Open main menu

In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representation theory of semisimple Lie algebras. Since Lie groups (and some analogues such as algebraic groups) and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory (such as singularity theory). Finally, root systems are important for their own sake, as in spectral graph theory.[1]

Contents

Definitions and examplesEdit

 
The six vectors of the root system A2.

As a first example, consider the six vectors in 2-dimensional Euclidean space, R2, as shown in the image at the right; call them roots. These vectors span the whole space. If you consider the line perpendicular to any root, say β, then the reflection of R2 in that line sends any other root, say α, to another root. Moreover, the root to which it is sent equals α + nβ, where n is an integer (in this case, n equals 1). These six vectors satisfy the following definition, and therefore they form a root system; this one is known as A2.

DefinitionEdit

Let E be a finite-dimensional Euclidean vector space, with the standard Euclidean inner product denoted by  . A root system   in E is a finite set of non-zero vectors (called roots) that satisfy the following conditions:[2][3]

  1. The roots span E.
  2. The only scalar multiples of a root   that belong to   are   itself and  .
  3. For every root  , the set   is closed under reflection through the hyperplane perpendicular to  .
  4. (Integrality) If   and   are roots in  , then the projection of   onto the line through   is an integer or half-integer multiple of  .

An equivalent way of writing conditions 3 and 4 is as follows:

  1. For any two roots  , the set   contains the element  
  2. For any two roots  , the number   is an integer.

Some authors only include conditions 1–3 in the definition of a root system.[4] In this context, a root system that also satisfies the integrality condition is known as a crystallographic root system.[5] Other authors omit condition 2; then they call root systems satisfying condition 2 reduced.[6] In this article, all root systems are assumed to be reduced and crystallographic.

In view of property 3, the integrality condition is equivalent to stating that β and its reflection σα(β) differ by an integer multiple of α. Note that the operator

 

defined by property 4 is not an inner product. It is not necessarily symmetric and is linear only in the first argument.

Rank-2 root systems
   
Root system  
   
Root system  
 
   
Root system  
   
Root system  
   
   
Root system  
   
Root system  
   

The rank of a root system Φ is the dimension of E. Two root systems may be combined by regarding the Euclidean spaces they span as mutually orthogonal subspaces of a common Euclidean space. A root system which does not arise from such a combination, such as the systems A2, B2, and G2 pictured to the right, is said to be irreducible.

Two root systems (E1, Φ1) and (E2, Φ2) are called isomorphic if there is an invertible linear transformation E1 → E2 which sends Φ1 to Φ2 such that for each pair of roots, the number   is preserved.[7]

The root lattice of a root system Φ is the Z-submodule of E generated by Φ. It is a lattice in E.

Weyl groupEdit

 
The Weyl group of the   root system is the symmetry group of an equilateral triangle

The group of isometries of E generated by reflections through hyperplanes associated to the roots of Φ is called the Weyl group of Φ. As it acts faithfully on the finite set Φ, the Weyl group is always finite. In the   case, the "hyperplanes" are the lines perpendicular to the roots, indicated by dashed lines in the figure. The Weyl group is the symmetry group of an equilateral triangle, which has six elements. In this case, the Weyl group is not the full symmetry group of the root system (e.g., a 60-degree rotation is a symmetry of the root system but not an element of the Weyl group).

Rank two examplesEdit

There is only one root system of rank 1, consisting of two nonzero vectors  . This root system is called  .

In rank 2 there are four possibilities, corresponding to  , where  .[8] Note that a root system is not determined by the lattice that it generates:   and   both generate a square lattice while   and   generate a hexagonal lattice, only two of the five possible types of lattices in two dimensions.

Whenever Φ is a root system in E, and S is a subspace of E spanned by Ψ = Φ ∩ S, then Ψ is a root system in S. Thus, the exhaustive list of four root systems of rank 2 shows the geometric possibilities for any two roots chosen from a root system of arbitrary rank. In particular, two such roots must meet at an angle of 0, 30, 45, 60, 90, 120, 135, 150, or 180 degrees.

Root systems arising from semisimple Lie algebrasEdit

If   is a complex semisimple Lie algebra and   is a Cartan subalgebra, we can construct a root system as follows. We say that   is a root of   relative to   if   and there exists some   such that

 

for all  . One can show[9] that there is an inner product for which the set of roots forms a root system. The root system of   is a fundamental tool for analyzing the structure of   and classifying its representations. (See the section below on Root systems and Lie theory.)

HistoryEdit

The concept of a root system was originally introduced by Wilhelm Killing around 1889 (in German, Wurzelsystem[10]).[11] He used them in his attempt to classify all simple Lie algebras over the field of complex numbers. Killing originally made a mistake in the classification, listing two exceptional rank 4 root systems, when in fact there is only one, now known as F4. Cartan later corrected this mistake, by showing Killing's two root systems were isomorphic.[12]

Killing investigated the structure of a Lie algebra  , by considering (what is now called) a Cartan subalgebra  . Then he studied the roots of the characteristic polynomial  , where  . Here a root is considered as a function of  , or indeed as an element of the dual vector space  . This set of roots form a root system inside  , as defined above, where the inner product is the Killing form.[13]

Elementary consequences of the root system axiomsEdit

 
The integrality condition for   is fulfilled only for β on one of the vertical lines, while the integrality condition for   is fulfilled only for β on one of the red circles. Any β perpendicular to α (on the Y axis) trivially fulfills both with 0, but does not define an irreducible root system.
Modulo reflection, for a given α there are only 5 nontrivial possibilities for β, and 3 possible angles between α and β in a set of simple roots. Subscript letters correspond to the series of root systems for which the given β can serve as the first root and α as the second root (or in F4 as the middle 2 roots).


The cosine of the angle between two roots is constrained to be a half-integral multiple of a square root of an integer. This is because   and   are both integers, by assumption, and

 

Since  , the only possible values for   are   and  , corresponding to angles of 90°, 60° or 120°, 45° or 135°, 30° or 150°, and 0° or 180°. Condition 2 says that no scalar multiples of α other than 1 and -1 can be roots, so 0 or 180°, which would correspond to 2α or −2α, are out. The diagram at right shows that an angle of 60° or 120° corresponds to roots of equal length, while an angle of 45° or 135° corresponds to a length ratio of   and an angle of 30° or 150° corresponds to a length ratio of  .

In summary, here are the only possibilities for each pair of roots.[14]

  • Angle of 90 degrees; in that case, the length ratio is unrestricted.
  • Angle of 60 or 120 degrees, with a length ratio of 1.
  • Angle of 45 or 135 degrees, with a length ratio of  .
  • Angle of 30 or 150 degrees, with a length ratio of  .

Positive roots and simple rootsEdit

 
The labeled roots are a set of positive roots for the   root system, with   and   being the simple roots

Given a root system   we can always choose (in many ways) a set of positive roots. This is a subset   of   such that

  • For each root   exactly one of the roots  , –  is contained in  .
  • For any two distinct   such that   is a root,  .

If a set of positive roots   is chosen, elements of   are called negative roots. A set of positive roots may be constructed by choosing a hyperplane   not containing any root and setting   to be all the roots lying on a fixed side of  . Furthermore, every set of positive roots arises in this way.[15]

An element of   is called a simple root if it cannot be written as the sum of two elements of  . (The set of simple roots is also referred to as a base for  .) The set   of simple roots is a basis of   with the following additional special properties:[16]

  • Every root   is linear combination of elements of   with integer coefficients.
  • For each  , the coefficients in the previous point are either all non-negative or all non-positive.

For each root system   there are many different choices of the set of positive roots—or, equivalently, of the simple roots—but any two sets of positive roots differ by the action of the Weyl group.[17]

Dual root system and corootsEdit

If Φ is a root system in E, the coroot α of a root α is defined by

 

The set of coroots also forms a root system Φ in E, called the dual root system (or sometimes inverse root system). By definition, α∨ ∨ = α, so that Φ is the dual root system of Φ. The lattice in E spanned by Φ is called the coroot lattice. Both Φ and Φ have the same Weyl group W and, for s in W,

 

If Δ is a set of simple roots for Φ, then Δ is a set of simple roots for Φ.[18]

In the classification described below, the root systems of type   and   along with the exceptional root systems   are all self-dual, meaning that the dual root system is isomorphic to the original root system. By contrast, the   and   root systems are dual to one another, but not isomorphic (except when  ).

Classification of root systems by Dynkin diagramsEdit

 
Pictures of all the connected Dynkin diagrams

A root system is irreducible if it can not be partitioned into the union of two proper subsets  , such that   for all   and   .

Irreducible root systems correspond to certain graphs, the Dynkin diagrams named after Eugene Dynkin. The classification of these graphs is a simple matter of combinatorics, and induces a classification of irreducible root systems.

Constructing the Dynkin diagramEdit

Given a root system, select a set Δ of simple roots as in the preceding section. The vertices of the associated Dynkin diagram correspond to the roots in Δ. Edges are drawn between vectors as follows, according to the angles. (Note that the angle between simple roots is always at least 90 degrees.)

  • No edge if the vectors are orthogonal,
  • An undirected single edge if they make an angle of 120 degrees,
  • A directed double edge if they make an angle of 135 degrees, and
  • A directed triple edge if they make an angle of 150 degrees.

The term "directed edge" means that double and triple edges are marked with an arrow pointing toward the shorter vector. (Thinking of the arrow as a "greater than" sign makes it clear which way the arrow is supposed to point.)

Note that by the elementary properties of roots noted above, the rules for creating the Dynkin diagram can also be described as follows. No edge if the roots are orthogonal; for nonorthogonal roots, a single, double, or triple edge according to whether the length ratio of the longer to shorter is 1,  ,  . In the case of the   root system for example, there are two simple roots at an angle of 150 degrees (with a length ratio of  ). Thus, the Dynkin diagram has two vertices joined by a triple edge, with an arrow pointing from the vertex associated to the longer root to the other vertex. (In this case, the arrow is a bit redundant, since the diagram is equivalent whichever way the arrow goes.)

Classifying root systemsEdit

Although a given root system has more than one possible set of simple roots, the Weyl group acts transitively on such choices.[19] Consequently, the Dynkin diagram is independent of the choice of simple roots; it is determined by the root system itself. Conversely, given two root systems with the same Dynkin diagram, one can match up roots, starting with the roots in the base, and show that the systems are in fact the same.[20]

Thus the problem of classifying root systems reduces to the problem of classifying possible Dynkin diagrams. A root systems is irreducible if and only if its Dynkin diagrams is connected.[21] The possible connected diagrams are as indicated in the figure. The subscripts indicate the number of vertices in the diagram (and hence the rank of the corresponding irreducible root system).

If   is a root system, the Dynkin diagram for the dual root system   is obtained from the Dynkin diagram of   by keeping all the same vertices and edges, but reversing the directions of all arrows. Thus, we can see from their Dynkin diagrams that   and   are dual to each other.

Weyl chambers and the Weyl groupEdit

 
The shaded region is the fundamental Weyl chamber for the base  

If   is a root system, we may consider the hyperplane perpendicular to each root  . Recall that   denotes the reflection about the hyperplane and that the Weyl group is the group of transformations of   generated by all the  's. The complement of the set of hyperplanes is disconnected, and each connected component is called a Weyl chamber. If we have fixed a particular set Δ of simple roots, we may define the fundamental Weyl chamber associated to Δ as the set of points   such that   for all  .

Since the reflections   preserve  , they also preserve the set of hyperplanes perpendicular to the roots. Thus, each Weyl group element permutes the Weyl chambers.

The figure illustrates the case of the   root system. The "hyperplanes" (in this case, one dimensional) orthogonal to the roots are indicated by dashed lines. The six 60-degree sectors are the Weyl chambers and the shaded region is the fundamental Weyl chamber associated to the indicated base.

A basic general theorem about Weyl chambers is this:[22]

Theorem: The Weyl group acts freely and transitively on the Weyl chambers. Thus, the order of the Weyl group is equal to the number of Weyl chambers.

In the   case, for example, the Weyl group has six elements and there are six Weyl chambers.

A related result is this one:[23]

Theorem: Fix a Weyl chamber  . Then for all  , the Weyl-orbit of   contains exactly one point in the closure   of  .

Root systems and Lie theoryEdit

Irreducible root systems classify a number of related objects in Lie theory, notably the following:

In each case, the roots are non-zero weights of the adjoint representation.

We now give a brief indication of how irreducible root systems classify simple Lie algebras over  , following the arguments in Humphreys.[24] A preliminary result says that a semisimple Lie algebra is simple if and only if the associated root system is irreducible.[25] We thus restrict attention to irreducible root systems and simple Lie algebras.

  • First, we must establish that for each simple algebra   there is only one root system. This assertion follows from the result that the Cartan subalgebra of   is unique up to automorphism,[26] from which it follows that any two Cartan subalgebras give isomorphic root systems.
  • Next, we need to show that for each irreducible root system, there can be at most one Lie algebra, that is, that the root system determines the Lie algebra up to isomorphism.[27]
  • Finally, we must show that for each irreducible root system, there is an associated simple Lie algebra. This claim is obvious for the root systems of type A, B, C, and D, for which the associated Lie algebras are the classical algebras. It is then possible to analyze the exceptional algebras in a case-by-case fashion. Alternatively, one can develop a systematic procedure for building a Lie algebra from a root system, using Serre's relations.[28]

For connections between the exceptional root systems and their Lie groups and Lie algebras see E8, E7, E6, F4, and G2.

Properties of the irreducible root systemsEdit

      I D  
An (n ≥ 1) n(n + 1)     n + 1 (n + 1)!
Bn (n ≥ 2) 2n2 2n 2 2 2n n!
Cn (n ≥ 3) 2n2 2n(n − 1) 2n−1 2 2n n!
Dn (n ≥ 4) 2n(n − 1)     4 2n − 1 n!
E6 72     3 51840
E7 126     2 2903040
E8 240     1 696729600
F4 48 24 4 1 1152
G2 12 6 3 1 12

Irreducible root systems are named according to their corresponding connected Dynkin diagrams. There are four infinite families (An, Bn, Cn, and Dn, called the classical root systems) and five exceptional cases (the exceptional root systems). The subscript indicates the rank of the root system.

In an irreducible root system there can be at most two values for the length (αα)1/2, corresponding to short and long roots. If all roots have the same length they are taken to be long by definition and the root system is said to be simply laced; this occurs in the cases A, D and E. Any two roots of the same length lie in the same orbit of the Weyl group. In the non-simply laced cases B, C, G and F, the root lattice is spanned by the short roots and the long roots span a sublattice, invariant under the Weyl group, equal to r2/2 times the coroot lattice, where r is the length of a long root.

In the adjacent table, |Φ<| denotes the number of short roots, I denotes the index in the root lattice of the sublattice generated by long roots, D denotes the determinant of the Cartan matrix, and |W| denotes the order of the Weyl group.

Explicit construction of the irreducible root systemsEdit

AnEdit

 
Model of the   root system in the Zometool system.
Simple roots in A3
e1 e2 e3 e4
α1 1 −1 0 0
α2 0 1 −1 0
α3 0 0 1 −1
     

Let E be the subspace of Rn+1 for which the coordinates sum to 0, and let Φ be the set of vectors in E of length 2 and which are integer vectors, i.e. have integer coordinates in Rn+1. Such a vector must have all but two coordinates equal to 0, one coordinate equal to 1, and one equal to –1, so there are n2 + n roots in all. One choice of simple roots expressed in the standard basis is: αi = eiei+1, for 1 ≤ i ≤ n.

The reflection σi through the hyperplane perpendicular to αi is the same as permutation of the adjacent i-th and (i + 1)-th coordinates. Such transpositions generate the full permutation group. For adjacent simple roots, σi(αi+1) = αi+1 + αiσi+1(αi) = αi + αi+1, that is, reflection is equivalent to adding a multiple of 1; but reflection of a simple root perpendicular to a nonadjacent simple root leaves it unchanged, differing by a multiple of 0.

The An root lattice - that is, the lattice generated by the An roots - is most easily described as the set of integer vectors in Rn+1 whose components sum to zero.

The A3 root lattice is known to crystallographers as the face-centered cubic (fcc) (or cubic close packed) lattice.[29]

The A3 root system (as well as the other rank-three root systems) may be modeled in the Zometool Construction set.[30]

BnEdit

Simple roots in B4
e1 e2 e3 e4
α1  1 -1 0 0
α2 0   1 -1 0
α3 0 0  1 -1
α4 0 0 0  1
       

Let E = Rn, and let Φ consist of all integer vectors in E of length 1 or 2. The total number of roots is 2n2. One choice of simple roots is: αi = eiei+1, for 1 ≤ i ≤ n – 1 (the above choice of simple roots for An-1), and the shorter root αn = en.

The reflection σn through the hyperplane perpendicular to the short root αn is of course simply negation of the nth coordinate. For the long simple root αn-1, σn-1(αn) = αn + αn-1, but for reflection perpendicular to the short root, σn(αn-1) = αn-1 + 2αn, a difference by a multiple of 2 instead of 1.

The Bn root lattice - that is, the lattice generated by the Bn roots - consists of all integer vectors.

B1 is isomorphic to A1 via scaling by 2, and is therefore not a distinct root system.

CnEdit

 
Root system B3, C3, and A3=D3 as points within a cube and octahedron
Simple roots in C4
e1 e2 e3 e4
α1  1 -1 0 0
α2 0  1 -1 0
α3 0 0  1 -1
α4 0 0 0  2
       

Let E = Rn, and let Φ consist of all integer vectors in E of length 2 together with all vectors of the form 2λ, where λ is an integer vector of length 1. The total number of roots is 2n2. One choice of simple roots is: αi = eiei+1, for 1 ≤ i ≤ n – 1 (the above choice of simple roots for An-1), and the longer root αn = 2en. The reflection σn(αn-1) = αn-1 + αn, but σn-1(αn) = αn + 2αn-1.

The Cn root lattice - that is, the lattice generated by the Cn roots - consists of all integer vectors whose components sum to an even integer.

C2 is isomorphic to B2 via scaling by 2 and a 45 degree rotation, and is therefore not a distinct root system.

DnEdit

Simple roots in D4
e1 e2 e3 e4
α1  1 -1 0 0
α2 0  1 -1 0
α3 0 0  1 -1
α4 0 0  1  1
 

Let E = Rn, and let Φ consist of all integer vectors in E of length 2. The total number of roots is 2n(n – 1). One choice of simple roots is: αi = eiei+1, for 1 ≤ i < n (the above choice of simple roots for An-1) plus αn = en + en-1.

Reflection through the hyperplane perpendicular to αn is the same as transposing and negating the adjacent n-th and (n – 1)-th coordinates. Any simple root and its reflection perpendicular to another simple root differ by a multiple of 0 or 1 of the second root, not by any greater multiple.

The Dn root lattice - that is, the lattice generated by the Dn roots - consists of all integer vectors whose components sum to an even integer. This is the same as the Cn root lattice.

The Dn roots are expressed as the vertices of a rectified n-orthoplex, Coxeter-Dynkin diagram:     ...    . The 2n(n-1) vertices exist in the middle of the edges of the n-orthoplex.

D3 coincides with A3, and is therefore not a distinct root system. The 12 D3 root vectors are expressed as the vertices of    , a lower symmetry construction of the cuboctahedron.

D4 has additional symmetry called triality. The 24 D4 root vectors are expressed as the vertices of      , a lower symmetry construction of the 24-cell.

E6, E7, E8Edit

 
72 vertices of 122 represent the root vectors of E6
(Green nodes are doubled in this E6 Coxeter plane projection)
 
126 vertices of 231 represent the root vectors of E7
 
240 vertices of 421 represent the root vectors of E8
     
  • The E8 root system is any set of vectors in R8 that is congruent to the following set:
D8 ∪ { ½( ∑i=18 εiei) : εi = ±1, ε1•••ε8 = +1}.

The root system has 240 roots. The set just listed is the set of vectors of length 2 in the E8 root lattice, also known simply as the E8 lattice or Γ8. This is the set of points in R8 such that:

  1. all the coordinates are integers or all the coordinates are half-integers (a mixture of integers and half-integers is not allowed), and
  2. the sum of the eight coordinates is an even integer.

Thus,

E8 = {αZ8 ∪ (Z+½)8 : |α|2 = ∑αi2 = 2, ∑αi ∈ 2Z}.
  • The root system E7 is the set of vectors in E8 that are perpendicular to a fixed root in E8. The root system E7 has 126 roots.
  • The root system E6 is not the set of vectors in E7 that are perpendicular to a fixed root in E7, indeed, one obtains D6 that way. However, E6 is the subsystem of E8 perpendicular to two suitably chosen roots of E8. The root system E6 has 72 roots.
Simple roots in E8 even coordinates:
1 -1 0 0 0 0 0 0
0 1 -1 0 0 0 0 0
0 0 1 -1 0 0 0 0
0 0 0 1 -1 0 0 0
0 0 0 0 1 -1 0 0
0 0 0 0 0 1 -1 0
0 0 0 0 0 1 1 0

An alternative description of the E8 lattice which is sometimes convenient is as the set Γ'8 of all points in R8 such that

  • all the coordinates are integers and the sum of the coordinates is even, or
  • all the coordinates are half-integers and the sum of the coordinates is odd.

The lattices Γ8 and Γ'8 are isomorphic; one may pass from one to the other by changing the signs of any odd number of coordinates. The lattice Γ8 is sometimes called the even coordinate system for E8 while the lattice Γ'8 is called the odd coordinate system.

One choice of simple roots for E8 in the even coordinate system with rows ordered by node order in the alternate (non-canonical) Dynkin diagrams (above) is:

αi = eiei+1, for 1 ≤ i ≤ 6, and
α7 = e7 + e6

(the above choice of simple roots for D7) along with

α8 = β0 =   = (-½,-½,-½,-½,-½,-½,-½,-½).
Simple roots in E8: odd coordinates
1 -1 0 0 0 0 0 0
0 1 -1 0 0 0 0 0
0 0 1 -1 0 0 0 0
0 0 0 1 -1 0 0 0
0 0 0 0 1 -1 0 0
0 0 0 0 0 1 -1 0
0 0 0 0 0 0 1 -1
 ½  ½  ½

One choice of simple roots for E8 in the odd coordinate system with rows ordered by node order in alternate (non-canonical) Dynkin diagrams (above) is:

αi = eiei+1, for 1 ≤ i ≤ 7

(the above choice of simple roots for A7) along with

α8 = β5, where
βj =  .

(Using β3 would give an isomorphic result. Using β1,7 or β2,6 would simply give A8 or D8. As for β4, its coordinates sum to 0, and the same is true for α1...7, so they span only the 7-dimensional subspace for which the coordinates sum to 0; in fact –2β4 has coordinates (1,2,3,4,3,2,1) in the basis (αi).)

Since perpendicularity to α1 means that the first two coordinates are equal, E7 is then the subset of E8 where the first two coordinates are equal, and similarly E6 is the subset of E8 where the first three coordinates are equal. This facilitates explicit definitions of E7 and E6 as:

E7 = {αZ7 ∪ (Z+½)7 : αi2 + α12 = 2, ∑αi + α1 ∈ 2Z},
E6 = {αZ6 ∪ (Z+½)6 : αi2 + 2α12 = 2, ∑αi + 2α1 ∈ 2Z}

Note that deleting α1 and then α2 gives sets of simple roots for E7 and E6. However, these sets of simple roots are in different E7 and E6 subspaces of E8 than the ones written above, since they are not orthogonal to α1 or α2.

F4Edit

Simple roots in F4
e1 e2 e3 e4
α1 1 -1 0 0
α2 0 1 -1 0
α3 0 0 1 0
α4
       
 
48-root vectors of F4, defined by vertices of the 24-cell and its dual, viewed in the Coxeter plane

For F4, let E = R4, and let Φ denote the set of vectors α of length 1 or 2 such that the coordinates of 2α are all integers and are either all even or all odd. There are 48 roots in this system. One choice of simple roots is: the choice of simple roots given above for B3, plus α4 = –  .

The F4 root lattice - that is, the lattice generated by the F4 root system - is the set of points in R4 such that either all the coordinates are integers or all the coordinates are half-integers (a mixture of integers and half-integers is not allowed). This lattice is isomorphic to the lattice of Hurwitz quaternions.

G2Edit

Simple roots in G2
e1 e2 e3
α1 1  -1   0
β -1 2 -1
   

The root system G2 has 12 roots, which form the vertices of a hexagram. See the picture above.

One choice of simple roots is: (α1, β = α2α1) where αi = eiei+1 for i = 1, 2 is the above choice of simple roots for A2.

The G2 root lattice - that is, the lattice generated by the G2 roots - is the same as the A2 root lattice.

The root posetEdit

 
Hasse diagram of E6 root poset with edge labels identifying added simple root position

The set of positive roots is naturally ordered by saying that   if and only if   is a nonnegative linear combination of simple roots. This poset is graded by  , and has many remarkable combinatorial properties, one of them being that one can determine the degrees of the fundamental invariants of the corresponding Weyl group from this poset.[31] The Hasse graph is a visualization of the ordering of the root poset.

See alsoEdit

NotesEdit

  1. ^ "Graphs with least eigenvalue −2; a historical survey and recent developments in maximal exceptional graphs". Linear Algebra and its Applications. 356: 189–210. doi:10.1016/S0024-3795(02)00377-4.
  2. ^ Bourbaki, Ch.VI, Section 1
  3. ^ Humphreys (1972), p.42
  4. ^ Humphreys (1992), p.6
  5. ^ Humphreys (1992), p.39
  6. ^ Humphreys (1992), p.41
  7. ^ Humphreys (1972), p.43
  8. ^ Hall 2015 Proposition 8.8
  9. ^ Hall 2015 Section 7.5
  10. ^ Killing (1889)
  11. ^ Bourbaki (1998), p.270
  12. ^ Coleman, p.34
  13. ^ Bourbaki (1998), p.270
  14. ^ Hall 2015 Proposition 8.6
  15. ^ Hall 2015 Theorems 8.16 and 8.17
  16. ^ Hall 2015 Theorem 8.16
  17. ^ Hall 2015 Proposition 8.28
  18. ^ Hall 2015 Proposition 8.18
  19. ^ This follows from Hall 2015 Proposition 8.23
  20. ^ Hall 2015 Proposition 8.32
  21. ^ Hall 2015 Proposition 8.23
  22. ^ Hall 2015 Propositions 8.23 and 8.27
  23. ^ Hall 2015 Proposition 8.29
  24. ^ See various parts of Chapters III, IV, and V of Humphreys 1972, culminating in Section 19 in Chapter V
  25. ^ Hall 2015, Theorem 7.35
  26. ^ Humphreys 1972, Section 16
  27. ^ Humphreys 1972 Part (b) of Theorem 18.4
  28. ^ Humphreys 1972 Section 18.3 and Theorem 18.4
  29. ^ Conway, John Horton; Sloane, Neil James Alexander; & Bannai, Eiichi. Sphere packings, lattices, and groups. Springer, 1999, Section 6.3.
  30. ^ Hall 2015 Section 8.9
  31. ^ Humphreys (1992), Theorem 3.20

ReferencesEdit

Further readingEdit

  • Dynkin, E. B. The structure of semi-simple algebras. (in Russian) Uspehi Matem. Nauk (N.S.) 2, (1947). no. 4(20), 59–127.

External linksEdit