Geometric algebra

The geometric algebra (GA) of a vector space is an algebra over a field, noted for its multiplication operation called the geometric product on a space of elements called multivectors, which contains both the scalars and the vector space . Mathematically, a geometric algebra may be defined as the Clifford algebra of a vector space with a quadratic form. Clifford's contribution was to define a new product, the geometric product, that united the Grassmann and Hamilton algebras into a single structure. Adding the dual of the Grassmann exterior product (the "meet") allows the use of the Grassmann–Cayley algebra, and a conformal version of the latter together with a conformal Clifford algebra yields a conformal geometric algebra (CGA) providing a framework for classical geometries.[1] In practice, these and several derived operations allow a correspondence of elements, subspaces and operations of the algebra with geometric interpretations.

The scalars and vectors have their usual interpretation, and make up distinct subspaces of a GA. Bivectors provide a more natural representation of the pseudovector quantities in vector algebra such as oriented area, oriented angle of rotation, torque, angular momentum, electromagnetic field and the Poynting vector. A trivector can represent an oriented volume, and so on. An element called a blade may be used to represent a subspace of and orthogonal projections onto that subspace. Rotations and reflections are represented as elements. Unlike vector algebra, a GA naturally accommodates any number of dimensions and any quadratic form such as in relativity.

Examples of geometric algebras applied in physics include the spacetime algebra (and the less common algebra of physical space) and the conformal geometric algebra. Geometric calculus, an extension of GA that incorporates differentiation and integration, can be used to formulate other theories such as complex analysis and differential geometry, e.g. by using the Clifford algebra instead of differential forms. Geometric algebra has been advocated, most notably by David Hestenes[2] and Chris Doran,[3] as the preferred mathematical framework for physics. Proponents claim that it provides compact and intuitive descriptions in many areas including classical and quantum mechanics, electromagnetic theory and relativity.[4] GA has also found use as a computational tool in computer graphics[5] and robotics.

The geometric product was first briefly mentioned by Hermann Grassmann,[6] who was chiefly interested in developing the closely related exterior algebra. In 1878, William Kingdon Clifford greatly expanded on Grassmann's work to form what are now usually called Clifford algebras in his honor (although Clifford himself chose to call them "geometric algebras"). For several decades, geometric algebras went somewhat ignored, greatly eclipsed by the vector calculus then newly developed to describe electromagnetism. The term "geometric algebra" was repopularized in the 1960s by Hestenes, who advocated its importance to relativistic physics.[7]

Definition and notationEdit

There are a number of different ways to define a geometric algebra. Hestenes's original approach was axiomatic,[8] "full of geometric significance" and equivalent to the universal Clifford algebra.[9] Given a finite-dimensional quadratic space   over a field   with a symmetric bilinear form (the inner product, e.g. the Euclidean or Lorentzian metric)  , the geometric algebra for this quadratic space is the Clifford algebra  . As usual in this domain, for the remainder of this article, only the real case,  , will be considered. The notation   (respectively  ) will be used to denote a geometric algebra for which the bilinear form   has the signature   (respectively  ).

The essential product in the algebra is called the geometric product, and the product in the contained exterior algebra is called the exterior product (frequently called the wedge product and less often the outer product[a]). It is standard to denote these respectively by juxtaposition (i.e., suppressing any explicit multiplication symbol) and the symbol  . The above definition of the geometric algebra is abstract, so we summarize the properties of the geometric product by the following set of axioms. The geometric product has the following properties, for  :

 , where   is the identity element (existence of an identity element)
  and   (distributivity)
 , where   is any element of the subspace   of the algebra.

The exterior product has the same properties, except that the last property above is replaced by   for  .

Note that in the last property above, the real number   need not be nonnegative if   is not positive-definite. An important property of the geometric product is the existence of elements having a multiplicative inverse. For a vector  , if   then   exists and is equal to  . A nonzero element of the algebra does not necessarily have a multiplicative inverse. For example, if   is a vector in   such that  , the element   is both a nontrivial idempotent element and a nonzero zero divisor, and thus has no inverse.[b]

It is usual to identify   and   with their images under the natural embeddings   and  . In this article, this identification is assumed. Throughout, the terms scalar and vector refer to elements of   and   respectively (and of their images under this embedding).

The geometric productEdit

Given two vectors   and  , if the geometric product   is[10] anticommutative; they are perpendicular (top) because  , if it is commutative; they are parallel (bottom) because  .
Orientation defined by an ordered set of vectors.
Reversed orientation corresponds to negating the exterior product.
Geometric interpretation of grade-  elements in a real exterior algebra for   (signed point),   (directed line segment, or vector),   (oriented plane element),   (oriented volume). The exterior product of   vectors can be visualized as any  -dimensional shape (e.g.  -parallelotope,  -ellipsoid); with magnitude (hypervolume), and orientation defined by that on its  -dimensional boundary and on which side the interior is.[11][12]

For vectors   and  , we may write the geometric product of any two vectors   and   as the sum of a symmetric product and an antisymmetric product:


Thus we can define the inner product[c] of vectors as


so that the symmetric product can be written as


Conversely,   is completely determined by the algebra. The antisymmetric part is the exterior product of the two vectors, the product of the contained exterior algebra:


Then by simple addition:

  the ungeneralized or vector form of the geometric product.

The inner and exterior products are associated with familiar concepts from standard vector algebra. Geometrically,   and   are parallel if their geometric product is equal to their inner product, whereas   and   are perpendicular if their geometric product is equal to their exterior product. In a geometric algebra for which the square of any nonzero vector is positive, the inner product of two vectors can be identified with the dot product of standard vector algebra. The exterior product of two vectors can be identified with the signed area enclosed by a parallelogram the sides of which are the vectors. The cross product of two vectors in   dimensions with positive-definite quadratic form is closely related to their exterior product.

Most instances of geometric algebras of interest have a nondegenerate quadratic form. If the quadratic form is fully degenerate, the inner product of any two vectors is always zero, and the geometric algebra is then simply an exterior algebra. Unless otherwise stated, this article will treat only nondegenerate geometric algebras.

The exterior product is naturally extended as an associative bilinear binary operator between any two elements of the algebra, satisfying the identities


where the sum is over all permutations of the indices, with   the sign of the permutation, and   are vectors (not general elements of the algebra). Since every element of the algebra can be expressed as the sum of products of this form, this defines the exterior product for every pair of elements of the algebra. It follows from the definition that the exterior product forms an alternating algebra.

Blades, grades, and canonical basisEdit

A multivector that is the exterior product of   linearly independent vectors is called a blade, and is said to be of grade  .[e] A multivector that is the sum of blades of grade   is called a (homogeneous) multivector of grade  . From the axioms, with closure, every multivector of the geometric algebra is a sum of blades.

Consider a set of   linearly independent vectors   spanning an  -dimensional subspace of the vector space. With these, we can define a real symmetric matrix (in the same way as a Gramian matrix)


By the spectral theorem,   can be diagonalized to diagonal matrix   by an orthogonal matrix   via


Define a new set of vectors  , known as orthogonal basis vectors, to be those transformed by the orthogonal matrix:


Since orthogonal transformations preserve inner products, it follows that   and thus the   are perpendicular. In other words, the geometric product of two distinct vectors   is completely specified by their exterior product, or more generally


Therefore, every blade of grade   can be written as a geometric product of   vectors. More generally, if a degenerate geometric algebra is allowed, then the orthogonal matrix is replaced by a block matrix that is orthogonal in the nondegenerate block, and the diagonal matrix has zero-valued entries along the degenerate dimensions. If the new vectors of the nondegenerate subspace are normalized according to


then these normalized vectors must square to   or  . By Sylvester's law of inertia, the total number of  s and the total number of  s along the diagonal matrix is invariant. By extension, the total number   of these vectors that square to   and the total number   that square to   is invariant. (The total number of basis vectors that square to zero is also invariant, and may be nonzero if the degenerate case is allowed.) We denote this algebra  . For example,   models  -dimensional Euclidean space,   relativistic spacetime and   a conformal geometric algebra of a  -dimensional space.

The set of all possible products of   orthogonal basis vectors with indices in increasing order, including   as the empty product, forms a basis for the entire geometric algebra (an analogue of the PBW theorem). For example, the following is a basis for the geometric algebra  :


A basis formed this way is called a canonical basis for the geometric algebra, and any other orthogonal basis for   will produce another canonical basis. Each canonical basis consists of   elements. Every multivector of the geometric algebra can be expressed as a linear combination of the canonical basis elements. If the canonical basis elements are   with   being an index set, then the geometric product of any two multivectors is


The terminology " -vector" is often encountered to describe multivectors containing elements of only one grade. In higher dimensional space, some such multivectors are not blades (cannot be factored into the exterior product of   vectors). By way of example,   in   cannot be factored; typically, however, such elements of the algebra do not yield to geometric interpretation as objects, although they may represent geometric quantities such as rotations. Only   and  -vectors are always blades in  -space.

Grade projectionEdit

Using an orthogonal basis, a graded vector space structure can be established. Elements of the geometric algebra that are scalar multiples of   are grade-  blades and are called scalars. Multivectors that are in the span of   are grade-  blades and are the ordinary vectors. Multivectors in the span of   are grade-  blades and are the bivectors. This terminology continues through to the last grade of  -vectors. Alternatively, grade-  blades are called pseudoscalars, grade-  blades pseudovectors, etc. Many of the elements of the algebra are not graded by this scheme since they are sums of elements of differing grade. Such elements are said to be of mixed grade. The grading of multivectors is independent of the basis chosen originally.

This is a grading as a vector space, but not as an algebra. Because the product of an  -blade and an  -blade is contained in the span of   through  -blades, the geometric algebra is a filtered algebra.

A multivector   may be decomposed with the grade-projection operator  , which outputs the grade-  portion of  . As a result:


As an example, the geometric product of two vectors   since   and   and  , for   other than   and  .

The decomposition of a multivector   may also be split into those components that are even and those that are odd:


This is the result of forgetting structure from a  -graded vector space to  -graded vector space. The geometric product respects this coarser grading. Thus in addition to being a  -graded vector space, the geometric algebra is a  -graded algebra or superalgebra.

Restricting to the even part, the product of two even elements is also even. This means that the even multivectors defines an even subalgebra. The even subalgebra of an  -dimensional geometric algebra is isomorphic (without preserving either filtration or grading) to a full geometric algebra of   dimensions. Examples include   and  .

Representation of subspacesEdit

Geometric algebra represents subspaces of   as blades, and so they coexist in the same algebra with vectors from  . A  -dimensional subspace   of   is represented by taking an orthogonal basis   and using the geometric product to form the blade  . There are multiple blades representing  ; all those representing   are scalar multiples of  . These blades can be separated into two sets: positive multiples of   and negative multiples of  . The positive multiples of   are said to have the same orientation as  , and the negative multiples the opposite orientation.

Blades are important since geometric operations such as projections, rotations and reflections depend on the factorability via the exterior product that (the restricted class of)  -blades provide but that (the generalized class of) grade-  multivectors do not when  .

Unit pseudoscalarsEdit

Unit pseudoscalars are blades that play important roles in GA. A unit pseudoscalar for a non-degenerate subspace   of   is a blade that is the product of the members of an orthonormal basis for  . It can be shown that if   and   are both unit pseudoscalars for  , then   and  . If one doesn't choose an orthonormal basis for  , then the Plucker embedding gives a vector in the exterior algebra but only up to scaling. Using the vector space isomorphism between the geometric algebra and exterior algebra, this gives the equivalence class of   for all  . Orthonormality gets rid of this ambiguity except for the signs above.

Suppose the geometric algebra   with the familiar positive definite inner product on   is formed. Given a plane ( -dimensional subspace) of  , one can find an orthonormal basis   spanning the plane, and thus find a unit pseudoscalar   representing this plane. The geometric product of any two vectors in the span of   and   lies in  , that is, it is the sum of a  -vector and a  -vector.

By the properties of the geometric product,  . The resemblance to the imaginary unit is not incidental: the subspace   is  -algebra isomorphic to the complex numbers. In this way, a copy of the complex numbers is embedded in the geometric algebra for each 2-dimensional subspace of   on which the quadratic form is definite.

It is sometimes possible to identify the presence of an imaginary unit in a physical equation. Such units arise from one of the many quantities in the real algebra that square to  , and these have geometric significance because of the properties of the algebra and the interaction of its various subspaces.

In  , a further familiar case occurs. Given a canonical basis consisting of orthonormal vectors   of  , the set of all  -vectors is spanned by


Labelling these  ,   and   (momentarily deviating from our uppercase convention), the subspace generated by  -vectors and  -vectors is exactly  . This set is seen to be the even subalgebra of  , and furthermore is isomorphic as an  -algebra to the quaternions, another important algebraic system.

Dual basisEdit

Let   be a basis of  , i.e. a set of   linearly independent vectors that span the  -dimensional vector space  . The basis that is dual to   is the set of elements of the dual vector space   that forms a biorthogonal system with this basis, thus being the elements denoted   satisfying


where   is the Kronecker delta.

Given a nondegenerate quadratic form on  ,   becomes naturally identified with  , and the dual basis may be regarded as elements of  , but are not in general the same set as the original basis.

Given further a GA of  , let


be the pseudoscalar (which does not necessarily square to  ) formed from the basis  . The dual basis vectors may be constructed as


where the   denotes that the  th basis vector is omitted from the product.

Extensions of the inner and exterior productsEdit

It is common practice to extend the exterior product on vectors to the entire algebra. This may be done through the use of the grade projection operator:

      (the exterior product)

This generalization is consistent with the above definition involving antisymmetrization. Another generalization related to the exterior product is the commutator product:

      (the commutator product)

The regressive product (usually referred to as the "meet") is the dual of the exterior product (or "join" in this context).[f] The dual specification of elements permits, for blades   and  , the intersection (or meet) where the duality is to be taken relative to the smallest grade blade containing both   and   (the join).[14]


with   the unit pseudoscalar of the algebra. The regressive product, like the exterior product, is associative.[15]

The inner product on vectors can also be generalized, but in more than one non-equivalent way. The paper (Dorst 2002) gives a full treatment of several different inner products developed for geometric algebras and their interrelationships, and the notation is taken from there. Many authors use the same symbol as for the inner product of vectors for their chosen extension (e.g. Hestenes and Perwass). No consistent notation has emerged.

Among these several different generalizations of the inner product on vectors are:

    (the left contraction)
    (the right contraction)
    (the scalar product)
    (the "(fat) dot" product)[g]

Dorst (2002) makes an argument for the use of contractions in preference to Hestenes's inner product; they are algebraically more regular and have cleaner geometric interpretations. A number of identities incorporating the contractions are valid without restriction of their inputs. For example,


Benefits of using the left contraction as an extension of the inner product on vectors include that the identity   is extended to   for any vector   and multivector  , and that the projection operation   is extended to   for any blade   and any multivector   (with a minor modification to accommodate null  , given below).

Linear functionsEdit

Although a versor is easier to work with because it can be directly represented in the algebra as a multivector, versors are a subgroup of linear functions on multivectors, which can still be used when necessary. The geometric algebra of an  -dimensional vector space is spanned by a basis of   elements. If a multivector is represented by a   real column matrix of coefficients of a basis of the algebra, then all linear transformations of the multivector can be expressed as the matrix multiplication by a   real matrix. However, such a general linear transformation allows arbitrary exchanges among grades, such as a "rotation" of a scalar into a vector, which has no evident geometric interpretation.

A general linear transformation from vectors to vectors is of interest. With the natural restriction to preserving the induced exterior algebra, the outermorphism of the linear transformation is the unique[h] extension of the versor. If   is a linear function that maps vectors to vectors, then its outermorphism is the function that obeys the rule


for a blade, extended to the whole algebra through linearity.

Modeling geometriesEdit

Although a lot of attention has been placed on CGA, it is to be noted that GA is not just one algebra, it is one of a family of algebras with the same essential structure.[16]

Vector space modelEdit

  may be considered as an extension or completion of vector algebra. From Vectors to Geometric Algebra covers basic analytic geometry and gives an introduction to stereographic projection.[17]

The even subalgebra of   is isomorphic to the complex numbers, as may be seen by writing a vector   in terms of its components in an orthonormal basis and left multiplying by the basis vector  , yielding


where we identify   since


Similarly, the even subalgebra of   with basis   is isomorphic to the quaternions as may be seen by identifying  ,   and  .

Every associative algebra has a matrix representation; replacing the three Cartesian basis vectors by the Pauli matrices gives a representation of  :


Dotting the "Pauli vector" (a dyad):

  with arbitrary vectors   and   and multiplying through gives:
  (Equivalently, by inspection,   (  ×  ))

Spacetime modelEdit

In physics, the main applications are the geometric algebra of Minkowski 3+1 spacetime,  , called spacetime algebra (STA),[7] or less commonly,  , interpreted the algebra of physical space (APS).

While in STA points of spacetime are represented simply by vectors, in APS, points of  -dimensional spacetime are instead represented by paravectors: a  -dimensional vector (space) plus a  -dimensional scalar (time).

In spacetime algebra the electromagnetic field tensor has a bivector representation  .[18] Here, the   is the unit pseudoscalar (or four-dimensional volume element),   is the unit vector in time direction, and   and   are the classic electric and magnetic field vectors (with a zero time component). Using the four-current  , Maxwell's equations then become

Formulation Homogeneous equations Non-homogeneous equations
Potentials (any gauge)    
Potentials (Lorenz gauge)  



In geometric calculus, juxtapositioning of vectors such as in   indicate the geometric product and can be decomposed into parts as  . Here   is the covector derivative in any spacetime and reduces to   in flat spacetime. Where   plays a role in Minkowski  -spacetime which is synonymous to the role of   in Euclidean  -space and is related to the d'Alembertian by  . Indeed, given an observer represented by a future pointing timelike vector   we have


Boosts in this Lorentzian metric space have the same expression   as rotation in Euclidean space, where   is the bivector generated by the time and the space directions involved, whereas in the Euclidean case it is the bivector generated by the two space directions, strengthening the "analogy" to almost identity.

The Dirac matrices are a representation of  , showing the equivalence with matrix representations used by physicists.

Homogeneous modelEdit

The first model here is  , the GA version of homogeneous coordinates used in projective geometry. Here a vector represents a point and an outer product of vectors an oriented length yet we may work with the algebra in just the same way as in  . However, a useful inner product cannot be defined in the space and so there is no geometric product either leaving only outer product and non-metric uses of duality such as meet and join.

Nevertheless, there has been investigation of 4-dimensional alternatives to the full 5-dimensional CGA for limited geometries such as rigid body movements. A selection of these can be found in Part IV of Guide to Geometric Algebra in Practice.[19] Note that the algebra   appears as a subalgebra of CGA by selecting just one null basis vector and dropping the other and further that the "motor algebra" (isomorphic to dual quaternions) is the even subalgebra of  .

Conformal modelEdit

A compact description of the current state of the art is provided by Bayro-Corrochano & Scheuermann (2010), which also includes further references, in particular to Dorst, Fontijne & Mann (2007). Other useful references are Li (2008) and Bayro-Corrochano (2010).

Working within GA, Euclidean space   (along with a conformal point at infinity) is embedded projectively in the CGA   via the identification of Euclidean points with  -d subspaces in the  -d null cone of the  -d CGA vector subspace. This allows all conformal transformations to be done as rotations and reflections and is covariant, extending incidence relations of projective geometry to circles and spheres.

Specifically, we add orthogonal basis vectors   and   such that   and   to the basis of the vector space that generates   and identify null vectors

  as a conformal point at infinity (see Compactification) and
  as the point at the origin, giving

This procedure has some similarities to the procedure for working with homogeneous coordinates in projective geometry and in this case allows the modeling of Euclidean transformations of   as orthogonal transformations of a subset of  .

A fast changing and fluid area of GA, CGA is also being investigated for applications to relativistic physics.

Models for projective transformationEdit

Two potential candidates are currently under investigation as the foundation for affine and projective geometry in 3-dimensions  [20]and  [21] which includes representations for shears and non-uniform scaling, as well as quadric surfaces and conic sections.

A new research model, Quadric Conformal Geometric Algebra (QCGA)   is an extension of CGA, dedicated to quadric surfaces. The idea is to represent the objects in low dimensional subspaces of the algebra. QCGA is capable of constructing quadric surfaces either using control points or implicit equations. Moreover, QCGA can compute the intersection of quadric surfaces, as well as, the surface tangent and normal vectors at a point that lies in the quadric surface.[22]

Geometric interpretationEdit

Projection and rejectionEdit

In 3-d space, a bivector   defines a 2-d plane subspace (light blue, extends infinitely in indicated directions). Any vector   in 3-d space can be decomposed into its projection   onto a plane and its rejection   from this plane.

For any vector   and any invertible vector  ,


where the projection of   onto   (or the parallel part) is


and the rejection of   from   (or the orthogonal part) is


Using the concept of a  -blade   as representing a subspace of   and every multivector ultimately being expressed in terms of vectors, this generalizes to projection of a general multivector onto any invertible  -blade   as[i]


with the rejection being defined as


The projection and rejection generalize to null blades   by replacing the inverse   with the pseudoinverse   with respect to the contractive product.[j] The outcome of the projection coincides in both cases for non-null blades.[23][24] For null blades  , the definition of the projection given here with the first contraction rather than the second being onto the pseudoinverse should be used,[k] as only then is the result necessarily in the subspace represented by  .[23] The projection generalizes through linearity to general multivectors  .[l] The projection is not linear in   and does not generalize to objects   that are not blades.


Simple reflections in a hyperplane are readily expressed in the algebra through conjugation with a single vector. These serve to generate the group of general rotoreflections and rotations.

Reflection of vector   along a vector  . Only the component of   parallel to   is negated.

The reflection   of a vector   along a vector  , or equivalently in the hyperplane orthogonal to  , is the same as negating the component of a vector parallel to  . The result of the reflection will be


This is not the most general operation that may be regarded as a reflection when the dimension  . A general reflection may be expressed as the composite of any odd number of single-axis reflections. Thus, a general reflection   of a vector   may be written




If we define the reflection along a non-null vector   of the product of vectors as the reflection of every vector in the product along the same vector, we get for any product of an odd number of vectors that, by way of example,


and for the product of an even number of vectors that


Using the concept of every multivector ultimately being expressed in terms of vectors, the reflection of a general multivector   using any reflection versor   may be written


where   is the automorphism of reflection through the origin of the vector space ( ) extended through linearity to the whole algebra.


A rotor that rotates vectors in a plane rotates vectors through angle  , that is   is a rotation of   through angle  . The angle between   and   is  . Similar interpretations are valid for a general multivector   instead of the vector  .[10]

If we have a product of vectors   then we denote the reverse as


As an example, assume that   we get


Scaling   so that   then


so   leaves the length of   unchanged. We can also show that


so the transformation   preserves both length and angle. It therefore can be identified as a rotation or rotoreflection;   is called a rotor if it is a proper rotation (as it is if it can be expressed as a product of an even number of vectors) and is an instance of what is known in GA as a versor.

There is a general method for rotating a vector involving the formation of a multivector of the form   that produces a rotation   in the plane and with the orientation defined by a  -blade  .

Rotors are a generalization of quaternions to  -dimensional spaces.


A  -versor is a multivector that can be expressed as the geometric product of   invertible vectors.[m][26] Unit quaternions (originally called versors by Hamilton) may be identified with rotors in 3D space in much the same way as real 2D rotors subsume complex numbers; for the details refer to Dorst.[27]

Some authors use the term “versor product” to refer to the frequently occurring case where an operand is "sandwiched" between operators. The descriptions for rotations and reflections, including their outermorphisms, are examples of such sandwiching. These outermorphisms have a particularly simple algebraic form.[n] Specifically, a mapping of vectors of the form

  extends to the outermorphism  

Since both operators and operand are versors there is potential for alternative examples such as rotating a rotor or reflecting a spinor always provided that some geometrical or physical significance can be attached to such operations.

By the Cartan–Dieudonné theorem we have that every isometry can be given as reflections in hyperplanes and since composed reflections provide rotations then we have that orthogonal transformations are versors.

In group terms, for a real, non-degenerate  , having identified the group   as the group of all invertible elements of  , Lundholm gives a proof that the "versor group"   (the set of invertible versors) is equal to the Lipschitz group   (a.k.a. Clifford group, although Lundholm deprecates this usage).[28]

Subgroups of ΓEdit

Lundholm defines the  ,  , and   subgroups, generated by unit vectors, and in the case of   and  , only an even number of such vector factors can be present.[29]

Subgroup Definition Description
    unit versors
    even unit versors

Spinors are defined as elements of the even subalgebra of a real GA; an analysis of the GA approach to spinors is given by Francis and Kosowsky.[30]

Examples and applicationsEdit

Hypervolume of a parallelotope spanned by vectorsEdit

For vectors   and   spanning a parallelogram we have


with the result that   is linear in the product of the "altitude" and the "base" of the parallelogram, that is, its area.

Similar interpretations are true for any number of vectors spanning an  -dimensional parallelotope; the exterior product of vectors  , that is  , has a magnitude equal to the volume of the  -parallelotope. An  -vector does not necessarily have a shape of a parallelotope – this is a convenient visualization. It could be any shape, although the volume equals that of the parallelotope.

Intersection of a line and a planeEdit

A line L defined by points T and P (which we seek) and a plane defined by a bivector B containing points P and Q.

We may define the line parametrically by   where   and   are position vectors for points P and T and   is the direction vector for the line.







Rotating systemsEdit

The mathematical description of rotational forces such as torque and angular momentum often makes use of the cross product of vector calculus in three dimensions with a convention of orientation (handedness).

The cross product in relation to the exterior product. In red are the unit normal vector, and the "parallel" unit bivector.

The cross product can be viewed in terms of the exterior product allowing a more natural geometric interpretation of the cross product as a bivector using the dual relationship


For example, torque is generally defined as the magnitude of the perpendicular force component times distance, or work per unit angle.

Suppose a circular path in an arbitrary plane containing orthonormal vectors   and   is parameterized by angle.


By designating the unit bivector of this plane as the imaginary number


this path vector can be conveniently written in complex exponential form


and the derivative with respect to angle is


So the torque, the rate of change of work  , due to a force  , is


Unlike the cross product description of torque,  , the geometric algebra description does not introduce a vector in the normal direction; a vector that does not exist in two and that is not unique in greater than three dimensions. The unit bivector describes the plane and the orientation of the rotation, and the sense of the rotation is relative to the angle between the vectors   and  .

Geometric calculusEdit

Geometric calculus extends the formalism to include differentiation and integration including differential geometry and differential forms.[31]

Essentially, the vector derivative is defined so that the GA version of Green's theorem is true,


and then one can write


as a geometric product, effectively generalizing Stokes' theorem (including the differential form version of it).

In   when   is a curve with endpoints   and  , then


reduces to


or the fundamental theorem of integral calculus.

Also developed are the concept of vector manifold and geometric integration theory (which generalizes differential forms).


Before the 20th century

Although the connection of geometry with algebra dates as far back at least to Euclid's Elements in the third century B.C. (see Greek geometric algebra), GA in the sense used in this article was not developed until 1844, when it was used in a systematic way to describe the geometrical properties and transformations of a space. In that year, Hermann Grassmann introduced the idea of a geometrical algebra in full generality as a certain calculus (analogous to the propositional calculus) that encoded all of the geometrical information of a space.[32] Grassmann's algebraic system could be applied to a number of different kinds of spaces, the chief among them being Euclidean space, affine space, and projective space. Following Grassmann, in 1878 William Kingdon Clifford examined Grassmann's algebraic system alongside the quaternions of William Rowan Hamilton in (Clifford 1878). From his point of view, the quaternions described certain transformations (which he called rotors), whereas Grassmann's algebra described certain properties (or Strecken such as length, area, and volume). His contribution was to define a new product — the geometric product – on an existing Grassmann algebra, which realized the quaternions as living within that algebra. Subsequently, Rudolf Lipschitz in 1886 generalized Clifford's interpretation of the quaternions and applied them to the geometry of rotations in   dimensions. Later these developments would lead other 20th-century mathematicians to formalize and explore the properties of the Clifford algebra.

Nevertheless, another revolutionary development of the 19th-century would completely overshadow the geometric algebras: that of vector analysis, developed independently by Josiah Willard Gibbs and Oliver Heaviside. Vector analysis was motivated by James Clerk Maxwell's studies of electromagnetism, and specifically the need to express and manipulate conveniently certain differential equations. Vector analysis had a certain intuitive appeal compared to the rigors of the new algebras. Physicists and mathematicians alike readily adopted it as their geometrical toolkit of choice, particularly following the influential 1901 textbook Vector Analysis by Edwin Bidwell Wilson, following lectures of Gibbs.

In more detail, there have been three approaches to geometric algebra: quaternionic analysis, initiated by Hamilton in 1843 and geometrized as rotors by Clifford in 1878; geometric algebra, initiated by Grassmann in 1844; and vector analysis, developed out of quaternionic analysis in the late 19th century by Gibbs and Heaviside. The legacy of quaternionic analysis in vector analysis can be seen in the use of  ,  ,   to indicate the basis vectors of  : it is being thought of as the purely imaginary quaternions. From the perspective of geometric algebra, the even subalgebra of the Space Time Algebra is isomorphic to the GA of 3D Euclidean space and quaternions are isomorphic to the even subalgebra of the GA of 3D Euclidean space, which unifies the three approaches.

20th century and present

Progress on the study of Clifford algebras quietly advanced through the twentieth century, although largely due to the work of abstract algebraists such as Hermann Weyl and Claude Chevalley. The geometrical approach to geometric algebras has seen a number of 20th-century revivals. In mathematics, Emil Artin's Geometric Algebra[33] discusses the algebra associated with each of a number of geometries, including affine geometry, projective geometry, symplectic geometry, and orthogonal geometry. In physics, geometric algebras have been revived as a "new" way to do classical mechanics and electromagnetism, together with more advanced topics such as quantum mechanics and gauge theory.[3] David Hestenes reinterpreted the Pauli and Dirac matrices as vectors in ordinary space and spacetime, respectively, and has been a primary contemporary advocate for the use of geometric algebra.

In computer graphics and robotics, geometric algebras have been revived in order to efficiently represent rotations and other transformations. For applications of GA in robotics (screw theory, kinematics and dynamics using versors), computer vision, control and neural computing (geometric learning) see Bayro (2010).

Conferences and JournalsEdit

There is a vibrant and interdisciplinary community around Clifford and Geometric Algebras with a wide range of applications. The main conferences in this subject include the International Conference on Clifford Algebras and their Applications in Mathematical Physics (ICCA) and Applications of Geometric Algebra in Computer Science and Engineering (AGACSE) series. A main publication outlet is the Springer journal Advances in Applied Clifford Algebras.


GA is a very application-oriented subject. There is a reasonably steep initial learning curve associated with it, but this can be eased somewhat by the use of applicable software. The following is a list of freely available software that does not require ownership of commercial software or purchase of any commercial products for this purpose:

Actively developed open source projectsEdit

  • clifford - Numeric Geometric Algebra Module for Python.
  • galgebra - Symbolic Geometric Algebra Module for Python by Alan Bromborsky (uses sympy).
  • GATL - A template C++ library that uses the lazy evaluation strategy to automatically execute low-level algebraic manipulations in compile time in order to produce more efficient programs.
  • ganja.js - Geometric Algebra for Javascript (with operator overloading and algebraic literals)
  • klein - Production-oriented SSE-optimized C++ library, specializing in 3D Projective Geometric Algebra ( )
  • Versor, A lightweight templated C++ Library with an OpenGL interface for efficient geometric algebra programming in arbitrary metrics, including conformal
  • Grassmann.jl - Conformal geometric product algebra based on static dual multivectors with graded-blade indexing (written in Julia language)

Other projectsEdit

Software allowing script creation and including sample visualizations, manual and GA introduction.

For programmers, this is a code generator with support for C, C++, C# and Java.

  • Cinderella Visualizations Hitzer and Dorst.
  • Gaalop [1] Standalone GUI-Application that uses the Open-Source Computer Algebra Software Maxima to break down CLUViz code into C/C++ or Java code.
  • Gaalop Precompiler [2] Precompiler based on Gaalop integrated with CMake.
  • Gaalet, C++ Expression Template Library Seybold.
  • Clifford Algebra with Mathematica clifford.m
  • Clifford Algebra with GiNaC built-in classes

Benchmark projectEdit

  • ga-benchmark - A benchmark for C/C++ Geometric Algebra libraries and library generators. The latest results of the ga-benchmark can be found here.

See alsoEdit


  1. ^ The term outer product used in geometric algebra conflicts with the meaning of outer product elsewhere in mathematics
  2. ^ Given  , we have that        , showing that   is idempotent, and that      , showing that it is a nonzero zero divisor.
  3. ^ This is a synonym for the scalar product of a pseudo-Euclidean vector space, and refers to the symmetric bilinear form on the  -vector subspace, not the inner product on a normed vector space. Some authors may extend the meaning of inner product to the entire algebra, but there is little consensus on this. Even in texts on geometric algebras, the term is not universally used.
  4. ^ When referring to grading under the geometric product, the literature generally only focuses on a  -grading, meaning the split into even and odd  -grades.   is a subgroup of the full  -grading of the geometric product.
  5. ^ Grade is a synonym for degree of a homogeneous element under the grading as an algebra with the exterior product (a  -grading), and not under the geometric product.[d]
  6. ^ [...] the outer product operation and the join relation have essentially the same meaning. The Grassmann–Cayley algebra regards the meet relation as its counterpart and gives a unifying framework in which these two operations have equal footing [...] Grassmann himself defined the meet operation as the dual of the outer product operation, but later mathematicians defined the meet operator independently of the outer product through a process called shuffle, and the meet operation is termed the shuffle product. It is shown that this is an antisymmetric operation that satisfies associativity, defining an algebra in its own right. Thus, the Grassmann–Cayley algebra has two algebraic structures simultaneously: one based on the outer product (or join), the other based on the shuffle product (or meet). Hence, the name "double algebra", and the two are shown to be dual to each other.[13]
  7. ^ This should not be confused with Hestenes's irregular generalization  , where the distinguishing notation is from Dorst, Fontijne & Mann (2007), §B.1 p. 590, which makes the point that scalar components must be handled separately with this product.
  8. ^ The condition that   is usually added to ensure that the zero map is unique.
  9. ^ This definition follows Dorst (2007) and Perwass (2009) – the left contraction used by Dorst replaces the ("fat dot") inner product that Perwass uses, consistent with Perwass's constraint that grade of   may not exceed that of  .
  10. ^ Dorst appears to merely assume   such that  , whereas Perwass (2009) defines  , where   is the conjugate of  , equivalent to the reverse of   up to a sign.
  11. ^ That is to say, the projection must be defined as   and not as  , though the two are equivalent for non-null blades  .
  12. ^ This generalization to all   is apparently not considered by Perwass or Dorst.
  13. ^ "reviving and generalizing somewhat a term from hamilton's quaternion calculus which has fallen into disuse" Hestenes defined a  -versor as a multivector which can be factored into a product of   vectors.[25]
  14. ^ Only the outermorphisms of linear transformations that respect the quadratic form fit this description; outermorphisms are not in general expressible in terms of the algebraic operations.


  1. ^ Li 2008, p. 411.
  2. ^ Hestenes 2003.
  3. ^ a b Doran 1994.
  4. ^ Lasenby, Lasenby & Doran 2000.
  5. ^ Hildenbrand et al. 2004.
  6. ^ Hestenes 1986, p. 6.
  7. ^ a b Hestenes 1966.
  8. ^ Hestenes & Sobczyk 1984, p. 3-5.
  9. ^ Aragón, Aragón & Rodríguez 1997, p. 101.
  10. ^ a b Hestenes, David (2005), Introduction to Primer for Geometric Algebra
  11. ^ Penrose 2007.
  12. ^ Wheeler & Misner 1973, p. 83.
  13. ^ Kanatani 2015, p. 112-113.
  14. ^ Dorst & Lasenby 2011, p. 443.
  15. ^ Vaz & da Rocha 2016, §2.8.
  16. ^ Dorst & Lasenby 2011, p. vi.
  17. ^ Ramirez, Gonzalez & Sobczyk 2018.
  18. ^ "Electromagnetism using Geometric Algebra versus Components". Retrieved 2013-03-19.
  19. ^ Dorst & Lasenby 2011.
  20. ^ Dorst 2016.
  21. ^ Juan Du, Ron Goldman, Stephen Mann (December 2017). "Modeling 3D Geometry in the Clifford Algebra R(4,4)". Advances in Applied Clifford Algebra. 27 (4): 3039–3062. doi:10.1007/s00006-017-0798-7. S2CID 126166668.CS1 maint: uses authors parameter (link) CS1 maint: ref=harv (link)
  22. ^ Breuils, Stéphane (17 December 2018). Structure algorithmique pour les opérateurs d'Algèbres Géométriques et application aux surfaces quadriques (PDF) (PHD). université-paris-est.CS1 maint: ref=harv (link)
  23. ^ a b Dorst 2007, §3.6 p. 85.
  24. ^ Perwass 2009, § p. 83.
  25. ^ Hestenes & Sobczyk 1984, p. 103.
  26. ^ Dorst 2007, p. 204.
  27. ^ Dorst 2007, pp. 177–182.
  28. ^ Lundholm & Svensson 2009, pp. 58 et seq.
  29. ^ Lundholm & Svensson 2009, p. 58.
  30. ^ Francis & Kosowsky 2008.
  31. ^ Hestenes & Sobczyk 1984.
  32. ^ Grassmann 1844.
  33. ^ Artin 1957.

References and further readingEdit

Arranged chronologically

External linksEdit

English translations of early books and papers

Research groups