Great retrosnub icosidodecahedron

Great retrosnub icosidodecahedron
Type Uniform star polyhedron
Elements F = 92, E = 150
V = 60 (χ = 2)
Faces by sides (20+60){3}+12{5/2}
Coxeter diagram
Wythoff symbol | 2 3/2 5/3
Symmetry group I, [5,3]+, 532
Index references U74, C90, W117
Dual polyhedron Great pentagrammic hexecontahedron
Vertex figure
(34.5/2)/2
Bowers acronym Girsid

In geometry, the great retrosnub icosidodecahedron or great inverted retrosnub icosidodecahedron is a nonconvex uniform polyhedron, indexed as U74. It has 92 faces (80 triangles and 12 pentagrams), 150 edges, and 60 vertices.[1] It is given a Schläfli symbol sr{32,53}.

3D model of a great retrosnub icosidodecahedron

Cartesian coordinates

edit

Let   be the smallest (most negative) zero of the polynomial  , where   is the golden ratio. Let the point   be given by

 .

Let the matrix   be given by

 .

  is the rotation around the axis   by an angle of  , counterclockwise. Let the linear transformations   be the transformations which send a point   to the even permutations of   with an even number of minus signs. The transformations   constitute the group of rotational symmetries of a regular tetrahedron. The transformations    ,   constitute the group of rotational symmetries of a regular icosahedron. Then the 60 points   are the vertices of a great snub icosahedron. The edge length equals  , the circumradius equals  , and the midradius equals  .

For a great snub icosidodecahedron whose edge length is 1, the circumradius is

 

Its midradius is

 

The four positive real roots of the sextic in R2,   are the circumradii of the snub dodecahedron (U29), great snub icosidodecahedron (U57), great inverted snub icosidodecahedron (U69), and great retrosnub icosidodecahedron (U74).

See also

edit

References

edit
  1. ^ Maeder, Roman. "74: great retrosnub icosidodecahedron". MathConsult.
edit