10,000,000

  (Redirected from 10000000 (number))

10,000,000 (ten million) is the natural number following 9,999,999 and preceding 10,000,001.

10000000
CardinalTen million
Ordinal10000000th
(ten millionth)
Factorization27 · 57
Greek numeral
Roman numeralX
Greek prefixhebdo-
Binary1001100010010110100000002
Ternary2002110011021013
Octal461132008
Duodecimal342305412
Hexadecimal98968016

In scientific notation, it is written as 107.

In South Asia except for Sri Lanka, it is known as the crore.

In Cyrillic numerals, it is known as the vran (вран - raven).

Selected 8-digit numbers (10,000,001–99,999,999)Edit

10,000,001 to 19,999,999Edit

  • 10,000,019 = smallest 8-digit prime number
  • 10,001,628 = smallest triangular number with 8 digits and the 4,472nd triangular number
  • 10,004,569 = 31632, the smallest 8-digit square
  • 10,077,696 = 2163 = 69, the smallest 8-digit cube
  • 10,556,001 = 32492 = 574
  • 10,609,137 = Leyland number
  • 11,111,111 = repunit
  • 11,316,496 = 33642 = 584
  • 11,390,625 = 33752 = 2253 = 156
  • 11,405,773 = Leonardo prime
  • 11,436,171 = Keith number[1]
  • 11,485,154 = Markov number
  • 11,881,376 = 265
  • 11,943,936 = 34562
  • 12,117,361 = 34812 = 594
  • 12,252,240 = highly composite number, smallest number divisible by all the numbers 1 through 18
  • 12,648,430 = hexadecimal C0FFEE, resembling the word "coffee"; used as a placeholder in computer programming, see hexspeak.
  • 12,890,625 = 1-automorphic number[2]
  • 12,960,000 = 36002 = 604 = (3·4·5)4, Plato's "nuptial number" (Republic VIII; see regular number)
  • 12,988,816 = number of different ways of covering an 8-by-8 square with 32 1-by-2 dominoes
  • 13,079,255 = number of free 16-ominoes
  • 13,782,649 = Markov number
  • 13,845,841 = 37212 = 614
  • 14,348,907 = 2433 = 275 = 315
  • 14,352,282 = Leyland number
  • 14,776,336 = 38442 = 624
  • 14,930,352 = Fibonacci number[3]
  • 15,485,863 = 1,000,000th prime number
  • 15,752,961 = 39692 = 634
  • 15,994,428 = Pell number[4]
  • 16,003,008 = 2523
  • 16,609,837 = Markov number
  • 16,777,216 = 40962 = 2563 = 644 = 166 = 88 = 412 = 224hexadecimal "million" (0x1000000), number of possible colors in 24/32-bit Truecolor computer graphics
  • 16,777,792 = Leyland number
  • 16,797,952 = Leyland number
  • 16,964,653 = Markov number
  • 17,016,602 = index of a prime Woodall number
  • 17,210,368 = 285
  • 17,650,828 = 11 + 22 + 33 + 44 + 55 + 66 + 77 + 88
  • 17,850,625 = 42252 = 654
  • 18,199,284 = Motzkin number[5]
  • 18,974,736 = 43562 = 664
  • 19,487,171 = 117
  • 19,680,277 = Wedderburn-Etherington number[6]
  • 19,987,816 = palindromic in 3 consecutive bases: 41AAA1413, 292429214, 1B4C4B115

20,000,000 to 29,999,999Edit

  • 20,031,170 = Markov number
  • 20,151,121 = 44892 = 674
  • 20,511,149 = 295
  • 21,381,376 = 46242 = 684
  • 21,531,778 = Markov number
  • 21,621,600 = colossally abundant number,[7] superior highly composite number[8]
  • 22,222,222 = repdigit
  • 22,667,121 = 47612 = 694
  • 24,010,000 = 49002 = 704
  • 24,137,569 = 49132 = 2893 = 176
  • 24,157,817 = Fibonacci number,[3] Markov number
  • 24,300,000 = 305
  • 24,678,050 = equal to the sum of the eighth powers of its digits
  • 24,883,200 = superfactorial of 6
  • 25,411,681 = 50412 = 714
  • 26,873,856 = 51842 = 724
  • 27,644,437 = Bell number[9]
  • 28,398,241 = 53292 = 734
  • 28,629,151 = 315
  • 29,986,576 = 54762 = 744

30,000,000 to 39,999,999Edit

  • 31,536,000 = standard number of seconds in a non-leap year (omitting leap seconds)
  • 31,622,400 = standard number of seconds in a leap year (omitting leap seconds)
  • 31,640,625 = 56252 = 754
  • 33,333,333 = repdigit
  • 33,362,176 = 57762 = 764
  • 33,445,755 = Keith number[1]
  • 33,550,336 = fifth perfect number[10]
  • 33,554,432 = 325 = 225, Leyland number
  • 33,555,057 = Leyland number
  • 34,012,224 = 58322 = 3243 = 186
  • 35,153,041 = 59292 = 774
  • 35,831,808 = 127 = 10,000,00012 AKA a dozen-great-great-gross (1012 great-great-grosses)
  • 36,614,981 = alternating factorial[11]
  • 37,015,056 = 60842 = 784
  • 37,933,056 = 3363
  • 38,613,965 = Pell number,[4] Markov number
  • 38,950,081 = 62412 = 794
  • 39,088,169 = Fibonacci number[3]
  • 39,135,393 = 335
  • 39,916,800 = 11!
  • 39,916,801 = factorial prime[12]

40,000,000 to 49,999,999Edit

  • 40,353,607 = 3433 = 79
  • 40,960,000 = 64002 = 804
  • 43,046,721 = 65612 = 814 = 98 = 316
  • 43,050,817 = Leyland number
  • 43,112,609 = Mersenne prime exponent
  • 43,443,858 = palindromic in 3 consecutive bases: 3C323C315, 296E69216, 1DA2AD117
  • 43,484,701 = Markov number
  • 44,121,607 = Keith number[1]
  • 44,444,444 = repdigit
  • 45,136,576 = Leyland number
  • 45,212,176 = 67242 = 822
  • 45,435,424 = 345
  • 46,026,618 = Wedderburn-Etherington number[6]
  • 46,656,000 = 3603
  • 47,045,881 = 68592 = 3613 = 196
  • 47,326,700 = first number of the first consecutive centuries each consisting wholly of composite numbers[13]
  • 47,326,800 = first number of the first century with the same prime pattern (in this case, no primes) as the previous century[14]
  • 47,458,321 = 68892 = 834
  • 48,024,900 = square triangular number
  • 48,828,125 = 511
  • 48,928,105 = Markov number
  • 48,989,176 = Leyland number
  • 49,787,136 = 70562 = 844

50,000,000 to 59,999,999Edit

  • 50,107,909 = number of free 17-ominoes
  • 50,852,019 = Motzkin number[5]
  • 52,200,625 = 72252 = 854
  • 52,521,875 = 355
  • 54,700,816 = 73962 = 864
  • 55,555,555 = repdigit
  • 57,289,761 = 75692 = 874
  • 57,885,161 = Mersenne prime exponent
  • 59,969,536 = 77442 = 884

60,000,000 to 69,999,999Edit

  • 60,466,176 = 77762 = 365 = 610
  • 61,466,176 = Leyland number
  • 62,742,241 = 79212 = 894
  • 62,748,517 = 137
  • 63,245,986 = Fibonacci number, Markov number
  • 64,000,000 = 80002 = 4003 = 206vigesimal "million" (1 alau in Mayan, 1 poaltzonxiquipilli in Nahuatl)
  • 65,610,000 = 81002 = 904
  • 66,600,049 = Largest minimal prime in base 10
  • 66,666,666 = repdigit
  • 67,108,864 = 81922 = 413 = 226
  • 67,109,540 = Leyland number
  • 67,137,425 = Leyland number
  • 68,574,961 = 82812 = 914
  • 69,343,957 = 375

70,000,000 to 79,999,999Edit

  • 71,639,296 = 84642 = 924
  • 72,546,283 = the smallest prime number preceded and followed by prime gaps of over 100[15]
  • 73,939,133 = the largest prime number that can be 'tailed' again and again by removing its last digit to produce only primes
  • 74,207,281 = Mersenne prime exponent
  • 74,805,201 = 86492 = 934
  • 77,232,917 = Mersenne prime exponent
  • 77,777,777 = repdigit
  • 78,074,896 = 88362 = 944
  • 78,442,645 = Markov number
  • 79,235,168 = 385

80,000,000 to 89,999,999Edit

90,000,000 to 99,999,999Edit

  • 90,224,199 = 395
  • 92,236,816 = 96042 = 984
  • 93,222,358 = Pell number[4]
  • 93,554,688 = 2-automorphic number[17]
  • 94,109,401 = square pentagonal number
  • 94,418,953 = Markov prime
  • 96,059,601 = 98012 = 994
  • 99,897,344 = 4643, the largest 8-digit cube
  • 99,980,001 = 99992, the largest 8-digit square
  • 99,991,011 = largest triangular number with 8 digits and the 14,141st triangular number
  • 99,999,989 = greatest prime number with 8 digits[18]
  • 99,999,999 = repdigit, Friedman number, believed to be smallest number to be both repdigit and Friedman

See alsoEdit

ReferencesEdit

  1. ^ a b c "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  2. ^ a b Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-04-06.
  3. ^ a b c "Sloane's A000045 : Fibonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  4. ^ a b c "Sloane's A000129 : Pell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  5. ^ a b "Sloane's A001006 : Motzkin numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  6. ^ a b "Sloane's A001190 : Wedderburn-Etherington numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  7. ^ "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  8. ^ "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  9. ^ "Sloane's A000110 : Bell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  10. ^ "Sloane's A000396 : Perfect numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  11. ^ "Sloane's A005165 : Alternating factorials". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  12. ^ "Sloane's A088054 : Factorial primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  13. ^ Sloane, N. J. A. (ed.). "Sequence A181098 (Primefree centuries (i.e., no prime exists between 100*n and 100*n+99))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-09-30.
  14. ^ Sloane, N. J. A. (ed.). "Sequence A219996 (Centuries whose prime pattern is the same as prime pattern in the previous century)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-09-30.
  15. ^ Sloane, N. J. A. (ed.). "Sequence A023188 (Lonely (or isolated) primes: least prime of distance n from nearest prime (n = 1 or even).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-01-27.
  16. ^ "Sloane's A011541 : Taxicab, taxi-cab or Hardy-Ramanujan numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  17. ^ Sloane, N. J. A. (ed.). "Sequence A030984 (2-automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-09-01.
  18. ^ "greatest prime number with 8 digits". Wolfram Alpha. Retrieved June 4, 2014.