Trametes elegans,[1] also known as Lenzites elegans and Daedalea elegans, is a common polypore and wood-decay fungus with a pantropical distribution found on hardwood hosts in regions including Australia, New Zealand, and Japan.[2][3] It has recently been suggested to be a complex of three different species: T. elegans, T. aesculi, and T. repanda. [4]

Trametes elegans
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Fungi
Division: Basidiomycota
Class: Agaricomycetes
Order: Polyporales
Family: Polyporaceae
Genus: Trametes
Species:
T. elegans
Binomial name
Trametes elegans
Synonyms[citation needed]
  • Artolenzites elegans
  • Daedalea elegans
  • Daedaleopsis elegans
  • Lenzites elegans
  • Whitfordia elegans
Trametes elegans
View the Mycomorphbox template that generates the following list
Pores on hymenium
Cap is offset or indistinct
Hymenium is decurrent
Lacks a stipe
Spore print is white
Ecology is saprotrophic
Edibility is inedible

Morphology edit

The basidiocarp of T. elegans is brown with narrow semi-dadeloid pores.[5] The pore surface is yellow, with a dark line separating the lower context and the upper tomentum.[6] Defining characteristics of T. elegans include skeletal hyphae, thin-walled basidiospores, and a poroid hymenophore.[5] T. elegans has no stipe and has a corky texture. It is circular, sessile, and flabelliform in shape. It is flexible when fresh and becomes more rigid as it dries.[7] The fruiting body of T. elegans is leathery and grows alone on dead wood. It is off-white, velvety, and has aerial hyphae in secondary mycelial culture.[8]

Ecology edit

T. elegans shares a commensalistic relationship with various host plants where it provides potection to the plant against assault from other pathogens. Additionally, T. elegans is endophytic.[5] As T. elegans belongs to the white rot fungi group, they are important in breaking down lignin from trees and they do so extracellularly, non-specifically, and non-hydrolytically. This is important for recycling carbon in forest ecosystems.[9]

Habitat edit

T. elegans prefers an intermediate temperature range of around 25-35 °C and can grow in both the soil and on synthetic media.[10] Additionally, they prefer to inhabit rotting wood and leaf litter in tropical forests.[5] They prefer hardwood forests.[5]

Geographical distribution edit

Trametes elegans is most common in tropical hardwood forests. Places where it occurs include West Africa, Australia, New Zealand, Japan, and the southern United States.

Unique Aspects edit

T. elegans has potential natural antimicrobial properties. In a study, researchers found that compounds isolated from T. elegans were able to inhibit microbial growth. These compounds include ergosta-5,7,22 trien-3-ol, 5α,8α–epidioxyergosta-6,9, 22-trien-3βol, 5α,8α–epidioxyergosta-6,22-dien-3β-ol, ergosta-7,22-dien-3β,5α,6β-triol, Lupeol, and 9,19- cycloartane-3,30-diol.[11] These potential antimicrobial properties have been shown to apply to a wide range of bacteria and other fungi. The mechanism for this involves the reduction of oxidative stress and nitric oxides.[5] Not only do T. elegans have great potential as possible antimicrobial agents, but they also have the potential to degrade compounds including pesticides, polyaromatic hydrocarbons, PCBs, dyes, TNT, cyanide, azide, carbon tetrachloride, and pentachlorophenol.[12]

References edit

  1. ^ "Species Fungorum - Species synonymy". www.speciesfungorum.org. Retrieved 2023-05-12.
  2. ^ Farr, D.F.; Rossman, A.Y. "Trametes elegans". Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Archived from the original on 21 November 2018. Retrieved 20 November 2018.
  3. ^ Farr, D.F.; Rossman, A.Y. "Lenzites elegans". Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Archived from the original on 21 November 2018. Retrieved 20 November 2018.
  4. ^ Carlson, Alexis; Justo, Alfredo; Hibbett, David S. (2014-07-01). "Species delimitation in Trametes: a comparison of ITS, RPB1, RPB2 and TEF1 gene phylogenies". Mycologia. 106 (4): 735–745. doi:10.3852/13-275. ISSN 0027-5514. PMID 24898532. S2CID 7529153.
  5. ^ a b c d e f Kanakasundar, Arivananthan (1 Jan 2023). "Trametes elegans: Sources and Potential Medicinal and Food Applications". SHLS Life Sciences. 19 (1): 348–353.
  6. ^ Wahab, Afshan; Pfister, Donald H.; LoBuglio, Kathy; Din, Siraj Ud; Khalid, Abdul Nasir (2021). "Some New Records of Trametes (Polyporales, Basidiomycota); from Pakistan". Journal of Clinical Medical Research. 02 (2). doi:10.46889/jcmr.2021.2201.
  7. ^ Cody, B.; Grand, L.F. (March 2011). "Lenzites elegans profile" (PDF). Mycological Herbarium NCSU. NC State University.
  8. ^ R. Dulay, Rich Milton; Center for Tropical Mushroom Research and Development, Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Munoz, Nueva Ecija, 3120 Philippines (2021-01-30). "Nutritional and physical requirements for mycelial growth and basidiocarp production of Trametes elegans from the Philippines" (PDF). Asian Journal of Agriculture and Biology. 2021 (1). doi:10.35495/ajab.2020.06.339. S2CID 226540784.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  9. ^ Osano, AA; Siboe, GM; Ochanda, IO; Kokwaro, JO (2005-01-17). "Biodegradation Properties of White Rot Fungi in Karura Forest, Kenya". Discovery and Innovation. 16 (1). doi:10.4314/dai.v16i1.15660. ISSN 1015-079X.
  10. ^ Sagar, Sukrit (2020). "Optimization of mycelia growth parameters forWild white rot fungi Trametes elegans and Trametes versicolor". Scopus Index Journal. 12 (1): 4–14.
  11. ^ Mayaka, Regina Kemunto; Langat, Moses Kiprotich; Njue, Alice Wanjiku; Cheplogoi, Peter Kiplagat; Omolo, Josiah Ouma (2019-11-08). "Chemical compounds from the Kenyan polypore <i>Trametes elegans</i> (Spreng:Fr.) Fr (Polyporaceae) and their antimicrobial activity". International Journal of Biological and Chemical Sciences. 13 (4): 2352. doi:10.4314/ijbcs.v13i4.37. ISSN 1997-342X.
  12. ^ Lara, Mayra A.; Rodrı́guez-Malaver, Antonio J.; Rojas, Orlando J.; Holmquist, Otón; González, Aura M.; Bullón, Johnny; Peñaloza, Nancy; Araujo, Elisa (2003-10-01). "Black liquor lignin biodegradation by Trametes elegans". International Biodeterioration & Biodegradation. 52 (3): 167–173. doi:10.1016/S0964-8305(03)00055-6. ISSN 0964-8305.