Wikipedia:Reference desk/Archives/Mathematics/2015 April 20

Mathematics desk
< April 19 << Mar | April | May >> Current desk >
Welcome to the Wikipedia Mathematics Reference Desk Archives
The page you are currently viewing is a transcluded archive page. While you can leave answers for any questions shown below, please ask new questions on one of the current reference desk pages.


April 20

edit

Surprising periodic series

edit

I'm looking for a property, such that the existense of series having this property - is not surprising, yet the existence of periodic (or even just cyclic) series having this property - is very surprising, whereas... the mathematicians have really discovered such a periodic (or cyclic) series having this property ! HOOTmag (talk) 20:18, 20 April 2015 (UTC)[reply]

Surprising is in the eye of the beholder. For me, when I first encountered the Gibbs phenomenon, it was surprising. I could believe that a function with a jump discontinuity could be represented by a infinite series of some basis functions (e.g., the Dirac delta), but that approximating a square wave with a Fourier periodic series would result in an extra spike jump discontinuity was counterintuitive. And yet, there it is. --Mark viking (talk) 00:55, 22 April 2015 (UTC)[reply]
Thank you so much.
Your example inspired me to think about many other examples of series whose periodicity is surprising. For example, until De-Moivre's and Euler's era, everyone thought that no smooth non-permanent exponential function - can be periodic (by "exponential function" I mean a function whose value for any sum of two numbers is the product of the values of the function for both of them). Then De-Moivre and Euler surprised the world by coming up with De-Moivre's formula and Euler's formula, that involve some kind of exponential function which - despite its being smooth and non-permanent - it was (surprisingly) periodic, so that one can now define a series whose periodicity is surprising - by using (trivially) the surprising periodicity of the function defined in De-Moivre's formula and in Euler's formula ...
Actually, it's unnecessary to go up to De-Moivre's and Euler's modern age: Even the early man, who only knew natural numbers, could easily set up a series by stipulating its periodicity in some surprise. For example, let P be any proposition which - surprisingly - turns out to be true (e.g. "the animal sitting behind me is a tiger"). Now we define the "property" of the series S, as follows: If P is false then S is not periodic (but say converges with the identity function), while if P is true then S is periodic (say converges with the constant number zero) ...
HOOTmag (talk) 08:21, 22 April 2015 (UTC)[reply]