Open main menu

Wikipedia β

A log scale makes it easy to compare values that cover a large range, such as in this map

A logarithmic scale is a nonlinear scale used when there is a large range of quantities. Common uses include earthquake strength, sound loudness, light intensity, and pH of solutions.

It is based on orders of magnitude, rather than a standard linear scale, so the value represented by each equidistant mark on the scale is the value at the previous mark multiplied by a constant.

Logarithmic scales are also used in slide rules for multiplying or dividing numbers by adding or subtracting lengths on the scales.

The two logarithmic scales of a slide rule

Contents

Common usagesEdit

The following are examples of commonly used logarithmic scales, where a larger quantity results in a higher value:

The following are examples of commonly used logarithmic scales, where a larger quantity results in a lower (or negative) value:

Some of our senses operate in a logarithmic fashion (Weber–Fechner law), which makes logarithmic scales for these input quantities especially appropriate. In particular our sense of hearing perceives equal ratios of frequencies as equal differences in pitch. In addition, studies of young children in an isolated tribe have shown logarithmic scales to be the most natural display of numbers in some cultures.[1] It can also be used for geographical purposes like for measuring the speed of earthquakes.

Graphic representationEdit

 
Various scales: lin–lin, lin–log, log–lin, and log–log. Plotted graphs are: y = 10 x (red), y = x (green), y = loge(x) (blue).

The top left graph is linear in the X and Y axis, and the Y-axis ranges from 0 to 10. A base-10 log scale is used for the Y axis of the bottom left graph, and the Y axis ranges from 0.1 to 1,000.

The top right graph uses a log-10 scale for just the X axis, and the bottom right graph uses a log-10 scale for both the X axis and the Y axis.

Presentation of data on a logarithmic scale can be helpful when the data:

  • covers a large range of values, since the use of the logarithms of the values rather than the actual values reduces a wide range to a more manageable size;
  • may contain exponential laws or power laws, since these will show up as straight lines.

A slide rule has logarithmic scales, and nomograms often employ logarithmic scales. The geometric mean of two numbers is midway between the numbers. Before the advent of computer graphics, logarithmic graph paper was a commonly used scientific tool.

Log–log plotsEdit

 
Plot on log–log scale of equation of a line.

If both the vertical and horizontal axes of a plot are scaled logarithmically, the plot is referred to as a log–log plot.

Semi logarithmic plotsEdit

If only the ordinate or abscissa is scaled logarithmically, the plot is referred to as a semi-logarithmic plot.

Logarithmic unitsEdit

A logarithmic unit is an abstract mathematical unit that can be used to express any quantity (physical or mathematical) that is defined on a logarithmic scale, that is, as being proportional to the value of a logarithm function. Here, a given logarithmic unit will be denoted using the notation [log n], where n is a positive real number, and [log ] here denotes the indefinite logarithm function  .

ExamplesEdit

Examples of logarithmic units include common units of information and entropy, such as the bit [log 2][dubious ] and the byte 8[log 2] = [log 256], also the nat [log e] and the ban [log 10]; units of relative signal strength magnitude such as the decibel 0.1[log 10] and bel [log 10], neper [log e], and other logarithmic-scale units such as the Richter magnitude scale point [log 10] or (more generally) the corresponding order-of-magnitude unit sometimes referred to as a factor of ten or decade (here meaning [log 10], not 10 years). Musical pitch intervals are also logarithmic units on a frequency scale, such as octave [log 2], semitone, cent, etc.

MotivationEdit

The motivation behind the concept of logarithmic units is that defining a quantity on a logarithmic scale in terms of a logarithm to a specific base amounts to making a (totally arbitrary) choice of a unit of measurement for that quantity, one that corresponds to the specific (and equally arbitrary) logarithm base that was selected. Due to the identity

 

the logarithms of any given number a to two different bases (here b and c) differ only by the constant factor logc b. This constant factor can be considered to represent the conversion factor for converting a numerical representation of the pure (indefinite) logarithmic quantity Log(a) from one arbitrary unit of measurement (the [log c] unit) to another (the [log b] unit), since

 

For example, Boltzmann's standard definition of entropy S = k ln W (where W is the number of ways of arranging a system and k is Boltzmann's constant) can also be written more simply as just S = Log(W), where "Log" here denotes the indefinite logarithm, and we let k = [log e]; that is, we identify the physical entropy unit k with the mathematical unit [log e]. This identity works because

 

Thus, we can interpret Boltzmann's constant as being simply the expression (in terms of more standard physical units) of the abstract logarithmic unit [log e] that is needed to convert the dimensionless pure-number quantity ln W (which uses an arbitrary choice of base, namely e) to the more fundamental pure logarithmic quantity Log(W), which implies no particular choice of base, and thus no particular choice of physical unit for measuring entropy.

See alsoEdit

ReferencesEdit

Further readingEdit

External linksEdit