Talk:List of largest cosmic structures/workpage

Galaxy filaments form massive, thread-like structures on the order of millions of light-years. Computer simulation.

This is a list of the largest cosmic structures so far discovered. The unit of measurement used is the megaparsec.

This list includes superclusters, galaxy filaments and large quasar groups (LQGs). The list characterizes each structure based on its longest dimension.

Note that this list refers only to coupling of matter with defined limits, and not the coupling of matter in general (as per example the cosmic microwave background, which fills the entire universe). All structures in this list are defined as to whether their presiding limits have been identified.

Overview edit

Physical sizes edit

The diameter of cosmic structures is defined by either:

Charactaritsic size edit

The characteristic size of a large-scale structure is the proper size in the present epoch. The proper size of a large-scale structure is

Longest dimension edit

The longest dimension

For example, Huge LGQ, while its longest dimension is much larger at 1,240

Caveats edit

There are some reasons to be cautious about this list:

  • The Zone of Avoidance, or the part of the sky occupied by the Milky Way, blocks out light to several structures, making their limits imprecisely identified.
  • Some structures are too distant to be seen even with the most powerful telescopes.
  • Some structures have no defined limits, or endpoints. All structures are believed to be part of the cosmic web, which is a conclusive idea. Most structures are overlapped by nearby galaxies, creating a problem of how to carefully define the structure's limit.
  • Interpreting the observational data requires assumptions about gravitational lensing, redshift, etc.

Lists edit

Large-scale structures edit

Structures with diameters longer than 30 megaparsecs
Structure name/designation Longest dimension (in megaparsecs) Redshift Type Notes
Hercules–Corona Borealis Great Wall 2,000–3,000[1][2][3] GW Discovered through gamma-ray burst mapping. Existence as a structure is disputed.[4][5][6]
Giant GRB Ring 1,720[7] Discovered through gamma-ray burst mapping. Largest-known regular formation in the observable universe.[7]
Correlated LQG orientations 1,600[8] LQG
Huge-LQG 860–1,240[9] LQG Decoupling of 73 quasars. The first structure found to exceed gigaparsec.
Giant Arc 1,000[8] Located 9.2 billion light years away.
Coherent quasar polarisation 1,000[8] LQG
U1.11 LQG 780 (longest axes)[10] LQG Involves 38 quasars. Adjacent to the Clowes-Campusano LQG.
Clowes–Campusano LQG 630 (longest axes)[10] LQG Grouping of 34 quasars. Discovered by Roger Clowes and Luis Campusano.
Perseus–Pegasus Filament 425[11] GF This galaxy filament contains the Perseus–Pisces Supercluster.
South Pole Wall 420[12][13] GW The largest contiguous feature in the local volume and comparable to the Sloan Great Wall (see above) at half the distance. It is located at the celestial South Pole.
King Ghidorah Supercluster ~400 (comoving)[14] SCl Consists of at least 15 clusters plus other interconnected filaments. It is the most massive galaxy supercluster discovered so far.[14]
Big Ring 400[15][16] A large ring-like strcuture made up of galaxies and galaxy clusters.
The above sizes are incompatible with the cosmological principle according to all estimates. However, whether the existence of these structures itself constitutes a refutation of the cosmological principle is still unclear.
(End of Greatness) 370[9] Structures larger than this size are incompatible with the cosmological principle according to all estimates. However, whether the existence of these structures itself constitutes a refutation of the cosmological principle is still unclear.[17]
Blazar LSS ~350[8]
Newman LQG (U1.54) 325[18] LQG
Ho'oleilana 310[19] BAO Contains about 56,000 galaxies, locaded 820 million light years away.
Pisces–Cetus Supercluster 300[20] SClC Contains the Milky Way, and is the first galaxy filament to be discovered (The first LQG was found earlier in 1982). A new report in 2014 confirms the Milky Way as a member of the Laniakea Supercluster.
BOSS Great Wall 271.1[21] GW Structure consisting of 4 superclusters of galaxies. The mass and volume exceeds the amount of the Sloan Great Wall.[21]
CfA2 Great Wall 240[8] GW Also known as the Coma Wall.
Sloan Great Wall 230[22] GW, SClC[22] Discovered through the 2dF Galaxy Redshift Survey and the Sloan Digital Sky Survey.
Saraswati Supercluster ~200[23] SCl The Saraswati Supercluster consists of 43 massive galaxy clusters, which include Abell 2361 and ZWCl 2341.1+0000.
Horologium-Reticulum Supercluster 190[24] SCl Also known as the Horologium Supercluster.
Komberg-Kravtsov-Lukash LQG 10 164 (comoving)[25] LQG Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[25][26]
Laniakea Supercluster 160[27] SCl Galaxy supercluster in which Earth is located.
Komberg–Kravtsov–Lukash LQG 11 157 (comoving)[25] LQG Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[25][26]
Komberg–Kravtsov–Lukash LQG 12 155 (comoving)[25] LQG Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[25][26]
Hyperion proto-supercluster 150 (comoving)[28] pSCl The largest and earliest known proto– supercluster.
Shapley Supercluster 150[29] SCl First identified by Harlow Shapley as a cloud of galaxies in 1930, it was not identified as a structure until 1989.
Komberg–Kravtsov–Lukash LQG 5 146 (comoving)[25] LQG Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[25][26]
Tesch–Engels LQG 140[26] LQG
Komberg–Kravstov–Lukash LQG 3 123 (comoving)[25] LQG Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[25][26]
U1.90 120[25][26][30] LQG
Komberg–Kravtsov–Lukash LQG 2 111 (comoving)[25] LQG Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[25][26]
SCl 027 107.0[22] SCl
Komberg–Kravtsov–Lukash LQG 8 104 (comoving)[25] LQG Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[25][26]
Ursa Major Supercluster 100[31] SCl
Sculptor Wall 100[32][33] GW Also known as the Southern Great Wall.
Komberg–Kravtsov–Lukash LQG 1 96 (comoving)[25] LQG Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[25][26]
Komberg–Kravtsov–Lukash LQG 6 94 (comoving)[25] LQG Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[25][26]
Komberg–Kravtsov–Lukash LQG 7 92 (comoving)[25] LQG Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[25][26]
z=2.38 filament around protocluster ClG J2143-4423 80 (comoving)[34] GF
Webster LQG 75[26] LQG First LQG (Large Quasar Group) discovered.[26][35]
SCL @ 1338+27 70[36][37] SCl (GW?) A rich supercluster with several galaxy clusters was discovered around an unusual concentration of 23 QSOs at z=1.1 in 2001. The size of the complex of clusters may indicate a wall of galaxies exists there, instead of a single supercluster. One of most distant known superclusters.
Komberg–Kravtsov–Lukash LQG 9 66 (comoving)[25] LQG Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash.[25][26]
Einasto Supercluster 65[38] SCl
Lynx–Ursa Major Filament 60[39] GF
SCl 019 56.4[22] SCl
SSA22 Protocluster 50 (comoving)[40] GpC Giant collection of Lyman-alpha blobs.
SCl 0499 34.1[22] SCl
QS 550 32.9[41] SCl A quasi-spherical supercluster containing the galaxy cluster Abell 2052.
QS 849 32.0[41] SCl A quasi-spherical supercluster containing the galaxy cluster Abell 1983.
Virgo Supercluster 30[42] SCl A part of the Laniakea Supercluster (see above). It also contains the Milky Way Galaxy, which contains the Solar System where Earth orbits the Sun.
Reported for Reference.

Voids edit

Voids are immense spaces between galaxy filaments and other large-scale structures. Technically they are not structures. They are vast spaces which contain very few or no galaxies. They are theorized to be caused by quantum fluctuations during the early formation of the universe.

A list of the largest voids so far discovered is below. Each is ranked according to its longest dimension.

List of the largest voids
Void name/designation Proper size (in megaparsecs) Redshift Estimation method Notes
LOWZ North 13788 905.464[43] 0.292 One of largest known voids, containing 109,066 galaxies.[43]
Eridanus Supervoid 764–1,244[44] An analysis of the WMAP has found an irregularity of the temperature fluctuation of the cosmic microwave background within the vicinity of the constellation Eridanus with analysis found to be 70 microkelvins cooler than the average CMB temperature. One speculation is that a void could cause the cold spot, with the possible size on the left.
Local Hole (KBC Void) 616[45] Proposed void containing the Milky Way galaxy and Local Group as an explanation for the discrepancy in the Hubble constant. Existence is still disputed.[46][47]
LOWZ North 4739 566.146[43] 0.342
LOWZ North 16634 512.482[43] 0.349
LOWZ North 11627 510.026[43] 0.326
LOWZ South 4653 493.83[43] 0.342
LOWZ North 13222 464.794[43] 0.327
LOWZ North 14348 391.762[43] 0.343
LOWZ South 5589 340.522[43] 0.351
LOWZ North 13721 335.768[43] 0.367
LOWZ North 11918 306.154[43] 0.360
LOWZ North 5692 301.722[43] 0.370
Giant Void 300[48] Also known as Canes Venatici Supervoid
LOWZ North 11446 289.642[43]
LOWZ North 15734 287.794 [43]
LOWZ North 16394 286.416 [43]
LOWZ North 8541 281.442 [43]
LOWZ South 4775 275.806 [43]
LOWZ North 12092 273.322 [43]
LOWZ North 3294 272.136 [43]
Tully-11 void Catalogued by R. Brent Tully
CMASS South 7225 265.288 [43]
LOWZ North 14775 260.216 [43]
LOWZ South 6334 259.552 [43]
LOWZ North 10254 258.484 [43]
LOWZ North 13568 257.954 [43]
LOWZ North 11954 253.744 [43]
LOWZ North 3404 249.060 [43]
LOWZ South 3713 247.046 [43]
LOWZ South 4325 246.540 [43]
CMASS South 5582 244.306 [43]
Tully-10 void 792,000,000 Catalogued by R. Brent Tully
LOWZ North 6177 242.106 [43]
Tully-9 void 746,000,000 Catalogued by R. Brent Tully
B&B Abell-20 void 684,000,000
B&B Abell-9 void 652,000,000
List of the largest voids
Void name/designation Longest dimension (in megaparsecs) Redshift Estimation method Notes
Bahcall & Soneiro 1982 void 554,465,200 This suspected void ranged 100 degrees across the sky, and has shown up on other surveys as several separate voids. [49]
Northern Local Supervoid 339,000,000 Virgo, Coma, Perseus-Pisces, Ursa Major-Lynx, Hydra-Centaurus, Sculptor, Pavo-Corona Australes Superclusters form a sheet between the Northern and the Southern Local Supervoids. The Hercules Supercluster separates the Northern Local Void from the Boötes Void. The Perseus-Pisces and Pegasus Supercluster form a sheet separate the Northern and Southern Local Voids from the Pegasus Void.[50]
Boötes void 330,000,000 Also known as The Giant Nothing
1994EEDTAWSS-12 void 328,000,000
Local void 195,000,000 One of the nearest voids known and contains 3 galaxies.
Pegasus void 130,000,000 [51] The Perseus-Pisces Supercluster and Pegasus Supercluster form a sheet separate the Northern Local Void and Southern Local Void from the Pegasus Void.[50]

See also edit

References edit

  1. ^ Horvath, Istvan; Bagoly, Zsolt; Hakkila, Jon; Tóth, L. Viktor (2014). "Anomalies in the GRB spatial distribution". Proceedings of Science: 78. arXiv:1507.05528. Bibcode:2014styd.confE..78H. doi:10.22323/1.233.0078.
  2. ^ Horvath, Istvan; Hakkila, Jon; Bagoly, Zsolt (2014). "Possible structure in the GRB sky distribution at redshift two". Astronomy & Astrophysics. 561: id.L12. arXiv:1401.0533. Bibcode:2014A&A...561L..12H. doi:10.1051/0004-6361/201323020. S2CID 24224684.
  3. ^ Horvath, I.; Hakkila, J.; Bagoly, Z. (2013). "The largest possible structure of the Universe, defined by Einstein in his Big Bang theory (1901)". 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013: Paper 33 in EConf Proceedings C1304143. 1311: 1104. arXiv:1311.1104. Bibcode:2013arXiv1311.1104H.
  4. ^ Christian, Sam (2020-07-11). "Re-examining the evidence of the Hercules–Corona Borealis Great Wall". Monthly Notices of the Royal Astronomical Society. 495 (4): 4291–4296. arXiv:2006.00141. doi:10.1093/mnras/staa1448. ISSN 0035-8711. S2CID 219177572.
  5. ^ Ukwatta, T. N.; Woźniak, P. R. (2016-01-01). "Investigation of redshift- and duration-dependent clustering of gamma-ray bursts". Monthly Notices of the Royal Astronomical Society. 455 (1): 703–711. doi:10.1093/mnras/stv2350. ISSN 0035-8711.
  6. ^ Horvath, I.; Szecsi, D.; Hakkila, J.; Szabo, A.; Racz, I.I.; Toth, L.V.; Pinter, S.; Bagoly, Z. (2020-08-22). "The clustering of gamma-ray bursts in the Hercules-Corona Borealis Great Wall: the largest structure in the Universe?". Monthly Notices of the Royal Astronomical Society. 498 (2): 2544–2553. arXiv:2008.03679. doi:10.1093/mnras/staa2460. ISSN 0035-8711.
  7. ^ a b Balazs, L.G.; Bagoly, Z.; Hakkila, J.E.; Horvath, I.; Kobori, J.; Racz, I.I.; Toth, L.V. (2015-08-05). "A giant ring-like structure at 0.78 < z < 0.86 displayed by GRBs". Monthly Notices of the Royal Astronomical Society. 452 (3): 2236–2246. arXiv:1507.00675. Bibcode:2015MNRAS.452.2236B. doi:10.1093/mnras/stv1421. S2CID 109936564.
  8. ^ a b c d e Lopez, Alexia M.; Clowes, Roger G.; Williger, Gerard M. (2022). "A Giant Arc on the Sky". Monthly Notices of the Royal Astronomical Society. 516 (2): 1557–1572. arXiv:2201.06875. doi:10.1093/mnras/stac2204.
  9. ^ a b Clowes, Roger; Harris, Kathryn A.; Raghunathan, Srinivasan; Campusano, Luis E.; Söchting, Ilona K.; Graham, Matthew J. (2013-01-11). "A structure in the early Universe at z ∼ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology". Monthly Notices of the Royal Astronomical Society. 1211 (4): 6256. arXiv:1211.6256. Bibcode:2013MNRAS.429.2910C. doi:10.1093/mnras/sts497. S2CID 486490.
  10. ^ a b Clowes, Roger G.; Campusano, Luis E.; Graham, Matthew J.; Söchting, Ilona K. (2012). "Two close large quasar groups of size ∼ 350 MPC at". Monthly Notices of the Royal Astronomical Society. 419: 556–565. arXiv:1108.6221. doi:10.1111/j.1365-2966.2011.19719.x. S2CID 31553670.
  11. ^ Healy, J.; Willner, S. P.; Verheijen, M. A. W.; Blyth, S.-L. (2021). "A2626 and Friends: Large- and Small-scale Structure". The Astronomical Journal. 162 (5): 193. arXiv:2106.08806. Bibcode:2021AJ....162..193H. doi:10.3847/1538-3881/ac0bc6.
  12. ^ Pomarède, Daniel; et al. (10 July 2020). "Cosmicflows-3: The South Pole Wall". The Astrophysical Journal. 897 (2): 133. arXiv:2007.04414. Bibcode:2020ApJ...897..133P. doi:10.3847/1538-4357/ab9952. S2CID 220425419.
  13. ^ Pomerede, D.; et al. (January 2020). "The South Pole Wall". Harvard University. p. 453.01. Bibcode:2020AAS...23545301P.
  14. ^ a b Shimawaka, Rhythm; Okabe, Nobuhiro; Shirasaki, Masat; Tanaka, Masayuki (22 November 2022). "King Ghidorah Supercluster: Mapping the light and dark matter in a new supercluster at z = 0.55 using the subaru hyper suprime-cam". Monthly Notices of the Royal Astronomical Society: Letters. 519 (1): L45–L50. arXiv:2211.11970. Bibcode:2023MNRAS.519L..45S. doi:10.1093/mnrasl/slac150. ISSN 1745-3933. S2CID 253761264.
  15. ^ "Huge ring of galaxies challenges thinking on cosmos". January 12, 2024 – via www.bbc.com.
  16. ^ Devlin, Hannah; correspondent, Hannah Devlin Science (January 11, 2024). "Newly discovered cosmic megastructure challenges theories of the universe" – via The Guardian.
  17. ^ Nadathur, Seshadri (10 July 2018). "Seeing patterns in noise: Gigaparsec-scale 'structures' that do not violate homogeneity". Monthly Notices of the Royal Astronomical Society. 434: 398–406. arXiv:1306.1700. doi:10.1093/mnras/stt1028. S2CID 119220579.
  18. ^ Clowes, Roger G.; Raghunathan, Srinivasan; Söchting, Ilona K.; Graham, Matthew J.; Campusano, Luis E. (2013). "Environments of strong/Ultrastrong, ultraviolet Fe ii emitting quasars". Monthly Notices of the Royal Astronomical Society. 433 (3): 2467–2475. arXiv:1304.7396. doi:10.1093/mnras/stt915.
  19. ^ Tully, R. Brent; Howlett, Cullan; Pomarède, Daniel (2023). "Ho'oleilana: An Individual Baryon Acoustic Oscillation?". The Astrophysical Journal. 954 (2): 169. arXiv:2309.00677. Bibcode:2023ApJ...954..169T. doi:10.3847/1538-4357/aceaf3.
  20. ^ Porter, Scott C.; Raychaudhury, Somak (2005). "The Pisces-Cetus supercluster: A remarkable filament of galaxies in the 2dF Galaxy Redshift and Sloan Digital Sky surveys". Monthly Notices of the Royal Astronomical Society. 364 (4): 1387–1396. arXiv:astro-ph/0511050. Bibcode:2005MNRAS.364.1387P. doi:10.1111/j.1365-2966.2005.09688.x. S2CID 14599403.
  21. ^ a b H.Lietzen; E.Tempel; L. J.Liivamägi (20 March 2016). "Discovery of a massive supercluster system at z ~ 0.47". Astronomy & Astrophysics. 588: L4. arXiv:1602.08498. Bibcode:2016A&A...588L...4L. doi:10.1051/0004-6361/201628261. S2CID 56126854.
  22. ^ a b c d e Einasto, Maret; Lietzen, Heidi; Gramann, Mirt; Tempel, Elmo; Saar, Enn; Liivamägi, Lauri Juhan; Heinämäki, Pekka; Nurmi, Pasi; Einasto, Jaan (2016). "Sloan Great Wall as a complex of superclusters with collapsing cores". Astronomy & Astrophysics. 595: A70. arXiv:1608.04988. Bibcode:2016A&A...595A..70E. doi:10.1051/0004-6361/201628567. S2CID 118701869.
  23. ^ Bagchi, Joydeep; Sankhyayan, Shishir; Sarkar, Prakash; Raychaudhury, Somak; Jacob, Joe; Dabhade, Pratik (2017). "Saraswati: An Extremely Massive ∼200 Megaparsec Scale Supercluster". The Astrophysical Journal. 844 (1): 25. arXiv:1707.03082. Bibcode:2017ApJ...844...25B. doi:10.3847/1538-4357/aa7949.
  24. ^ Fleenor, Matthew C.; Rose, James A.; Christiansen, Wayne A.; Hunstead, Richard W.; Johnston-Hollitt, Melanie; Drinkwater, Michael J.; Saunders, William (2005). "Large-Scale Velocity Structures in the Horologium-Reticulum Supercluster". The Astronomical Journal. 130 (3): 957–967. arXiv:astro-ph/0505361. Bibcode:2005AJ....130..957F. doi:10.1086/431972. S2CID 13839289.
  25. ^ a b c d e f g h i j k l m n o p q r s t u v w Komberg, Boris V.; Kravtsov, Andrey V.; Lukash, Vladimir N. (1996). "The search and investigation of the Large Groups of Quasars". Monthly Notices of the Royal Astronomical Society. 282 (3): 2090. arXiv:astro-ph/9602090. Bibcode:1996MNRAS.282..713K. doi:10.1093/mnras/282.3.713. S2CID 14700144.
  26. ^ a b c d e f g h i j k l m n o R.G.Clowes; "Large Quasar Groups - A Short Review"; 'The New Era of Wide Field Astronomy', ASP Conference Series, Vol. 232.; 2001; Astronomical Society of the Pacific; ISBN 1-58381-065-X ; Bibcode:2001ASPC..232..108C
  27. ^ Tully, R. Brent; Courtois, Hélène; Hoffman, Yehuda; Pomarède, Daniel (2014). "The Laniakea supercluster of galaxies". Nature. 513 (7516): 71–73. arXiv:1409.0880. Bibcode:2014Natur.513...71T. doi:10.1038/nature13674. PMID 25186900. S2CID 205240232.
  28. ^ Cucciati, O.; Lemaux, B. C.; Zamorani, G.; Le Fèvre, O.; Tasca, L. A. M.; Hathi, N. P.; Lee, K.-G.; Bardelli, S.; Cassata, P.; Garilli, B.; Le Brun, V.; MacCagni, D.; Pentericci, L.; Thomas, R.; Vanzella, E.; Zucca, E.; Lubin, L. M.; Amorin, R.; Cassarà, L. P.; Cimatti, A.; Talia, M.; Vergani, D.; Koekemoer, A.; Pforr, J.; Salvato, M. (2018). "The progeny of a cosmic titan: A massive multi-component proto-supercluster in formation at z = 2.45 in VUDS". Astronomy & Astrophysics. 619: A49. arXiv:1806.06073. Bibcode:2018A&A...619A..49C. doi:10.1051/0004-6361/201833655. S2CID 119472428.
  29. ^ Proust, D.; Quintana, H.; Carrasco, E. R.; Reisenegger, A.; Slezak, E.; Muriel, H.; Dünner, R.; Sodré, L.; Drinkwater, M. J.; Parker, Q. A.; Ragone, C. J. (2006). "Structure and dynamics of the Shapley Supercluster". Astronomy & Astrophysics. 447: 133–144. arXiv:astro-ph/0509903. doi:10.1051/0004-6361:20052838. S2CID 13167799.
  30. ^ Graham, M. J.; Clowes, R. G.; Campusano, L. E. (1995). "Finding Quasar Superstructures". Monthly Notices of the Royal Astronomical Society. 275 (3): 790. Bibcode:1995MNRAS.275..790G. doi:10.1093/mnras/275.3.790.
  31. ^ Krause, M. O.; Ribeiro, A. L. B.; Lopes, P. A. A. (2013). "Distribution and evolution of galaxy groups in the Ursa Major supercluster". Astronomy & Astrophysics. 551: A143. arXiv:1302.5802. Bibcode:2013A&A...551A.143K. doi:10.1051/0004-6361/201220071. S2CID 119199961.
  32. ^ Unveiling large-scale structures behind the Milky Way. Astronomical Society of the Pacific Conference Series, Vol. 67; Proceedings of a workshop at the Observatoire de Paris-Meudon; 18–21 January 1994; San Francisco: Astronomical Society of the Pacific (ASP); c1994; edited by Chantal Balkowski and R. C. Kraan-Korteweg, p.21 ; Visualization of Nearby Large-Scale Structures ; Fairall, A. P., Paverd, W. R., & Ashley, R. P. ; Bibcode:1994ASPC...67...21F
  33. ^ 'Astrophysics and Space Science', Volume 230, Issue 1-2, pp. 225-235 Large-Scale Structures in the Distribution of Galaxies 08/1995 Bibcode:1995Ap&SS.230..225F
  34. ^ Francis, Paul J.; Palunas, Povilas; Teplitz, Harry I.; Williger, Gerard M.; Woodgate, Bruce E. (2004). "The Distribution of Lyα-emitting Galaxies at z =2.38. II. Spectroscopy". The Astrophysical Journal. 614 (1): 75–83. arXiv:astro-ph/0406413. Bibcode:2004ApJ...614...75F. doi:10.1086/423417. S2CID 118037575.
  35. ^ Webster, Adrian (May 1982). "The clustering of quasars from an objective-prism survey". Monthly Notices of the Royal Astronomical Society. 199 (3): 683–705. Bibcode:1982MNRAS.199..683W. doi:10.1093/mnras/199.3.683.
  36. ^ Tanaka, I. (2004). "Subaru Observation of a Supercluster of Galaxies and QSOS at Z = 1.1". Studies of Galaxies in the Young Universe with New Generation Telescope, Proceedings of Japan-German Seminar, held in Sendai, Japan, July 24–28, 2001. pp. 61–64. Bibcode:2004sgyu.conf...61T.
  37. ^ Tanaka, I.; Yamada, T.; Turner, E. L.; Suto, Y. (2001). "Superclustering of Faint Galaxies in the Field of a QSO Concentration at z ~ 1.1". The Astrophysical Journal. 547 (2): 521–530. arXiv:astro-ph/0009229. Bibcode:2001ApJ...547..521T. doi:10.1086/318430. S2CID 119439816.
  38. ^ Sankhyayan, Shishir; Okabe, Joydeep; Tempel, Elmo; More, Surhud; Einasto, Maret; Dabhade, Pratik; Raychaudhury, Somak; Athreya, Ramana; Heinämäki, Pekka (13 November 2023). "Identification of Superclusters and Their Properties in the Sloan Digital Sky Survey Using the WHL Cluster Catalog". The Astrophysical Journal. 958 (1): 62. arXiv:2309.06251. Bibcode:2023ApJ...958...62S. doi:10.3847/1538-4357/acfaeb.
  39. ^ The Astrophysical Journal Supplement Series, volume 121, issue 2, pp. 445–472. "Photometric Properties of Kiso Ultraviolet-Excess Galaxies in the Lynx-Ursa Major Region" 04/1999 Bibcode:1999ApJS..121..445T
  40. ^ Umehata, Hideki (2019). "ALMA Deep Field in the SSA22 proto-cluster at z = 3". Proceedings of the International Astronomical Union. 15: 157–161. doi:10.1017/S1743921319009591. S2CID 233342554.
  41. ^ a b Heinämäki, P.; Teerikorpi, P.; Douspis, M.; Nurmi, P.; Einasto, M.; Gramann, M.; Nevalainen, J.; Saar, E. (2022). "Quasi-spherical superclusters". Astronomy & Astrophysics. 668: A37. arXiv:2210.13294. Bibcode:2022A&A...668A..37H. doi:10.1051/0004-6361/202244239.
  42. ^ Klypin, Anatoly; Hoffman, Yehuda; Kravtsov, Andrey V.; Gottlober, Stefan (2003). "Constrained Simulations of the Real Universe: The Local Supercluster". The Astrophysical Journal. 596 (1): 19–33. arXiv:astro-ph/0107104. Bibcode:2003ApJ...596...19K. doi:10.1086/377574. S2CID 1830859.
  43. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad Mao, Qingqing; Berlind, Andreas A.; Scherrer, Robert J.; Neyrinck, Mark C.; Scoccimarro, Román; Tinker, Jeremy L.; McBride, Cameron K.; Schneider, Donald P.; Pan, Kaike; Bizyaev, Dmitry; Malanushenko, Elena; Malanushenko, Viktor (2017). "A Cosmic Void Catalog of SDSS DR12 BOSS Galaxies". The Astrophysical Journal. 835 (2): 161. arXiv:1602.02771. Bibcode:2017ApJ...835..161M. doi:10.3847/1538-4357/835/2/161. S2CID 119098071.
  44. ^ Owusu, Stephen; Da Silveira Ferreira, Pedro; Notari, Alessio; Quartin, Miguel (2023). "The CMB cold spot under the lens: Ruling out a supervoid interpretation". Journal of Cosmology and Astroparticle Physics. 2023 (6): 040. arXiv:2211.16139. Bibcode:2023JCAP...06..040O. doi:10.1088/1475-7516/2023/06/040. S2CID 254069386.
  45. ^ Cai, Rong-Gen; Ding, Jia-Feng; Guo, Zong-Kuan; Wang, Shao-Jiang; Yu, Wang-Wei (2021). "Do the observational data favor a local void?". Physical Review D. 103 (12): 123539. arXiv:2012.08292. Bibcode:2021PhRvD.103l3539C. doi:10.1103/PhysRevD.103.123539. S2CID 229180790.
  46. ^ Kenworthy, W. D’Arcy; Scolnic, Dan; Riess, Adam (2019-04-24). "The Local Perspective on the Hubble Tension: Local Structure Does Not Impact Measurement of the Hubble Constant". The Astrophysical Journal. 875 (2): 145. arXiv:1901.08681. Bibcode:2019ApJ...875..145K. doi:10.3847/1538-4357/ab0ebf. ISSN 1538-4357. S2CID 119095484.
  47. ^ Haslbauer, Moritz; Banik, Indranil; Kroupa, Pavel (October 23, 2020). "The KBC void and Hubble tension contradict $\Lambda$CDM on a Gpc scale $-$ Milgromian dynamics as a possible solution". Monthly Notices of the Royal Astronomical Society. 499 (2): 2845–2883. arXiv:2009.11292. doi:10.1093/mnras/staa2348.
  48. ^ Kopylov, A. I.; Kopylova, F. G. (February 2002). "Search for streaming motion of galaxy clusters around the Giant Void" (PDF). Astronomy & Astrophysics. 382 (2): 389–396. Bibcode:2002A&A...382..389K. doi:10.1051/0004-6361:20011500. Archived (PDF) from the original on 2018-07-18.
  49. ^ Bahcall, N. A.; Soneira, R. M. (1982) "An approximately 300 MPC void of rich clusters of galaxies" (PDF) Astrophysical Journal, Part 1, vol. 262, Nov. 15, 1982, p. 419-423. Bibcode:1982ApJ...262..419B doi:10.1086/160436
  50. ^ a b Einasto, Jaan; Einasto, Maret; Gramann, Mirt (1989) "Structure and formation of superclusters. IX - Self-similarity of voids" (PDF) Royal Astronomical Society, Monthly Notices (ISSN 0035-8711), vol. 238, May 1, 1989, p. 155-177. Bibcode:1989MNRAS.238..155E
  51. ^ S.A. Pustilnik (SAO), D. Engels (Hamburg), A.Y. Kniazev (ESO, SAO), A.G. Pramskij, A.V. Ugryumov (SAO), H.-J. Hagen (Hamburg) (2005) [ "HS 2134+0400 - new very metal-poor galaxy, a representative of void population?"] arXiv:astro-ph/0508255v1 Bibcode:2006AstL...32..228P doi:10.1134/S1063773706040025