Polyketides are a class of natural products derived from a precursor molecule consisting of a chain of alternating ketone (or reduced forms of a ketone) and methylene groups: (-CO-CH2-). It is a large and diverse group of secondary metabolites. Many polyketides are medicinal or exhibit acute toxicity.

History edit

Naturally produced polyketides by various plants and organisms have been used by humans since before studies on them began in the 19th and 20th century. In 1893, J. Norman Collie synthesized detectible amounts of orcinol by heating dehydracetic acid with barium hydroxide causing the pyrone ring to open into a triketide.[1] Further studies in 1903 by Collie on the triketone polyketide intermediate noted the condensation occurring amongst compounds with multiple keten groups coining the term polyketides.[2]

 
Biosynthesis of orsellinic acid from polyketide intermediate.

It wasn't until 1955 that the biosynthesis of polyketides were understood.[3] Arthur Birch used radioisotope labeling of carbon in acetate to trace the biosynthesis of 2-hydroxy-6-methylbenzoic acid in Penicillium patulum and demonstrate the head-to-tail linkage of acetic acids to form the polyketide.[4] In the 1980's and 1990's, advancements in genetics allowed for isolation of the genes associated to polyketides to understand of the biosynthesis.[3]

Discovery edit

Polyketides can be produced in bacteria, fungi, plants, and certain marine organisms.[5] Earlier discovery of naturally occurring polyketides involved the isolation of the compounds being produced by the specific organism using organic chemistry purification methods. Later technology allowed for the isolation of the genes and heterolygous expression of the genes to understand the biosynthesis.[6] In addition, further advancements in biotechnology have allowed for the use of metagenomics and genome mining to find new polyketides using similar enzymes to known polyketides.[7]

Biosynthesis edit

Polyketides are synthesized by multienzyme polypeptides that resemble eukaryotic fatty acid synthase but are often much larger.[3] They include acyl-carrier domains plus an assortment of enzymatic units that can function in an iterative fashion, repeating the same elongation/modification steps (as in fatty acid synthesis), or in a sequential fashion so as to generate more heterogeneous types of polyketides.[8]

 
Biosynthesis of carbonic acid

Polyketide Synthase (PKS) edit

Polyketides are produced by polyketide synthases. The core biosynthesis involves stepwise condensation of a starter unit (typically acetyl-CoA or propionyl-CoA) with an extender unit (either malonyl-CoA or methylmalonyl-CoA). The condensation reaction is accompanied by the decarboxylation of the extender unit, yielding a beta-keto functional group and releasing a carbon dioxide.[8] The first condensation yields an acetoacetyl group, a diketide. Subsequent condensations yield triketides, tetraketide, etc.[9] Other starter units attached to a coezyme A include isobutyrate, cyclohexanecarboxylate, malonate, and benzoate.[10]

PKSs are multi-domain enzymes or enzyme complex consisting of various domains. The polyketide chains produced by a minimal polyketide synthase (consisting of a acyltransferase and ketosynthase for the stepwise condensation od the starter unit and extender units) are almost invariably modified.[11] Each polyketide synthases is unique to each polyketide chain because they contain different combinations of domains that reduce the carbonyl group to a hydroxyl (via a ketodeductase), an olefin (via a dehydratase), or a methylene (via an enoylreductase).[12]

Termination of the polyketide scaffold biosynthesis can also vary. It is sometimes accompanied by a thioesterase that releases the polyketide via hydrating the thioester linkage (as in fatty acid synthesis) creating a linear polyketide scaffold. However, if water is not able to reach the active site, the hydrating reaction will not occur and an intramolecular reaction is more probable creating a macrocyclic polyketide. Another possibility is spontaneous hydrolysis without the aid of a thioesterase.[13]

Post-tailoring enzymes edit

Further possible modifications to the polyketide scaffolds can be made. This can include glycolysation via glucosyltransferase or oxidation via monooxygenase.[14] Similarly, cyclization and aromatization can be introduced, sometimes proceeded by the enol tautomers of the polyketide.[15] These enzymes are not part of the domains of the polyketide synthase. Instead, they are found in gene clusters in the genome close to the polyketide synthase genes.[16]

Classification edit

Polyketides are structurally diverse family.[17] There are various subclasses of polyketides including: aromatics, macrolactones/macrolides, decalin ring containing, polyether, and polyenes.[18]

Polyketide sythases are also broadly divided into three classes: Type I PKS (multimodular megasynthases that are non-iterative, often producing macrocodes, polyethers, and polyenes), Type II PKS (dissociated enzymes with iterative action, often producing aromatics), and Type III PKS (chalcone synthase-like PKSs, producing small aromatic molecules).[19]

In addition to these subclasses, there also exist polyketides that are hybridized with nonribosomal peptides (Hybrid NRP-PK and PK-NRP). Since nonribosomal peptide assembly lines use carrier proteins similar to those use in polyketide synthases, convergence of the two systems evolved to form hybrids, resulting in polypeptides with nitrogen in the skeletal structure and complex function groups similar to those found in amino acids.[20]


Polyketide-Terpene hybrids?

Applications edit

Polyketide antibiotics,[21] antifungals,[22] cytostatics,[23] anticholesteremic,[24] antiparasitics,[22] coccidiostats, animal growth promoters and natural insecticides[25] are in commercial use.

Medicinal edit

There are more than 10,000 known polyketides, 1% of which are known to have potential for drug activity.[26]

Examples: edit

Agricultural edit

Polyketides can be used for crop protection as pesticides.[29]

Examples edit

Industrial edit

Polyketides can be used for industrial purposes, such as pigmentation[30] and dietary flavonoids[31].

Examples edit

Biotechnology edit

References edit

  1. ^ Collie, N.; Myers, W. S. (1893). "VII.—The formation of orcinol and other condensation products from dehydracetic acid". J. Chem. Soc., Trans. 63 (0): 122–128. doi:10.1039/CT8936300122. ISSN 0368-1645.
  2. ^ Collie, John Norman (1907-01-01). "CLXXI.—Derivatives of the multiple keten group". Journal of the Chemical Society, Transactions. 91 (0): 1806–1813. doi:10.1039/CT9079101806. ISSN 0368-1645.
  3. ^ a b c Smith, Stuart; Tsai, Shiou-Chuan (2007-09-26). "The type I fatty acid and polyketide synthases: a tale of two megasynthases". Natural Product Reports. 24 (5): 1041–1072. doi:10.1039/B603600G. ISSN 1460-4752. PMC 2263081. PMID 17898897.{{cite journal}}: CS1 maint: PMC format (link)
  4. ^ Birch, A. J.; Massy-Westropp, R. A.; Moye, C. J. (1955). "Studies in relation to biosynthesis. VII. 2-Hydroxy-6-methylbenzoic acid in Penicillium griseofulvum Dierckx". Australian Journal of Chemistry. 8 (4): 539–544. doi:10.1071/ch9550539. ISSN 1445-0038.
  5. ^ Lane, Amy L.; Moore, Bradley S. (2011-01-25). "A sea of biosynthesis: marine natural products meet the molecular age". Natural Product Reports. 28 (2): 411–428. doi:10.1039/C0NP90032J. ISSN 1460-4752.
  6. ^ Pfeifer, Blaine A.; Khosla, Chaitan (2001-3). "Biosynthesis of Polyketides in Heterologous Hosts". Microbiology and Molecular Biology Reviews. 65 (1): 106–118. doi:10.1128/MMBR.65.1.106-118.2001. ISSN 1092-2172. PMID 11238987. {{cite journal}}: Check date values in: |date= (help)
  7. ^ Gomes, Elisângela Soares; Schuch, Viviane; de Macedo Lemos, Eliana Gertrudes (2014-03-10). "Biotechnology of polyketides: New breath of life for the novel antibiotic genetic pathways discovery through metagenomics". Brazilian Journal of Microbiology. 44 (4): 1007–1034. ISSN 1517-8382. PMC 3958165. PMID 24688489.
  8. ^ a b Voet, Donald; Voet, Judith G.; Pratt, Charlotte W. (2013). Fundamentals of Biochemistry: Life at the Molecular Level (4th ed.). John Wiley & Sons. p. 688. ISBN 9780470547847.
  9. ^ Staunton, James; Weissman, Kira J. (2001). "Polyketide Biosynthesis: A Millennium Review". Natural Product Reports. 18 (4): 380–416. doi:10.1039/a909079g. PMID 11548049.
  10. ^ S. Moore, Bradley; Hertweck, Christian (2002). "Biosynthesis and attachment of novel bacterial polyketide synthase starter units". Natural Product Reports. 19 (1): 70–99. doi:10.1039/B003939J. {{cite journal}}: no-break space character in |last= at position 3 (help)
  11. ^ Wang, Jia; Zhang, Ruihua; Chen, Xin; Sun, Xinxiao; Yan, Yajun; Shen, Xiaolin; Yuan, Qipeng (2020-05-24). "Biosynthesis of aromatic polyketides in microorganisms using type II polyketide synthases". Microbial Cell Factories. 19 (1): 110. doi:10.1186/s12934-020-01367-4. ISSN 1475-2859. PMC 7247197. PMID 32448179.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  12. ^ Moretto, Luisa; Heylen, Rachel; Holroyd, Natalie; Vance, Steven; Broadhurst, R. William (2019-02-20). "Modular type I polyketide synthase acyl carrier protein domains share a common N-terminally extended fold". Scientific Reports. 9 (1): 2325. doi:10.1038/s41598-019-38747-9. ISSN 2045-2322.
  13. ^ Walsh, Christopher; Tang, Yi (2017). Natural product biosynthesis. ISBN 978-1-78801-131-0. OCLC 985609285.
  14. ^ Risdian, Chandra; Mozef, Tjandrawati; Wink, Joachim (2019-05-06). "Biosynthesis of Polyketides in Streptomyces". Microorganisms. 7 (5): 124. doi:10.3390/microorganisms7050124. ISSN 2076-2607. PMC 6560455. PMID 31064143.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  15. ^ Robinson, John A.; Fersht, Alan Roy; Gani, D. (1991). "Polyketide synthase complexes: Their structure and function in antibiotic biosynthesis". Philos. Trans. R. Soc. Lond. B Biol. Sci. 332 (1263): 107–114. Bibcode:1991RSPTB.332..107R. doi:10.1098/rstb.1991.0038. PMID 1678529.
  16. ^ Noar, Roslyn D.; Daub, Margaret E. (2016-07-07). "Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis". PLoS ONE. 11 (7): e0158471. doi:10.1371/journal.pone.0158471. ISSN 1932-6203. PMC 4936691. PMID 27388157.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  17. ^ Katz, Leonard (1997). "Manipulation of Modular Polyketide Synthases". Chem. Rev. 97 (7): 2557–2576. doi:10.1021/cr960025+. PMID 11851471.
  18. ^ Walsh, Christopher; Tang, Yi (2017). Natural product biosynthesis. ISBN 978-1-78801-131-0. OCLC 985609285.
  19. ^ Shen, B (2003-04). "Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms". Current Opinion in Chemical Biology. 7 (2): 285–295. doi:10.1016/S1367-5931(03)00020-6. {{cite journal}}: Check date values in: |date= (help)
  20. ^ Nivina, Aleksandra; Yuet, Kai P.; Hsu, Jake; Khosla, Chaitan (2019-12-26). "Evolution and Diversity of Assembly-Line Polyketide Synthases". Chemical Reviews. 119 (24): 12524–12547. doi:10.1021/acs.chemrev.9b00525. ISSN 0009-2665. PMC 6935866. PMID 31838842. {{cite journal}}: line feed character in |title= at position 10 (help)
  21. ^ "5.13E: Polyketide Antibiotics". Biology LibreTexts. 2017-05-09. Retrieved 2021-07-05.
  22. ^ a b Ross, Claudia; Opel, Viktoria; Scherlach, Kirstin; Hertweck, Christian (2014). "Biosynthesis of antifungal and antibacterial polyketides by Burkholderia gladioli in coculture with Rhizopus microsporus". Mycoses. 57 Suppl 3: 48–55. doi:10.1111/myc.12246. ISSN 1439-0507. PMID 25250879. Cite error: The named reference ":0" was defined multiple times with different content (see the help page).
  23. ^ Jiang, Lin; Pu, Hong; Xiang, Jingxi; Su, Meng; Yan, Xiaohui; Yang, Dong; Zhu, Xiangcheng; Shen, Ben; Duan, Yanwen; Huang, Yong (2018). "Huanglongmycin A-C, Cytotoxic Polyketides Biosynthesized by a Putative Type II Polyketide Synthase From Streptomyces sp. CB09001". Frontiers in Chemistry. 6: 254. Bibcode:2018FrCh....6..254J. doi:10.3389/fchem.2018.00254. ISSN 2296-2646. PMC 6036704. PMID 30013965.
  24. ^ Chan, Yolande A.; Podevels, Angela M.; Kevany, Brian M.; Thomas, Michael G. (2009). "Biosynthesis of polyketide synthase extender units". Natural Product Reports. 26 (1): 90–114. doi:10.1039/b801658p. ISSN 0265-0568. PMC 2766543. PMID 19374124.
  25. ^ Kim, Hak Joong; Choi, Sei-hyun; Jeon, Byung-sun; Kim, Namho; Pongdee, Rongson; Wu, Qingquan; Liu, Hung-wen (2014-12-01). "Chemoenzymatic synthesis of spinosyn A". Angewandte Chemie International Edition in English. 53 (49): 13553–13557. doi:10.1002/anie.201407806. ISSN 1521-3773. PMC 4266379. PMID 25287333.
  26. ^ Rimando, Agnes M.; Baerson, Scott R., eds. (2007-01-11). Polyketides: Biosynthesis, Biological Activity, and Genetic Engineering. ACS Symposium Series. Vol. 955. Washington, DC: American Chemical Society. doi:10.1021/bk-2007-0955.ch001. ISBN 978-0-8412-3978-4.
  27. ^ Brockmann, Hans; Henkel, Willfried (1951). "Pikromycin, ein bitter schmeckendes Antibioticum aus Actinomyceten" [Pikromycin, a bitter tasting antibiotic from an actinomycete]. Chem. Ber. (in German). 84 (3): 284–288. doi:10.1002/cber.19510840306.
  28. ^ Gagne, Steve J.; Stout, Jake M.; Liu, Enwu; Boubakir, Zakia; Clark, Shawn M.; Page, Jonathan E. (2012-07-31). "Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides". Proceedings of the National Academy of Sciences. 109 (31): 12811–12816. doi:10.1073/pnas.1200330109. ISSN 0027-8424. PMC 3411943. PMID 22802619.{{cite journal}}: CS1 maint: PMC format (link)
  29. ^ Li, Shanshan; Yang, Bowen; Tan, Gao-Yi; Ouyang, Li-Ming; Qiu, Shiwen; Wang, Weishan; Xiang, Wensheng; Zhang, Lixin (2021-06-01). "Polyketide pesticides from actinomycetes". Current Opinion in Biotechnology. Chemical Biotechnology ● Pharmaceutical Biotechnology. 69: 299–307. doi:10.1016/j.copbio.2021.05.006. ISSN 0958-1669.
  30. ^ Caro, Yanis; Venkatachalam, Mekala; Lebeau, Juliana; Fouillaud, Mireille; Dufossé, Laurent (2016), Merillon, Jean-Michel; Ramawat, Kishan Gopal (eds.), "Pigments and Colorants from Filamentous Fungi", Fungal Metabolites, Reference Series in Phytochemistry, Cham: Springer International Publishing, pp. 1–70, doi:10.1007/978-3-319-19456-1_26-1, ISBN 978-3-319-19456-1, retrieved 2021-11-19
  31. ^ Tauchen, Jan; Huml, Lukáš; Rimpelova, Silvie; Jurášek, Michal (2020-01). "Flavonoids and Related Members of the Aromatic Polyketide Group in Human Health and Disease: Do They Really Work?". Molecules. 25 (17): 3846. doi:10.3390/molecules25173846. PMC 7504053. PMID 32847100. {{cite journal}}: Check date values in: |date= (help)CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)