100,000,000 (one hundred million) is the natural number following 99,999,999 and preceding 100,000,001.

100000000
CardinalOne hundred million
Ordinal100000000th
(one hundred millionth)
Factorization28 × 58
Greek numeral
Roman numeralC
Binary1011111010111100001000000002
Ternary202220111120122013
Octal5753604008
Duodecimal295A645412
Hexadecimal5F5E10016

In scientific notation, it is written as 108.

East Asian languages treat 100,000,000 as a counting unit, significant as the square of a myriad, also a counting unit. In Chinese, Korean, and Japanese respectively it is yi (simplified Chinese: 亿; traditional Chinese: ; pinyin: ) (or Chinese: 萬萬; pinyin: wànwàn in ancient texts), eok (억/億) and oku (). These languages do not have single words for a thousand to the second, third, fifth powers, etc.

100,000,000 is also the fourth power of 100 and also the square of 10000.

Selected 9-digit numbers (100,000,001–999,999,999)Edit

100,000,001 to 199,999,999Edit

  • 100,000,007 = smallest nine digit prime[1]
  • 100,005,153 = smallest triangular number with 9 digits and the 14,142nd triangular number
  • 100,020,001 = 100012, palindromic square
  • 100,544,625 = 4653, the smallest 9-digit cube
  • 102,030,201 = 101012, palindromic square
  • 102,334,155 = Fibonacci number
  • 102,400,000 = 405
  • 104,060,401 = 102012 = 1014, palindromic square
  • 105,413,504 = 147
  • 107,890,609 = Wedderburn-Etherington number[2]
  • 111,111,111 = repunit, square root of 12345678987654321
  • 111,111,113 = Chen prime, Sophie Germain prime, cousin prime.
  • 113,379,904 = 106482 = 4843 = 226
  • 115,856,201 = 415
  • 119,481,296 = logarithmic number[3]
  • 121,242,121 = 110112, palindromic square
  • 123,454,321 = 111112, palindromic square
  • 123,456,789 = smallest zeroless base 10 pandigital number
  • 125,686,521 = 112112, palindromic square
  • 126,491,971 = Leonardo prime
  • 129,140,163 = 317
  • 129,145,076 = Leyland number
  • 129,644,790 = Catalan number[4]
  • 130,691,232 = 425
  • 134,217,728 = 5123 = 89 = 227
  • 134,218,457 = Leyland number
  • 136,048,896 = 116642 = 1084
  • 139,854,276 = 118262, the smallest zeroless base 10 pandigital square
  • 142,547,559 = Motzkin number[5]
  • 147,008,443 = 435
  • 148,035,889 = 121672 = 5293 = 236
  • 157,115,917 – number of parallelogram polyominoes with 24 cells.[6]
  • 157,351,936 = 125442 = 1124
  • 164,916,224 = 445
  • 165,580,141 = Fibonacci number
  • 167,444,795 = cyclic number in base 6
  • 170,859,375 = 157
  • 177,264,449 = Leyland number
  • 179,424,673 = 10,000,000th prime number
  • 184,528,125 = 455
  • 188,378,402 = number of ways to partition {1,2,...,11} and then partition each cell (block) into subcells.[7]
  • 190,899,322 = Bell number[8]
  • 191,102,976 = 138242 = 5763 = 246
  • 192,622,052 = number of free 18-ominoes
  • 199,960,004 = number of surface-points of a tetrahedron with edge-length 9999[9]

200,000,000 to 299,999,999Edit

300,000,000 to 399,999,999Edit

400,000,000 to 499,999,999Edit

  • 400,080,004 = 200022, palindromic square
  • 400,763,223 = Motzkin number[5]
  • 404,090,404 = 201022, palindromic square
  • 405,071,317 = 11 + 22 + 33 + 44 + 55 + 66 + 77 + 88 + 99
  • 410,338,673 = 177
  • 418,195,493 = 535
  • 429,981,696 = 207362 = 1444 = 128 = 100,000,00012 AKA a gross-great-great-gross (10012 great-great-grosses)
  • 433,494,437 = Fibonacci prime, Markov prime
  • 442,386,619 = alternating factorial[18]
  • 444,101,658 = number of (unordered, unlabeled) rooted trimmed trees with 27 nodes[19]
  • 444,444,444 = repdigit
  • 459,165,024 = 545
  • 467,871,369 = number of triangle-free graphs on 14 vertices[20]
  • 477,638,700 = Catalan number[4]
  • 479,001,599 = factorial prime[21]
  • 479,001,600 = 12!
  • 481,890,304 = 219522 = 7843 = 286
  • 499,999,751 = Sophie Germain prime

500,000,000 to 599,999,999Edit

  • 503,284,375 = 555
  • 522,808,225 = 228652, palindromic square
  • 535,828,591 = Leonardo prime
  • 536,870,911 = third composite Mersenne number with a prime exponent
  • 536,870,912 = 229
  • 536,871,753 = Leyland number
  • 542,474,231 = k such that the sum of the squares of the first k primes is divisible by k.[22]
  • 543,339,720 = Pell number[12]
  • 550,731,776 = 565
  • 554,999,445 = a Kaprekar constant for digit length 9 in base 10
  • 555,555,555 = repdigit
  • 574,304,985 = 19 + 29 + 39 + 49 + 59 + 69 + 79 + 89 + 99 [23]
  • 594,823,321 = 243892 = 8413 = 296
  • 596,572,387 = Wedderburn-Etherington prime[2]

600,000,000 to 699,999,999Edit

  • 601,692,057 = 575
  • 612,220,032 = 187
  • 617,323,716 = 248462, palindromic square
  • 644,972,544 = 8643, 3-smooth number
  • 656,356,768 = 585
  • 666,666,666 = repdigit
  • 670,617,279 = highest stopping time integer under 109 for the Collatz conjecture

700,000,000 to 799,999,999Edit

800,000,000 to 899,999,999Edit

  • 801,765,089 = 9293
  • 804,357,000 = 9303
  • 806,954,491 = 9313
  • 809,557,568 = 9323
  • 812,166,237 = 9333
  • 814,780,504 = 9343
  • 815,730,721 = 138
  • 815,730,721 = 1694
  • 817,400,375 = 9353
  • 820,025,856 = 9363
  • 822,656,953 = 9373
  • 825,293,672 = 9383
  • 827,936,019 = 9393
  • 830,584,000 = 9403
  • 833,237,621 = 9413
  • 835,210,000 = 1704
  • 835,896,888 = 9423
  • 837,759,792 – number of parallelogram polyominoes with 26 cells.[25]
  • 838,561,807 = 9433
  • 841,232,384 = 9443
  • 843,908,625 = 9453
  • 844,596,301 = 615
  • 846,590,536 = 9463
  • 849,278,123 = 9473
  • 851,971,392 = 9483
  • 854,670,349 = 9493
  • 855,036,081 = 1714
  • 857,375,000 = 9503
  • 860,085,351 = 9513
  • 862,801,408 = 9523
  • 865,523,177 = 9533
  • 868,250,664 = 9543
  • 870,983,875 = 9553
  • 873,722,816 = 9563
  • 875,213,056 = 1724
  • 876,467,493 = 9573
  • 879,217,912 = 9583
  • 881,974,079 = 9593
  • 884,736,000 = 9603
  • 887,503,681 = 316
  • 887,503,681 = 9613
  • 888,888,888repdigit
  • 890,277,128 = 9623
  • 893,056,347 = 9633
  • 893,554,688 = 2-automorphic number[26]
  • 893,871,739 = 197
  • 895,745,041 = 1734

900,000,000 to 999,999,999Edit

  • 906,150,257 = smallest counterexample to the Polya conjecture
  • 916,132,832 = 625
  • 923,187,456 = 303842, the largest zeroless pandigital square
  • 942,060,249 = 306932, palindromic square
  • 987,654,321 = largest zeroless pandigital number
  • 992,436,543 = 635
  • 997,002,999 = 9993, the largest 9-digit cube
  • 999,950,884 = 316222, the largest 9-digit square
  • 999,961,560 = highest triangular number with 9 digits and the 44,720th triangular number
  • 999,999,937 = largest 9-digit prime number
  • 999,999,999 = repdigit

ReferencesEdit

  1. ^ Sloane, N. J. A. (ed.). "Sequence A003617 (Smallest n-digit prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 7 September 2017.
  2. ^ a b c Sloane, N. J. A. (ed.). "Sequence A001190 (Wedderburn-Etherington numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  3. ^ Sloane, N. J. A. (ed.). "Sequence A002104 (Logarithmic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^ a b Sloane, N. J. A. (ed.). "Sequence A000108 (Catalan numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  5. ^ a b Sloane, N. J. A. (ed.). "Sequence A001006 (Motzkin numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  6. ^ Sloane, N. J. A. (ed.). "Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^ Sloane, N. J. A. (ed.). "Sequence A000258 (Expansion of e.g.f. exp(exp(exp(x)-1)-1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^ "Sloane's A000110 : Bell or exponential numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  9. ^ Sloane, N. J. A. (ed.). "Sequence A005893 (Number of points on surface of tetrahedron)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. ^ Sloane, N. J. A. (ed.). "Sequence A005893 (Number of points on surface of tetrahedron)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. ^ a b Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-04-06.
  12. ^ a b Sloane, N. J. A. (ed.). "Sequence A000129 (Pell numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  13. ^ "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  14. ^ "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  15. ^ Sloane, N. J. A. (ed.). "Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  16. ^ "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  17. ^ "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  18. ^ "Sloane's A005165 : Alternating factorials". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  19. ^ Sloane, N. J. A. (ed.). "Sequence A002955 (Number of (unordered, unlabeled) rooted trimmed trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  20. ^ Sloane, N. J. A. (ed.). "Sequence A006785 (Number of triangle-free graphs on n vertices)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  21. ^ "Sloane's A088054 : Factorial primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  22. ^ Sloane, N. J. A. (ed.). "Sequence A111441 (Numbers k such that the sum of the squares of the first k primes is divisible by k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
  23. ^ Sloane, N. J. A. (ed.). "Sequence A031971". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  24. ^ "Sloane's A000979 : Wagstaff primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  25. ^ Sloane, N. J. A. (ed.). "Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  26. ^ Sloane, N. J. A. (ed.). "Sequence A030984 (2-automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-09-01.