Open main menu

Wikipedia β

Qi (pronounced // CHEE;[1] IPA: /tʃiː/, from the Chinese word Qi, "energy flow") is an open interface standard that defines wireless power transfer using inductive charging over distances of up to 4  cm (1.6 inches), and is developed by the Wireless Power Consortium.[2] The system uses a charging pad and a compatible device, which is placed on top of the pad, charging via resonant inductive coupling.[3]

Qi
The Qi logo, which consists of a round-esque, lowercase "q" with a semicircle at the right parallel to its stem and a circle on top.
The Qi logo, consisting of a lowercase "q" with a semicircle-esque "i" with a circle on top
Status Active
Year started 2008; 9 years ago (2008)
First published 2008; 9 years ago (2008)
Latest version 1.2.2
Organization Wireless Power Consortium
Committee Wireless Power Consortium
Domain Inductive charging
License Open standard
Copyright Logo and trademark

Mobile device manufacturers that are working with the standard include Apple, Asus, HTC, Huawei, LG Electronics, Motorola Mobility, Nokia, Samsung, BlackBerry, and Sony.[4] According to a list of Qi devices by Qi Wireless Charging,[5] as of 14 July 2016 there were over 140 smartphones, tablets and other devices which can be charged cordlessly with Qi.

Contents

Features and specificationsEdit

Under the Qi specification, "low power" for inductive transfers denotes power deliveries below 5 W. Systems that fall within the scope of this standard are those that use inductive coupling between two planar coils to transfer power from the power transmitter to the power receiver. The distance between the two coils is typically 5 mm. It is possible to extend that range to at least 40 mm.[2]

Regulation of the output voltage is provided by a digital control loop where the power receiver communicates with the power transmitter and requests more or less power. Communication is unidirectional from the power receiver to the power transmitter via backscatter modulation. In backscatter modulation, the power-receiver coil is loaded, changing the current draw at the power transmitter. These current changes are monitored and demodulated into the information required for the two devices to work together.[3]

 
The bottom side of an LG WCP-300 Qi charging pad
 
Opened Nokia DT-900 Qi charger

The WPC published the Qi low-power specification in August 2009.[6] The Qi specification can be downloaded freely after registration.[7] In 2011, the Wireless Power Consortium began to extend the Qi specification to medium power.[8][9] The low-power specification delivers up to 5 W (typically used to charge mobile devices), and the medium-power specification will deliver up to 120 W (typically used to power displays and laptops). In 2015, WPC demonstrated a high-power specification that will deliver up to 1 kW, allowing the powering of kitchen utensils among other high-power utilities.[7]

AdoptionEdit

Nokia first adopted Qi in its Lumia 920 phone in 2012,[10] and the Google/LG Nexus 4 followed later that year. Toyota began offering a Qi charging cradle as a factory option on its 2013 Avalon Limited,[11] with Ssangyong the second car manufacturer to offer a Qi option, also in 2013.[12]

In 2015, a survey found that 76% of people surveyed in the United States, United Kingdom, and China were aware of wireless charging (an increase from 36% the previous year), and 20% were using it — however only 16% of those using it were using it daily.[13] Furniture retailer IKEA introduced lamps and tables with integrated wireless chargers for sale in 2015,[14] and the Lexus NX gained an optional Qi charging pad in the center console.[15] An estimated 120 million wirelessly charging phones were sold that year,[13] notably the Samsung Galaxy S6, which supported both Qi and the competing Power Matters Alliance standards.[16] However, the existence of several competing wireless charging standards was still seen as a barrier to adoption.[16]

By early 2017, Qi had displaced the competing standards, with no new products featuring Rezence.[17] On September 12, 2017, Apple Inc. announced that their new smartphones, the iPhone 8 and the iPhone X, will support the Qi standard. Apple also announced plans to expand the standard with a new protocol called AirPower.

As the Qi standard gains popularity, it is expected that Qi Hotspots will begin to arise in places such as coffee shops, airports, sports arenas, etc.[6] The Coffee Bean and Tea Leaf, a major US coffee chain, will install inductive charging stations at selected major metropolitan cities,[18] as well as Virgin Atlantic Airways, for United Kingdom's London Heathrow Airport[19] and New York City's John F. Kennedy International Airport.[20]

System overviewEdit

Devices that operate with the Qi standard rely on electromagnetic induction between planar coils. A Qi system consists of two types of devices – the Base Station, which is connected to a power source and provides inductive power, and Mobile Devices, which consume inductive power. The Base Station contains a power transmitter that comprises a transmitting coil that generates an oscillating magnetic field; the Mobile Device contains a power receiver holding a receiving coil. The magnetic field induces an alternating current in the receiving coil by Faraday's law of induction. Close spacing of the two coils, as well as shielding on their surfaces, ensure the inductive power transfer is efficient.

Base Stations typically have a flat surface—referred to as the Interface Surface—on top of which a user can place one or more Mobile Devices. There are two methods for aligning the transmitting coil (part of the Base Station) and receiving coil (part of the Mobile Device) in order for a power transfer to happen. In the first concept—called guided positioning—a user must place the Mobile Device on a certain location of the Base Station's surface. For this purpose, the Mobile Device provides an alignment aid that is appropriate to its size, shape and function. The second concept—referred to as free positioning—does not require the user to place the Mobile Device in direct alignment with the transmitting coil. There are several ways to achieve free positioning. In one example a bundle of transmitting coils is used to generate a magnetic field at the location of the receiving coil only. Another example uses mechanical means to move a single transmitting coil underneath the receiving coil. A third option is to use a technique called "Multiple Cooperative Flux Generators."[21]

 
Fig. 1-1

Figure 1-1 illustrates the basic system configuration. As shown, a power transmitter includes two main functional units—a power conversion unit and a communications and control unit. The diagram shows the transmitting coil (array) generating the magnetic field as part of the power conversion unit. The control and communications unit regulates the transferred power to the level that the power receiver requests. The diagram also demonstrates that a Base Station may contain numerous transmitters, allowing for multiple Mobile Devices to be placed on the same Base Station and inductively charge until each of its batteries are fully charged. Finally, the system unit in the diagram comprises all other functionality of the Base Station, such as input power provisioning, control of multiple power transmitters, and user interfacing.

A power receiver comprises a power pick-up unit, as well as a communications and control unit. Similar to the power conversion unit of the transmitter, Figure 1-1 illustrates the receiving coil as capturing the magnetic field of the power pick-up unit. A power pick-up unit typically contains a single receiving coil only. Moreover, a Mobile Device typically contains a single power receiver. The communications and control unit regulates the transferred power to the level that is appropriate for the subsystems (e.g., battery) connected to the output of the power receiver. These subsystems represent the main functionality of the Mobile Device.

See alsoEdit

ReferencesEdit

  1. ^ "Wireless Power Consortium". Retrieved November 22, 2015. 
  2. ^ a b "eCoupled Wireless Power Through Granite". YouTube. Google. 
  3. ^ a b "An introduction to the Wireless Power Consortium standard and TI’s compliant solutions" (PDF). Ti. 
  4. ^ "Members". Wireless Power Consortium. 
  5. ^ "List of smartphones, tablets and other devices which support Qi | Qi Wireless charging". 
  6. ^ a b "Global Qi Standard Powers Up Wireless Charging". 
  7. ^ a b "Download Wireless Power Specification Part 1". 
  8. ^ "Medium power extension". Archived from the original on 11 March 2012. 
  9. ^ "Medium power extension". 
  10. ^ Wired, Qi Wireless Charging: What Is It And How Does It Work In Nokia's Lumia 920?, 5 September 2012
  11. ^ The Verge, Toyota's 2013 Avalon Limited becomes world's first car to adopt Qi wireless charging, 19 December 2012
  12. ^ Torque News, Qi wireless charging system adopted by second automaker for use in cars, 25 February 2013
  13. ^ a b IHS Markit, Consumer Awareness of Wireless Charging Doubles to 76 Percent in 2015, IHS Says, 24 June 2015
  14. ^ Brian, Matt. "IKEA will start selling wireless charging lamps and tables". Engadget. Retrieved 1 March 2015. 
  15. ^ "Wireless Charger - Unbound Convenience". www.lexus.com. Retrieved 2017-08-07. 
  16. ^ a b Wired, Wireless Charging Is Still a Mess, But It Won’t Be Forever, 12 November 2015
  17. ^ E&T, Qi wireless charging standard emerges victorious; adoption rapidly increasing, 17 February 2017
  18. ^ "Nokia and The Coffee Bean & Tea Leaf® form partnership to introduce wireless charging to cafés across the United States". Nokia. September 5, 2012. Retrieved September 21, 2012. 
  19. ^ "Nokia and Virgin Atlantic partner to introduce wireless charging to Virgin Atlantic Clubhouse Lounges". Nokia. September 5, 2012. Retrieved September 21, 2012. 
  20. ^ "Nokia flies Virgin Atlantic on wireless charging". Nokia. September 11, 2012. Retrieved September 21, 2012. 
  21. ^ "Variable Position Wireless Power Transmitter through Multiple Cooperative Flux Generators". 

External linksEdit