Solar eclipse of July 20, 1925

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, July 20, 1925, with a magnitude of 0.9436. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from northern part of Northland Region and the whole Kermadec Islands in New Zealand on July 21 (Tuesday), and Rapa Iti in French Polynesia on July 20 (Monday).

Solar eclipse of July 20, 1925
Map
Type of eclipse
NatureAnnular
Gamma−0.7193
Magnitude0.9436
Maximum eclipse
Duration435 s (7 min 15 s)
Coordinates25°18′S 150°00′W / 25.3°S 150°W / -25.3; -150
Max. width of band300 km (190 mi)
Times (UTC)
Greatest eclipse21:48:42
References
Saros125 (49 of 73)
Catalog # (SE5000)9340
edit

Eclipses in 1925

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 125

edit

Inex

edit

Triad

edit

Solar eclipses of 1924–1928

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

The partial solar eclipses on March 5, 1924 and August 30, 1924 occur in the previous lunar year eclipse set, and the solar eclipses on May 19, 1928 and November 12, 1928 occur in the next lunar year eclipse set.

Solar eclipse series sets from 1924 to 1928
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
115 July 31, 1924
 
Partial
−1.4459 120 January 24, 1925
 
Total
0.8661
125 July 20, 1925
 
Annular
−0.7193 130
 
Totality in Sumatra, Indonesia
January 14, 1926
 
Total
0.1973
135 July 9, 1926
 
Annular
0.0538 140 January 3, 1927
 
Annular
−0.4956
145 June 29, 1927
 
Total
0.8163 150 December 24, 1927
 
Partial
−1.2416
155 June 17, 1928
 
Partial
1.5107

Saros 125

edit

This eclipse is a part of Saros series 125, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on February 4, 1060. It contains total eclipses from June 13, 1276 through July 16, 1330; hybrid eclipses on July 26, 1348 and August 7, 1366; and annular eclipses from August 17, 1384 through August 22, 1979. The series ends at member 73 as a partial eclipse on April 9, 2358. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 14 at 1 minutes, 11 seconds on June 25, 1294, and the longest duration of annularity was produced by member 48 at 7 minutes, 23 seconds on July 10, 1907. All eclipses in this series occur at the Moon’s ascending node of orbit.[2]

Series members 43–64 occur between 1801 and 2200:
43 44 45
 
May 16, 1817
 
May 27, 1835
 
June 6, 1853
46 47 48
 
June 18, 1871
 
June 28, 1889
 
July 10, 1907
49 50 51
 
July 20, 1925
 
August 1, 1943
 
August 11, 1961
52 53 54
 
August 22, 1979
 
September 2, 1997
 
September 13, 2015
55 56 57
 
September 23, 2033
 
October 4, 2051
 
October 15, 2069
58 59 60
 
October 26, 2087
 
November 6, 2105
 
November 18, 2123
61 62 63
 
November 28, 2141
 
December 9, 2159
 
December 20, 2177
64
 
December 31, 2195

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
June 26, 1805
(Saros 114)
 
May 27, 1816
(Saros 115)
 
April 26, 1827
(Saros 116)
 
March 25, 1838
(Saros 117)
 
February 23, 1849
(Saros 118)
 
January 23, 1860
(Saros 119)
 
December 22, 1870
(Saros 120)
 
November 21, 1881
(Saros 121)
 
October 20, 1892
(Saros 122)
 
September 21, 1903
(Saros 123)
 
August 21, 1914
(Saros 124)
 
July 20, 1925
(Saros 125)
 
June 19, 1936
(Saros 126)
 
May 20, 1947
(Saros 127)
 
April 19, 1958
(Saros 128)
 
March 18, 1969
(Saros 129)
 
February 16, 1980
(Saros 130)
 
January 15, 1991
(Saros 131)
 
December 14, 2001
(Saros 132)
 
November 13, 2012
(Saros 133)
 
October 14, 2023
(Saros 134)
 
September 12, 2034
(Saros 135)
 
August 12, 2045
(Saros 136)
 
July 12, 2056
(Saros 137)
 
June 11, 2067
(Saros 138)
 
May 11, 2078
(Saros 139)
 
April 10, 2089
(Saros 140)
 
March 10, 2100
(Saros 141)
 
February 8, 2111
(Saros 142)
 
January 8, 2122
(Saros 143)
 
December 7, 2132
(Saros 144)
 
November 7, 2143
(Saros 145)
 
October 7, 2154
(Saros 146)
 
September 5, 2165
(Saros 147)
 
August 4, 2176
(Saros 148)
 
July 6, 2187
(Saros 149)
 
June 4, 2198
(Saros 150)

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 13, 1898 and July 20, 1982
December 13–14 October 1–2 July 20–21 May 9 February 24–25
111 113 115 117 119
 
December 13, 1898
 
July 21, 1906
 
May 9, 1910
 
February 25, 1914
121 123 125 127 129
 
December 14, 1917
 
October 1, 1921
 
July 20, 1925
 
May 9, 1929
 
February 24, 1933
131 133 135 137 139
 
December 13, 1936
 
October 1, 1940
 
July 20, 1944
 
May 9, 1948
 
February 25, 1952
141 143 145 147 149
 
December 14, 1955
 
October 2, 1959
 
July 20, 1963
 
May 9, 1967
 
February 25, 1971
151 153 155
 
December 13, 1974
 
October 2, 1978
 
July 20, 1982

Notes

edit
  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 125". eclipse.gsfc.nasa.gov.

References

edit