixed prosthesis including bridges, maintaining good oral hygiene to prevent plaque formation around the bridge is key. This will ensure prolonged performance.

2. Mechanical failures: These failures can occur due to loss of retention of the bridge due to improper cementation, construction or preparation [12]. Fracture of the metal coating or pontic can also lead to mechanical failures.

3. Biological failures: These can occur due to caries in the tooth (one of the commonest causes of crown and bridge failures[13]) or due to pulpal injury. Problems with abutment teeth such as tooth fracture, secondary caries or periodontal disease can cause discomfort and put pressure on surrounding soft tissues to also cause a biological failure of the bridge.

4. Aesthetic failures : These can occur at the time of cementation and include; colour mismatch, roughness of margins or improper tooth contour. Aesthetics failures can also occur over a period of time including through wear of teeth, gingival recession or drifting of teeth.

5. Problems with abutment teeth: Abutment teeth affected by secondary caries, vitality loss or periodontal disease can all lead to bridge failure.[12].

Oral manifestations of bridge failures edit

Bridge failures result in clinical complications and patients can present with:

i) Pain in the oral cavity

ii) Sensitivity, bleeding and inflammation of the gums [12]

iii) Foul breath and taste disturbances

Bridge failure management edit

Management of bridge failures depend upon the extent and type of failure and these can be prevented through forming a thorough treatment plan with the patient as well regularly emphasising the importance of maintaining a very good level of oral hygiene after the bridge has been fixed. The importance of cleaning underneath the pontic, through the use of interdental cleaning aids , should also be reinforced as plaque control around fixed restorations is more difficult. [13]

Management options include:

i) Keeping the bridge under observation/review

ii) Repairing, replacing or removing the fault [13]

See also edit

References edit

  1. ^ Shillingburg, Herbert T. Shillingburg. Fundamentals of Fixed Prosthodontics, 3rd Edition. Quintessence, 1997. 7.5
  2. ^ a b Mitchell, David A.; Mitchell, Laura; McCaul, Lorna (2014). Oxford Handbook of Clinical Dentistry (Sixth ed.). Oxford: Oxford University Press. p. 268.
  3. ^ a b c "The Glossary of Prosthodontic Terms: Ninth Edition". The Journal of Prosthetic Dentistry. 117 (5S). May 2017. doi:10.1016/j.prosdent.2016.12.001. Retrieved 10 October 2017.
  4. ^ Hemmings, Ken; Harrington, Zoe (April 2004). "Replacement of Missing Teeth with Fixed Prostheses". Dental Update. 31: 137-141. {{cite journal}}: |access-date= requires |url= (help)
  5. ^ Bishop, Karl; Addy, Liam; Knox, Jeremy (2007). "Modern Restorative Management of Patients with Congenitally Missing Teeth: 3. Conventional Restorative Options and Considerations". Dental Update. 34: 30-38. {{cite journal}}: |access-date= requires |url= (help)
  6. ^ Maglad, A. S; Wassell, R. W.; Barclay, S. C.; Walls, A. W. G (14 August 2010). "Risk management in clinical practice. Part 3. Crowns and bridges". British Dental Journal. 209: 115 - 122. doi:10.1038/sj.bdj.2010.675. {{cite journal}}: |access-date= requires |url= (help)
  7. ^ Briggs, Peter; Ray-Chaudhuri, Arijit; Shah, Kewal (2012). "Avoiding and Managing the Failure of Conventional Crowns and Bridges". Dental Update. 39: 78–84. {{cite journal}}: |access-date= requires |url= (help)
  8. ^ a b Bartlett D, Ricketts D. Advanced operative dentistry. 1st ed. Edinburgh: Elsevier; 2012.
  9. ^ Tom Nolan (28 July 2010). Watch Your Mouth - an Owner's Manual. Lulu.com. p. 21. ISBN 978-1-4461-4360-5.
  10. ^ a b c d e f g Ibbetson, Richard; Hemmings, Ken; Harris, Ian (May 2017). "Guidelines for Crowns, Fixed Bridges and Implants". Dental Update. 44 (5): 374–386. Retrieved 12 November 2017.
  11. ^ WorkNC Dental machining video, “Dental Bridge implant CNC Machining 5 axis
  12. ^ a b c Mitchell, Laura; Mitchell, David A.; McCaul, Lorna (2014). Oxford Handbook Clinical Dentistry (Sixth ed.). Oxford: Oxford University Press. p. 276.
  13. ^ a b c Briggs, Peter (March 2012). "Avoiding and managing the failure of conventional crowns and bridges". 39 (2): 78–80. {{cite journal}}: |access-date= requires |url= (help); Cite journal requires |journal= (help)

External links edit