Open main menu

Metarhizium brunneum

Metarhizium brunneum, is the re-instated[1] name of a group of reassigned Metarhizium isolates, previously grouped in the species "Metarhizium anisopliae var. anisopliae": based on a multigene phylogenetic approach using near-complete sequences from nuclear DNA. It is a mitosporic fungus with asexual reproduction, which was formerly classified in the form class Hyphomycetes of the form phylum Deuteromycota (also often called Fungi Imperfecti). M. brunneum has been isolated from Coleoptera, Lepidoptera, Diptera and soil samples, but a commercially developed isolate (below) has proved virulent against Hemiptera and Thysanoptera.

Metarhizium brunneum
Scientific classification edit
Kingdom: Fungi
Division: Ascomycota
Class: Sordariomycetes
Order: Hypocreales
Family: Clavicipitaceae
Genus: Metarhizium
Species:
M. brunneum
Binomial name
Metarhizium brunneum
Petch, 1935

Contents

Standard isolate and characteristicsEdit

Bischoff et al.[1] state: "There is no viable ex-type culture for M. brunneum Petch. However ARSEF 2107 (from Oregon, USA) is considered an authentic strain because the taxon’s author, Petch,[2] identified it and we designate it here as an ex-epitype. ... an ex-epitype (BPI 878297) derived from a living culture (ARSEF 1914) is designated for this taxon." Metarhizium brunneum is the most basal lineage in the clade called 'PARB' in which it appears impossible to differentiate isolates of M. brunneum from M. anisopliae, on morphological characteristics alone (with the exception of the presumptive colour mutant ARSEF 2107).

Conidia typically measure 4.5–8.0 µm long x 2.0–3.0 µm diameter: similar to several other Metarhizuim species. Petch designated a type collection from the Philippines, which he described as turning brown in mature colonies. This colour variant may occur regularly in nature based on the fact that Petch had identified a number of isolates as M. brunneum from geographically distant locations. However it is important to note that the majority of M. brunneum isolates examined by Bischoff et al. were olive-green in colour (similar to M. anisopliae), rather than the buff and tan pigmentation described for the type specimen and the ex-epitype cultures, respectively.

Important isolatesEdit

  • Isolate M.a. 43 (a.k.a. F52, Met52, 029056) primarily infects beetle larvae: and is the active ingredient of 'BIO 1020', originally developed for control of Otiorhynchus sulcatus and now 'Met52';[3] it is still often described in commercial literature as "M. anisopliae". Commercial products based on this isolate are subcultures of the individual isolate M.a. 43 and are represented in several culture collections including: Julius Kühn-Institute for Biological Control (previously the BBA), Darmstadt, Germany: [M.a. 43]; HRI, UK: [275-86 (acronyms V275 or KVL 275)]; KVL Denmark [KVL 99-112 (Ma 275 or V 275)]; Bayer, Germany [DSM 3884]; ATCC, USA [ATCC 90448]; USDA, Ithaca, USA [ARSEF 1095].[4] Granular and emulsifiable concentrate formulations based on this isolate have been developed by several companies and registered in the EU and N. America (US and Canada) for use against black vine weevil in nursery ornamentals and soft fruit, other Coleoptera,[5] western flower thrips in greenhouse ornamentals and chinch bugs in turf.

See alsoEdit

ReferencesEdit

  1. ^ Bischoff J.F.; Rehner S.A. Humber R.A. (2009). "A multilocus phylogeny of the Metarhizium anisopliae lineage". Mycologia. 101 (4): 512–530. doi:10.3852/07-202. PMID 19623931.
  2. ^ Petch T. (1935). "Notes on entomogenous fungi". Transactions of the British Mycological Society. 19: 55–75. doi:10.1016/s0007-1536(31)80006-3.
  3. ^ http://www.bioag.novozymes.com/en/products/europe/biocontrol/Pages/default.aspx: accessed: 3/9/2014
  4. ^ https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2012.2498: accessed: 3/9/2014
  5. ^ GVP Reddy; Z Zhao; RA Humber (2014). "Laboratory and field efficacy of entomopathogenic fungi for the management of the sweet potato weevil, Cylas formicarius (Coleoptera: Brentidae)". Journal of Invertebrate Pathology. 122: 10–15. doi:10.1016/j.jip.2014.07.009.

External linksEdit