Following are some of the references I have been adding to WP, or in the minority haven't added but have come across elsewhere, all in one place, for future records. Obviously, I don't possess them all, pretty much all of them are from:
- the uni library,
- Google books,
- Springer,
- arXiv,
and a few papers/books are from other WP articles.
This list will never be complete:
- more will be added,
- duplications will be removed.
See also:
- D. Hestenes, G. Sobczyk (1987). Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Fundamental Theories of Physics. Vol. 5. Springer. p. 68. ISBN 9-02772-5616.
- C. Perwass (2008). Geometric Algebra with Applications in Engineering. Geometry and Computing. Vol. 4. Springer. p. 23. ISBN 354-089-067-X.
- W.E. Baylis (1996). Clifford (Geometric) Algebras: With Applications in Physics, Mathematics, and Engineering. Springer. p. 71. ISBN 0-817-638-687.
- A. Crumeyrolle, R. Ablamowicz, P. Lounesto (1995). Clifford (Geometric) Algebras: With Applications in Physics, Mathematics, and Engineering. Mathematics and Its Applications. Vol. 321. Springer. p. 105. ISBN 0-792-333-667.
{{cite book}}
: CS1 maint: multiple names: authors list (link)
- L. Dorst, C.J.L. Doran, J. Lasenby (2001). Applications of geometric algebra in computer science and engineering. Springer. p. 61. ISBN 0-817-642-676.
{{cite book}}
: CS1 maint: multiple names: authors list (link)
- C. D'Orangeville, A. Anthony, N. Lasenby (2003). Geometric Algebra For Physicists. Cambridge University Press. p. 343. ISBN 0-521-480-221.
{{cite book}}
: CS1 maint: multiple names: authors list (link)
- P. Joot. Exploring physics with Geometric Algebra. p. 157.
- D.C. Kay (1988). Tensor Calculus. Schaum’s Outlines. McGraw Hill. p. 18-19, 31-32. ISBN 0-07-033484-6.
- M.R. Spiegel, S. Lipcshutz, D. Spellman (2009). Vector analysis. Schaum’s Outlines (2nd ed.). McGraw Hill. p. 227. ISBN 978-0-07-161545-7.
{{cite book}}
: CS1 maint: multiple names: authors list (link)
- J.R. Tyldesley (1975). An introduction to tensor analysis for engineers and applied scientists. Longman. p. 5-13. ISBN 0-582-44355-5.
- S. Lipcshutz, M. Lipson (2009). Linear Algebra. Schaum’s Outlines (4th ed.). McGraw Hill. ISBN 978-0-07-154352-1.
- Pei Chi Chou (1992). Elasticity: Tensor, Dyadic, and Engineering Approaches. Courier Dover Publications. ISBN 048-666-958-0.
- T.W. Körner (2012). Vectors, Pure and Applied: A General Introduction to Linear Algebra. Cambridge University Press. p. 216. ISBN 11070-3356-X.
- R. Torretti (1996). Relativity and Geometry. Courier Dover Publications. p. 103. ISBN 0-4866-90466.
- J.J.L. Synge, A. Schild (1978). Tensor Calculus. Courier Dover Publications. p. 128. ISBN 0-4861-4139-X.
- C.A. Balafoutis, R.V. Patel (1991). Dynamic Analysis of Robot Manipulators: A Cartesian Tensor Approach. The Kluwer International Series in Engineering and Computer Science: Robotics: vision, manipulation and sensors. Vol. 131. Springer. ISBN 0792-391-454.
- S. G. Tzafestas (1992). Robotic systems: advanced techniques and applications. Springer. ISBN 0-792-317-491.
- T. Dass, S.K. Sharma (1998). Mathematical Methods In Classical And Quantum Physics. Universities Press. p. 144. ISBN 817-371-0899.
- G.F.J. Temple (2004). Cartesian Tensors: An Introduction. Dover Books on Mathematics Series. DOVER PUBN Incorporated. ISBN 0-4864-3908-9.
- Sir H. Jeffreys (1961). Cartesian Tensors. The University Press.
- A.A. Ungar (2009). A Gyrovector Space Approach to Hyperbolic Geometry. Morgan & Claypool Publishers. ISBN 1-598-298-224.
- A.A. Ungar (2005). Analytic Hyperbolic Geometry: Mathematical Foundations And Applications. World Scientific. ISBN 981-270-327-6.
- W. Fenchel. Elementary Geometry in Hyperbolic Space. Walter de Gruyter. ISBN 311-011-734-7.
- R. Penrose (2005). The Road to Reality. Vintage books. ISBN 978-00994-40680.
- R.G. Lerner, G.L. Trigg (1991). Encyclopaedia of Physics (2nd ed.). VHC Publishers. p. 1285. ISBN 0-89573-752-3.
- P.M. Whelan, M.J. Hodgeson (1978). Essential Principles of Physics (2nd ed.). John Murray. ISBN 0-7195-3382-1.
- G. Woan (2010). The Cambridge Handbook of Physics Formulas. Cambridge University Press. ISBN 978-0-521-57507-2.
- A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill. ISBN 978-0-07-025734-4.
- C.B. Parker (1994). McGraw Hill Encyclopaedia of Physics (2nd ed.). McGraw Hill. ISBN 0-07-051400-3.
- M. Mansfield, C. O’Sullivan (2011). Understanding Physics (2nd ed.). John Wiley & Sons. ISBN 978-0-470-74637-0.
- P.A. Tipler, G. Mosca (2008). Physics for Scientists and Engineers: With Modern Physics (6th ed.). W.H. Freeman and Co. ISBN 9-781429-202657.
- L.H. Greenberg (1978). Physics with Modern Applications. Holt-Saunders International W.B. Saunders and Co. ISBN 0-7216-4247-0.
- J.B. Marion, W.F. Hornyak (1984). Principles of Physics. Holt-Saunders International Saunders College. ISBN 4-8337-0195-2.
- A. Beiser (1987). Concepts of Modern Physics (4th ed.). McGraw-Hill (International). ISBN 0-07-100144-1.
- H.D. Young, R.A. Freedman (2008). University Physics – With Modern Physics (12th ed.). Addison-Wesley (Pearson International). ISBN 0-321-50130-6.
- D. Hestenes (1999). New Foundations for Classical Mechanics. Fundamental Theories of Physics. Vol. 99 (2nd ed.). Springer. ISBN 0792355148.
- J.R. Forshaw, A.G. Smith (2009). Dynamics and Relativity. Manchester Physics Series. John Wiley & Sons. ISBN 978-0-470-01460-8.
- D. Kleppner, R. J. Kolenkow (2010). An Introduction to Mechanics. Cambridge University Press. ISBN 978-0-521-19821-9.
- H. Goldstein (1980). Classical mechanics (2nd ed.). Reading, Mass.: Addison-Wesley Pub. Co. ISBN 0201029189.
- L.N. Hand, J.D. Finch (2008). Analytical Mechanics. Cambridge University Press,. ISBN 978-0-521-57572-0.
{{cite book}}
: CS1 maint: extra punctuation (link) - T.B. Arkill, C.J. Millar (1974). Mechanics, Vibrations and Waves. John Murray,. ISBN 0-7195-2882-8.
{{cite book}}
: CS1 maint: extra punctuation (link) - H.J. Pain (1983). The Physics of Vibrations and Waves (3rd ed.). John Wiley & Sons,. ISBN 0-471-90182-2.
{{cite book}}
: CS1 maint: extra punctuation (link)
- G.A.G. Bennet (1974). Electricity and Modern Physics (2nd ed.). Edward Arnold (UK). ISBN 0-7131-2459-8.
- I.S. Grant, W.R. Phillips, Manchester Physics (2008). Electromagnetism (2nd ed.). John Wiley & Sons. ISBN 978-0-471-92712-9.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - D.J. Griffiths (2007). Introduction to Electrodynamics (3rd ed.). Pearson Education. ISBN 81-7758-293-3.
- J. D. Jackson (1999). Classical Electrodynamics (3rd ed.). Wiley. p. 548. ISBN 0-471-30932-X.
- C.W. Misner, K.S. Thorne, J.A. Wheeler. Gravitation. p. 1146. ISBN 0-7167-0344-0.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - J. B. Hartle (2003). Gravity: An Introduction to Einstein's General Relativity. Addison-Wesley. p. 563. ISBN 9780805386622.
- S. Carroll (2003). Spacetime and Geometry: An Introduction to General Relativity. Addison-Wesley. p. 496. ISBN 9780805387322.
- M. P. Hobson, G. P. Efstathiou, A. N. Lasenby (2006). General Relativity: An Introduction for Physicists. Cambridge University Press. p. 555. ISBN 9780521829519.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - R. M. Wald (1984). General Relativity. Chicago University Press. p. 479. ISBN 9780226870335.
- Foster, J; Nightingale, J.D. (1995). A Short Course in General Relativity (2nd ed.). Springer. p. 222. ISBN 0-03-063366-4.
- I. Ciufolini, R.R.A. Matzner (2010). General relativity and John Archibald Wheeler. Springer. p. 329. ISBN 9-04813-7357.
- M. Ludvigsen. General Relativity: A Geometric Approach.
- C. Schiller. Motion Mountain. Vol. 2.
- M. Fayngold (2008). Special Relativity and How it Works. John Wiley & Sons. p. 137-139. ISBN 3527406077.
- N. Menicucci (2001). "Relativistic Angular Momentum" (PDF).
- C. Chryssomalakos, H. Hernandez-Coronado, E. Okon (2009). "Center of mass in special and general relativity and its role in an effective description of spacetime" (PDF). J. Phys. Conf. Ser. Mexico. arXiv:0901.3349. doi:10.1088/1742-6596/174/1/012026.
{{cite news}}
: line feed character in|title=
at position 57 (help)CS1 maint: multiple names: authors list (link)
- A. Peres (1962). "On Cauchy's problem in general relativity - II". Nuovo Cimento. Vol. 26, no. 1. Springer. p. 53-62.
- U.H. Gerlach (1968). "Derivation of the Ten Einstein Field Equations from the Semiclassical Approximation to Quantum Geometrodynamics". Physical Review. Vol. 177, no. 5. Princeton, USA. p. 1929-1941. doi:10.1103/PhysRev.177.1929.
- A. Shomer (2007). "A pedagogical explanation for the non-renormalizability of gravity". California, USA. arXiv:0709.3555v2.
- J. Mehra (1973). The Physicist's Conception of Nature. Springer. p. 224. ISBN 9-02770-3450.
- J.J. Halliwell, J. Pérez-Mercader, W.H. Zurek (1996). Physical Origins of Time Asymmetry. Cambridge University Press. p. 429. ISBN 0-52156-8374.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - J.L. Lopes (1977). Quantum mechanics, a half century later: Papers of a Colloquium on Fifty Years of Quantum Mechanics. Strasbourg, France: Springer, Kluwer Academic Publishers. ISBN 9-789-0277-07840.
- C. Rovelli (2004). Quantum Gravity. Cambridge University Press. ISBN 0-521-83733-2.
- C. Kiefer (2012). Quantum Gravity (3rd ed.). Oxford University Press. ISBN 0-199-58520-2.
- J.K. Glikman (1999). Towards Quantum Gravity: Proceedings of the XXXV International Winter School on Theoretical Physics. Polanica, Poland: Springer. p. 224. ISBN 3-540-669-108.
- L.Z. Fang, R. Ruffini (1987). Quantum cosmology. Advanced Series in Astrophysics and Cosmology. Vol. 3. World Scientific. ISBN 997-1503-123.
- T. Banks (1984). "TCP, Quantum Gravity, The Cosmological Constant and all that..." (PDF). Stanford, USA. (Equation A.3 in the appendix).
- B. K. Darian (1997). "Solving the Hamilton-Jacobi equation for gravitationally interacting electromagnetic and scalar fields" (PDF). Canada, USA. arXiv:gr-qc/9707046v2.
- J. R. Bond, D. S. Salopek (1990). "Nonlinear evolution of long-wavelength metric fluctuations in inflationary models". Phys. Rev. D. Canada (USA), Illinois (USA).
- Sang Pyo Kim (1996). "Classical spacetime from quantum gravity". Phys. Rev. D. Kunsan, Korea: IoP. doi:10.1088/0264-9381/13/6/011.
- S.R. Berbena, A.V. Berrocal, J. Socorro, L.O. Pimentel (2006). "The Einstein-Hamilton-Jacobi equation: Searching the classical solution for barotropic FRW" (PDF). Guanajuato and Autónoma Metropolitana (Mexico). arXiv:gr-qc/0607123.
{{cite news}}
: CS1 maint: multiple names: authors list (link)
- D.H. Perkins (2000). Introduction to High Energy Physics. Cambridge University Press. ISBN 0-52162-1968.
- B. R. Martin, G.Shaw. Particle Physics (3rd ed.). Manchester Physics Series, John Wiley & Sons. p. 3. ISBN 978-0-470-03294-7.
- P. Labelle (2010). Supersymmetry. Demystified. McGraw-Hill. ISBN 978-0-07-163641-4.
- M.Reiher, A.Wolf (2009). Relativistic Quantum Chemistry. John Wiley & Sons. ISBN 3-52762-7499.
- P. Strange (1998). Relativistic Quantum Mechanics: With Applications in Condensed Matter and Atomic Physics. Cambridge University Press. ISBN 0521565839.
- P. Mohn (2003). Magnetism in the Solid State: An Introduction. Springer Series in Solid-State Sciences Series. Vol. 134. Springer. p. 6. ISBN 3-54043-1837.
- A. Messiah (1981). Quantum Mechanics. Vol. 2. North-Holland Publishing Company, Amsterdam. p. 875. ISBN 0-7204-00457.
- W. Greiner (2000). Relativistic Quantum Mechanics. Wave Equations (3rd ed.). Springer. p. 70. ISBN 3-5406-74578.
- A. Wachter (2011). "Relativistic quantum mechanics". Springer. p. 34. ISBN 9-04813-6458.
- K. Masakatsu (2012). "Superradiance Problem of Bosons and Fermions for Rotating Black Holes in Bargmann–Wigner Formulation" (PDF). Nara, Japan. arXiv:1208.0644.
- R. Resnick, R. Eisberg (1985). Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (2nd ed.). John Wiley & Sons. p. 274. ISBN 978-0-471-87373-0.
- P.W. Atkins (1974). Quanta: A handbook of concepts. Oxford University Press. ISBN 0-19-855493-1.
- L.D. Landau, E.M. Lifshitz (1981). Quantum Mechanics Non-Relativistic Theory. Vol. 3. Elsevier. p. 455. ISBN 008-0503-489.
- E. Abers (2004). Quantum Mechanics. Addison Wesley. p. 425. ISBN 978-0-13-146100-0.
- P.A.M. Dirac (1981). Principles of Quantum Mechanics (4th ed.). Clarendon Press. ISBN 9-780198-520115.
- W.T. Grandy (1991). Relativistic quantum mechanics of leptons and fields. Springer. p. 54. ISBN 0-7923-10497.
- Cédric Lorcé (2009). "Electromagnetic Properties for Arbitrary Spin Particles: Part 1 − Electromagnetic Current and Multipole Decomposition" (PDF). Mainz, Germany. arXiv:0901.4199v1.
- Cédric Lorcé (2009). "Electromagnetic Properties for Arbitrary Spin Particles: Part 2 − Natural Moments and Transverse Charge Densities" (PDF). Mainz, Germany. arXiv:0901.4200v1.
- L.H. Ryder (1996). Quantum Field Theory (2nd ed.). Cambridge University Press. p. 62. ISBN 0-52147-8146.
- S.M. Troshin, N.E. Tyurin (1994). Spin phenomena in particle interactions. World Scientific. ISBN 9-81021-6920.
- Bargmann, V.; Wigner, E. P. (1948). "Group theoretical discussion of relativistic wave equations". Proc. Natl. Sci. U. S. A. 34 (5): 211–23.
- E. Wigner (1937). "On Unitary Representations Of The Inhomogeneous Lorentz Group" (PDF). Annals of Mathematics. 40 (1): 149.
- P.A.M. Dirac (1964). Lectures on Quantum Mechanics. Courier Dover Publications. ISBN 0-48641-7131.
- B. Thaller (2010). The Dirac Equation. Springer. ISBN 3-64208-1347.
- W. Pauli (1980). General Principles of Quantum Mechanics. Springer. ISBN 3-54009-8429.
- E. Merzbacher (1998). Quantum Mechanics (3rd ed.). ISBN 0-471-887-021.
- A. Messiah (1961). Quantum Mechanics. Vol. 1. John Wiley & Sons Inc. ISBN 047159766X.
- J.D. Bjorken, S.D. Drell (1964). Relativistic Quantum Mechanics (Pure & Applied Physics). McGraw-Hill. ISBN 007-0054-932.
- R.P. Feynman, R.B. Leighton, M. Sands (1965). Feynman Lectures on Physics. Vol. 3. Addison-Wesley. ISBN 0-201-02118-8.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - L.I. Schiff (1968). Quantum Mechanics (3rd ed.). McGraw-Hill.
- F. Dyson (2011). Advanced Quantum Mechanics (2nd ed.). World Scientific. ISBN 981-4383-406.
- R.K. Clifton (2011). Perspectives on Quantum Reality: Non-Relativistic, Relativistic, and Field-Theoretic. Springer. ISBN 9-0481-46437.
- C. Tannoudji, B.Diu, F.Laloë (1977). Quantum Mechanics. Vol. 1. Wiley VCH. ISBN 047-116-433-X.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - C. Tannoudji, B.Diu, F.Laloë (1977). Quantum Mechanics. Vol. 2. Wiley VCH. ISBN 047-1164-356.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - A.I.M Rae (2008). Quantum Mechanics. Vol. 2 (5th ed.). Taylor & Francis Group. ISBN 1-5848-89705.
- H. Pilkuhn (2005). Relativistic Quantum Mechanics. Texts and Monographs in Physics Series (2nd ed.). Springer. ISBN 3-54028-5229.
- R. Parthasarathy (2010). Relativistic quantum mechanics. Alpha Science International. ISBN 1-84265-5736.
- U. Kaldor, S.Wilson (2003). Theoretical Chemistry and Physics of Heavy and Superheavy Elements. Springer. ISBN 1-4020-1371-X.
- B. Thaller (2005). Advanced visual quantum mechanics. Springer. ISBN 0-38727-1279.
- H.P. Breuer, F.Petruccione (2000). Relativistic Quantum Measurement and Decoherence. Istituto Italiono Per Gli Studi Filosofici, Naples: Springer. ISBN 3-54041-0619.
- P.J. Shepherd (2013). A Course in Theoretical Physics. John Wiley & Sons. ISBN 1-1185-16923.
- H.A. Bethe, R.W. Jackiw (1997). Intermediate Quantum Mechanics. Addison-Wesley. ISBN 0-2013-28313.
- W. Heitler (1954). The Quantum Theory of Radiation (3rd ed.). Courier Dover Publications. ISBN 0-48664-5584.
- K. Gottfried, T. Yan (2003). Quantum Mechanics: Fundamentals (2nd ed.). Springer. p. 245. ISBN 0-38795-5763.
- F.Schwabl (2010). Quantum Mechanics. Springer. p. 220. ISBN 3-54071-9334.
- R.G. Sachs (1987). The Physics of Time Reversal (2nd ed.). University of Chicago Press. ISBN 022-6733-319.
- P.A.M Dirac (1932). "Relativistic Quantum Mechanics" (PDF). Proc. R. Soc. London, A. 136. doi:10.1098/rspa.1932.0094.
- W. Pauli (1945). "Exclusion principle and quantum mechanics" (PDF).
- J.P. Antoine (2004). "Relativistic Quantum Mechanics". J. Phys. A: Math. Gen. Vol. 37. IoP. doi:10.1088/0305-4470/37/4/B01.
- M. Henneaux, C. Teitelboim (1982). "Relativistic quantum mechanics of supersymmetric particles". Vol. 143. Austin, Texas.
- J.R. Fanchi (1986). "Parametrizing relativistic quantum mechanics". Phys. Rev. A. Vol. 34. Littleton, Colorado. doi:10.1103/PhysRevA.34.1677.
- G N Ord (1983). "Fractal space-time: a geometric analogue of relativistic quantum mechanics". J. Phys. A: Math. Gen. Vol. 16. IoP. doi:10.1088/0305-4470/16/9/012.
- F. Coester, W. N. Polyzou (1982). Relativistic quantum mechanics of particles with direct interactions. Vol. 26. doi:10.1103/PhysRevD.26.1348.
{{cite book}}
:|journal=
ignored (help) - R.B. Mann, T.C. Ralph (2012). "Relativistic quantum information". Class. Quantum Grav. Vol. 29. IoP. doi:10.1088/0264-9381/29/22/220301.
- S.G. Low (1997). "Canonically Relativistic Quantum Mechanics: Representations of the Unitary Semidirect Heisenberg Group, U(1,3) *s H(1,3)". J.Math.Phys. Vol. 38. arXiv:physics/9703008. doi:10.1088/0264-9381/29/22/220301.
- C. Fronsdal, L.E. Lundberg (1970). "Relativistic Quantum Mechanics of Two Interacting Particles". Phys. Rev. D. Vol. 1. arXiv:physics/9703008. doi:10.1103/PhysRevD.1.3247.
- V.A. Bordovitsyn, A.N. Myagkii. "Spin-orbital motion and Thomas precession in the classical and quantum theories" (PDF). Tomsk, Russia. doi:10.1119/1.1615526.</ref>
- K. Rȩbilas (2013). "Comment on 'Elementary analysis of the special relativistic combination of velocities, Wigner rotation and Thomas precession'". Eur. J. Phys. Vol. 34. Kraków, Poland: IoP. doi:10.1088/0143-0807/34/3/L55.
- H.C. Corben (1993). "Factors of 2 in magnetic moments, spin–orbit coupling, and Thomas precession". Am. J. Phys. Vol. 61. Mississippi, USA: IoP. p. 551.
- W.E. Lamb, Jr. and R.C. Retherford (1950). "Fine Structure of the Hydrogen Atom. Part I". Phys. Rev. 79. Columbia, New York. doi:10.1103/PhysRev.79.549.
- W.E. Lamb, Jr. and R.C. Retherford (1951). "Fine Structure of the Hydrogen Atom. Part II". Phys. Rev. 81. Columbia, New York. doi:10.1103/PhysRev.81.222.
- W.E. Lamb, Jr. (1952). "Fine Structure of the Hydrogen Atom. III". Phys. Rev. 85. Columbia, New York. doi:10.1103/PhysRev.85.259.
- W.E. Lamb, Jr. and R.C. Retherford (1952). "Fine Structure of the Hydrogen Atom. IV". Phys. Rev. 86. Columbia, New York. doi:10.1103/PhysRev.86.1014.
- S. Triebwasser, E.S. Dayhoff, and W.E. Lamb, Jr. (1953). "Fine Structure of the Hydrogen Atom. V". Phys. Rev. 89. Columbia, New York. doi:10.1103/PhysRev.89.98.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)
- Richard Herrmann (2011). "9". Fractional Calculus, An Introduction for Physicists. World Scientific. ISBN 981 4340 24 3.
- K.Joseph; et al. (2012). Fractional Dynamics: Recent Advances. World Scientific. p. 426. ISBN 981-434-059-6.
{{cite book}}
: Explicit use of et al. in:|author=
(help)
- J.S. Moreno (2008). Progress in Statistical Mechanics Research. Nova Publishers. p. 10. ISBN 160-456-028-2.
- L. Debnath (2005). Nonlinear partial differential equations for scientists and engineers (2nd ed.). Springer. p. 126-127. ISBN 0-817-643-230.
- T. Myint U., L. Debnath (2007). Linear partial differential equations for scientists and engineers (4th ed.). Springer. p. 520. ISBN 0-817-645-608.
- Issues in Applied Mathematics. Scholarly Editions. 2012. ISBN 146-496-507-2.
- "8". Issues in General Physics Research. Scholarly Editions. 2012. ISBN 146-496-328-2.
- V.E. Tarasov (2010). "19". Fractional dynamics. Nonlinear physical science. Vol. 0. Springer. ISBN 3-642-140-033.
- J. Sabatier, O.P.Agrawal, J.A.T.Machado (2007). Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer. ISBN 1-402-060-424.
{{cite book}}
: CS1 maint: multiple names: authors list (link)
- D. Baleanu, J.A.T. Machado, A.C.J. Luo (2012). "17". Fractional Dynamics and Control. Springer. ISBN 1-461-404-576.
{{cite book}}
: CS1 maint: multiple names: authors list (link)
- Bargmann, V.; Wigner, E. P. (1948). "Group theoretical discussion of relativistic wave equations". Proc. Natl. Sci. U. S. A. 34 (5): 211–23.
- E. Wigner (1937). "On Unitary Representations Of The Inhomogeneous Lorentz Group" (PDF). Annals of Mathematics. 40 (1): 149.
- E.A. Jeffery (1978). "Component Minimization of the Bargman–Wigner wavefunction" (PDF). Australian Journal of Physics. Melbourne: CSIRO.
- T. Jaroszewicz, P.S Kurzepa (1992). "Geometry of spacetime propagation of spinning particles". Annals of Physics. California, USA.
- H. Shi-Zhong, R. Tu-Nan, W. Ning, Z. Zhi-Peng (2002). "Wavefunctions for Particles with Arbitrary Spin". Beijing, China: International Academic Publishers.
{{cite news}}
: CS1 maint: multiple names: authors list (link) - C.R. Hagen (1970). "The Bargmann–Wigner method in Galilean relativity". Springer. California, USA.
- Weinberg, S. (1964). "Feynman Rules for Any spin" (PDF). Phys. Rev. 133 (5B): B1318–B1332. Bibcode:1964PhRv..133.1318W. doi:10.1103/PhysRev.133.B1318.
- Weinberg, S. (1964). "Feynman Rules for Any spin. II. Massless Particles" (PDF). Phys. Rev. 134 (4B): B882–B896. Bibcode:1964PhRv..134..882W. doi:10.1103/PhysRev.134.B882.
- Weinberg, S. (1969). "Feynman Rules for Any spin. III" (PDF). Phys. Rev. 181 (5): 1893–1899. Bibcode:1969PhRv..181.1893W. doi:10.1103/PhysRev.181.1893.
- Gábor Zsolt Tóth (2012). "Projection operator approach to the quantization of higher spin fields" (PDF). Budapest, Hungary: International Academic Publishers. pp. 37–40. arXiv:1209.5673v1.
- V.V. Dvoeglazov (2003). "Generalizations of the Dirac Equation and the Modified Bargmann–Wigner Formalism" (PDF). arXiv:hep-th/0208159.
- D. Shay (1968). "A Lagrangian formulation of the Joos–Weinberg wave equations for spin-j particles".
- R.K Loide, I.Ots, R. Saar (2001). "Generalizations of the Dirac equation in covariant and Hamiltonian form". Journal of Physics A: Mathematical and General. Tallinn, Estonia: IoP.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Weinberg, S, The Quantum Theory of Fields, vol II
- Weinberg, S, The Quantum Theory of Fields, vol III
- R. Penrose (2007). The Road to Reality. Vintage books. ISBN 0-679-77631-1.
- E.N. Lorenz (1941). "A Generalization of the Dirac Equations". Harvard, USA: Harvard University.
- I.I. Guseinov (2012). "Use of group theory and Clifford algebra in the study of generalized Dirac equation for particles with arbitrary spin" (PDF). Çanakkale, Turkey. arXiv:0805.1856.
- V. V. Dvoeglazov (2011). "The modified Bargmann-Wigner formalism for higher spin fields and relativistic quantum mechanics". Zacatecas, Mexico.
- D.N. Williams (2008). "The Dirac Algebra for Any Spin". Zürich, Switzerland: University of Colorado Press.
- H. Shi-Zhong, Z. Peng-Fei, R. Tu-Nan, Z. Yu-Can, Z. Zhi-Peng (2004). "Projection Operator and Feynman Propagator for a Free Massive Particle of Arbitrary Spin". Communications in Theoretical Physics. Beijing, China: International Academic Publishers.
{{cite news}}
: CS1 maint: multiple names: authors list (link) - V. P. Neznamov (2004). "On the theory of interacting fields in Foldy-Wouthuysen representation" (PDF). arXiv:hep-th/0411050.
- H. Stumpf (2004). "Generalized de Broglie–Bargmann–Wigner Equations, a Modern Formulation of de Broglie's Fusion Theory" (PDF). Tuebingen, Germany: Institute of Theoretical Physics.
- D.G.C. McKeon, T.N. Sherry (2004). "The Bargmann–Wigner Equations in Spherical Space" (PDF). arXiv:hep-th/0411090v1.
- R.Clarkson, D.G.C. McKeon (2003). "Quantum Field Theory" (PDF). pp. 61–69.
- H. Stumpf (2002). "Eigenstates of Generalized de Broglie–Bargmann–Wigner Equations for Photons with Partonic Substructure" (PDF). Tuebingen, Germany: Institute of Theoretical Physics.
- B. Schroer (1997). "Wigner Representation Theory of the Poincaré Group, Localization , Statistics and the S-Matrix" (PDF). Berlin, Germany. arXiv:hep-th/9608092v3.
- V. V. Dvoeglazov (1993). "Lagrangian Formulation of the Joos–Weinberg's 2(2j+1)–theory and Its Connection with the Skew-Symmetric Tensor Description" (PDF). Saratov, Mexico. arXiv:hep-th/9305141.
- E. Elizalde, J.A. Lobo (1980). "From Galilean-invariant to relativistic wave eqautions" (PDF). Physical Review D. Barcelona, Spain: American Physical Society.
- D.V. Ahluwalia (1997). "Book Review: The Quantum Theory of Fields Vol. I and II by S. Weinberg" (PDF). New Mexico and Los Alamos, USA. arXiv:physics/9704002v2.
- J.A. Morgan (2004). "Parity and the Spin-Statistics Connection" (PDF). arXiv:physics/0410037v1.
- M.A. Rodriguez (1984). "Some results about the relationship between Bargmann–Wigner and Gelfand–Yaglom equations". Reports on Mathematical Physics. Madrid, Spain: Elsevier.
- D. S. Kaparulin, S. L. Lyakhovich, A. A. Sharapov (2012). "Lagrange Anchor for Bargmann–Wigner equations" (PDF). arXiv:1210.2134.
{{cite journal}}
: Cite journal requires|journal=
(help)CS1 maint: multiple names: authors list (link)
- M. Arminjon, F. Reifler (2013). "Equivalent forms of Dirac equations in curved spacetimes and generalized de Broglie relations". Grenoble, France. arXiv:1103.3201.
{{cite news}}
: line feed character in|title=
at position 46 (help)
- M.D. Pollock (2010). "on the dirac equation in curved space-time" (PDF). Acta Physica Polonica B. Vol. 41. Moscow, Russia.
- J.V. Dongen (2010). Einstein's Unification. Cambridge University Press. p. 117. ISBN 0-521-883-466.
- L. Parker, D. Toms (2009). Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity. Cambridge University Press. p. 227. ISBN 0-521-877-873.
- S.A. Fulling (1989). Aspects of Quantum Field Theory in Curved Spacetime. Cambridge University Press. ISBN 0-521-377-684.
Group theory in quantum physics
edit- H. Weyl (1950). The theory of groups and quantum mechanics. Courier Dover Publications. p. 203.
- W.K. Tung (1985). Group Theory in Physics. World Scientific. ISBN 997-1966-565.
- V. Heine (1993). Group Theory in Quantum Mechanics: An Introduction to Its Present Usage. Courier Dover Publications. ISBN 048-6675-858.
- M. Neubert (1996). "QCD sum-rule calculation of the kinetic energy and chromo-interaction of heavy quarks inside mesons" (PDF). Physics Letters B. CERN, Geneva, Switzerland: Elsevier.
{{cite news}}
: Cite has empty unknown parameter:|1=
(help) - W. Greiner, G. Schäfer (1994). "4". Quantum Chromodynamics. Springer. ISBN 3-540-57103-5.
{{cite book}}
: Cite has empty unknown parameter:|1=
(help) - H. Fritzsch (1982). Quarks: the stuff of matter. Allen lane. ISBN 0-7139-15331.
- B.R. Martin, G. Shaw (2009). Particle Physics. Manchester Physics Series (3rd ed.). John Wiley & Sons. ISBN 978-0-470-03294-7.
- S. Sarkar, H. Satz, B. Sinha (2009). The Physics of the Quark-Gluon Plasma: Introductory Lectures. Springer. ISBN 3642022855.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - S.O. Bilson-Thompson, D.B. Leinweber, A.G. Williams (2003). "Highly improved lattice field-strength tensor". Annals of Physics. Vol. 304(1). Adelaide, Australia: Elsevier. p. 1-21.
{{cite news}}
: Cite has empty unknown parameter:|arXiv=
(help)CS1 maint: multiple names: authors list (link) - M. Eidemüller, H.G. Dosch, M. Jamin (1999). "The field strength correlator from QCD sum rules" (PDF). Nucl.Phys.Proc.Suppl.86:421-425,2000. Heidelberg, Germany. arXiv:hep-ph/9908318.
{{cite news}}
: Cite has empty unknown parameter:|1=
(help)CS1 maint: multiple names: authors list (link) - M. Shifman (2012). Advanced Topics in Quantum Field Theory: A Lecture Course. Cambridge University Press. ISBN 0521190843.
- J. Thanh Van Tran (editor) (1987). Hadrons, Quarks and Gluons: Proceedings of the Hadronic Session of the Twenty-Second Rencontre de Moriond, Les Arcs-Savoie-France. Atlantica Séguier Frontières. ISBN 2863320483.
{{cite book}}
:|author=
has generic name (help) - R. Alkofer, H. Reinhart (1995). Chiral Quark Dynamics. Springer. ISBN 3540601376.
- K. Chung (2008). Hadronic Production of ψ(2S) Cross Section and Polarization. ProQuest. ISBN 0549597743.
- J. Collins (2011). Foundations of Perturbative QCD. Cambridge University Press. ISBN 0521855330.
- W.N.A. Cottingham, D.A.A. Greenwood (1998). Standard Model of Particle Physics. Cambridge University Press. ISBN 0521588324.
- J.P. Maa, Q. Wang, G.P. Zhang (2012). "QCD evolutions of twist-3 chirality-odd operators". Physics Letters B. Beijing, China: Elsevier.
{{cite news}}
: Cite has empty unknown parameter:|1=
(help)CS1 maint: multiple names: authors list (link) - M. D’Elia, A. Di Giacomo, E. Meggiolaro (1997). "Field strength correlators in full QCD" (PDF). Physics Letters B. Pisa, Italy. arXiv:hep-lat/9705032.
{{cite news}}
: Cite has empty unknown parameter:|1=
(help)CS1 maint: multiple names: authors list (link) - A. Di Giacomo, M. D’elia, H. Panagopoulos, E. Meggiolaro (1998). "Gauge Invariant Field Strength Correlators In QCD" (PDF). Pisa (Italy), Nicosia (Cyprus), Heidelberg (Germany). arXiv:hep-lat/9808056.
{{cite news}}
: Cite has empty unknown parameter:|1=
(help)CS1 maint: multiple names: authors list (link) - M. Neubert (1993). "A Virial Theorem for the Kinetic Energy of a Heavy Quark inside Hadrons" (PDF). Physics Letters B. Geneva (CERN), Switzerland. arXiv:hep-ph/9311232.
{{cite news}}
: Cite has empty unknown parameter:|1=
(help) - M. Neubert, N. Brambilla, H.G. Dosch, A. Vairo (1998). "Field strength correlators and dual effective dynamics in QCD". Physical Review D. Washington, USA. arXiv:hep-ph/9311232. doi:10.1103/PhysRevD.58.034010.
{{cite news}}
: Cite has empty unknown parameter:|1=
(help)CS1 maint: multiple names: authors list (link)