Open main menu

5 ft 6 in gauge railway

  (Redirected from Indian gauge)

5 ft 6 in / 1,676 mm is the size of a broad track gauge commonly used in India, Pakistan, western Bangladesh, Sri Lanka, Argentina, Chile, and on the BART (Bay Area Rapid Transit) in the San Francisco Bay Area. In the Indian Subcontinent it is simply known as "Broad gauge", while in North America, it is called Provincial, Portland, or Texas gauge. In Argentina, it is known as "trocha ancha" (Spanish for Broad gauge). Elsewhere it is known as "Indian gauge". It is the widest gauge in regular passenger use anywhere in the world. The British chose this gauge as the standard in India as it was thought to be safer in areas prone to cyclones and flooding.[1]

Contents

AsiaEdit

IndiaEdit

In India, some standard gauge freight railways were built in the initial period, though they were dismantled later. Later, in the 1850s, the gauge of 1,676 mm (5 ft 6 in) was adopted as the standard for the nationwide network.

Rail transport in India today is predominantly on 1,676 mm (5 ft 6 in) broad gauge with more than 120,000 km of tracks. Small stretches of the network use metre and narrow gauges which are being converted to broad gauge. Rapid transit metro lines, which are not operated by Indian Railways (except Kolkata Metro, the 17th zone of Indian Railways)[2], are mostly on standard gauge, although some initial lines use 1,676 mm (5 ft 6 in) broad gauge.

BangladeshEdit

Bangladesh Railways uses a mix of 1,676 mm (5 ft 6 in) broad gauge and metre gauge. The broad gauge network is primarily located to the west of the Jamuna River, while the metre gauge network is primarily located to its east. The Jamuna Bridge is a mixed-use bridge that contains a dual gauge connection across the river linking both networks.

NepalEdit

In Nepal all services currently operate on 1,676 mm (5 ft 6 in) broad gauge only.

PakistanEdit

In Pakistan, all services currently operate on 1,676 mm (5 ft 6 in) broad gauge only.

Sri LankaEdit

In Sri Lanka, all services currently operate on 1,676 mm (5 ft 6 in) broad gauge only.

EuropeEdit

United KingdomEdit

The 1,676 mm (5 ft 6 in) broad gauge was actually first used in Scotland for two short, isolated lines, the Dundee and Arbroath Railway (1836-1847) and the Arbroath and Forfar Railway (1838-). Both the lines were subsequently converted to standard gauge.

Spain and PortugalEdit

The Iberian-gauge railways, that service much of Spain and Portugal, have a track gauge of 1,668 mm (5 ft 5 21⁄32 in), less than a centimeter different from 1,676 mm (5 ft 6 in). Used rolling stock from Iberia has been employed on broad-gauge lines in Argentina and Chile.

North AmericaEdit

CanadaEdit

Canada became the first British colony, in the 1850s, to use 1,676 mm (5 ft 6 in) broad gauge. It was known as the "Provincial gauge" in Canada.

The earliest railways in Canada, including the 1836 Champlain and St. Lawrence, 1839 Albion Colliery tramway and 1847 Montreal and Lachine Railway however, were built to standard gauge.[3]

The Grand Trunk Railway which operated in several Canadian provinces (Quebec and Ontario) and American states (Connecticut, Maine, Massachusetts, New Hampshire, and Vermont) used it, but was changed to standard gauge in 1873. The Grand Trunk Railway operated from headquarters in Montreal, Quebec, although corporate headquarters were in London, England. The St. Lawrence and Atlantic Railroad which operated in Quebec, Vermont, New Hampshire and Maine also used it but was converted in 1873.

There is a longstanding rumour that the Provincial gauge was selected specifically to create a break-of-gauge with US railways, the War of 1812 still being a fresh memory. However, there is little supporting evidence for this, and this story appears to be traced to a single claim from the late 1800s.[3]

United StatesEdit

The Bay Area Rapid Transit system is the only operating railroad in the United States to use 1,676 mm (5 ft 6 in) broad gauge, with 109 miles (175 km) of double tracked routes. The original engineers for the system had background in aerospace (rather than railroads) and intended to make a state-of-the-art system for other municipalities to emulate. The use of 1,676 mm (5 ft 6 in) broad gauge rails was one of many unconventional design elements included in its design which, in addition to its unusual gauge, also uses flat-edge rail, rather than typical rail that angles slightly inward. This has complicated maintenance of the system, as it requires custom wheelsets, brake systems, and track maintenance vehicles.[4]

The New Orleans, Opelousas and Great Western Railroad (NOO&GW) used 1,676 mm (5 ft 6 in) broad gauge until 1872, and the Texas and New Orleans Railroad used 1,676 mm (5 ft 6 in) broad gauge, ("Texas gauge") until 1876. The Grand Trunk Railway predecessor St. Lawrence and Atlantic Railroad which operated in Quebec, Vermont, New Hampshire and Maine also used 1,676 mm (5 ft 6 in) broad gauge ("Canadian gauge", "Provincial gauge" or "Portland gauge") but was converted in 1873. Several Maine railroads connected to the Grand Trunk Railway shared its "Portland Gauge". The Androscoggin and Kennebec Railroad and the Buckfield Branch Railroad were later consolidated as the Maine Central Railroad which converted to standard gauge in 1871. The only electric streetcar system in the U.S. to use this gauge was that of Fairfield, Maine.[5] [6]

John A. Poor's chief engineer Alvin C. Morton compiled the following advantages of "Portland Gauge" for Maine railways in 1847:[7]

  • Frost heaves (swelling of wet soil upon freezing) produce an uneven running surface causing an irregular rocking motion as trains moved past. A wider wheelbase offered a steadier ride with less wear on the machinery and roadbed.
  • Wider cars offered more room for passengers and cargo. Train length would be reduced for cars carrying the same amount of cargo. Shorter trains would lessen the effects of side winds, and permit more efficient application of power.
  • Wide gauge locomotives offered more room to place reciprocating machinery inside, rather than outside the driving wheels. Reciprocating machinery was a source of vibration before mechanical engineering encompassed a good understanding of dynamics; and keeping such vibration close to the center of mass reduced the angular momentum causing rocking.
  • Wider fireboxes and boilers allowed more powerful locomotives. The alternative of longer boilers held the disadvantage of poor firebox draft through the increased frictional resistance of longer boiler tubes.
  • More powerful locomotives carrying fewer, larger cars would have reduced manpower requirement for engine crews and shop personnel.
  • For locomotives of equal power, fuel consumption increased as gauge decreased, especially in colder outside temperatures.
  • More powerful wide gauge locomotives would be more capable for plowing snow; and thereby provide more reliable winter service.
  • Several gauges were in widespread use, and none had yet come into clear dominance.
  • Freight transfer was preferable to exchange of cars between railways because unowned cars were abused on foreign railways.
  • The Grand Trunk Railway system feeding the seaport of Portland, Maine offered little need for gauge transfer prior to loading on export shipping.
  • Potential advantages of freight transfer to the standard gauge railroad from Portland to Boston seemed insignificant as long as competitive rates were available for transport on steamships between the two ports.
  • The majority of Canadian freight anticipated to be carried over rail lines to Portland was heavy and bulky in comparison to its value, and must be transported cheaply in large quantities to maintain profitability for producers and transporters.

South AmericaEdit

ArgentinaEdit

The national railway network is predominantly on 1,676 mm (5 ft 6 in) broad gauge.

ChileEdit

Most installations of 1,676 mm (5 ft 6 in) broad gauge railways are in the south of the country.

Similar gauges and compatibilityEdit

The Iberian gauge (1,668 mm or 5 ft 5 2132 in) is closely similar, with only 8 mm (516 in) difference, and allows compatibility with the rolling stock. For example, in recent years Chile and Argentina have bought second hand Spanish/Portuguese Iberian-gauge rolling stock. 1,668 mm trains can run on 1,676 mm gauge without adaptation, but for better stability in high-speed running a wheelset replacement may be required (for example, Russian-Finnish train Allegro has gauge 1,522 mm, intermediate between Russian 1,520 mm and Finnish 1,524 mm). Backward compatibility—1,676 mm trains on 1,668 mm gauge—is possible, but no examples and data exist. Due to the narrower gauge, a strong wear of wheelsets may occur without replacement.

Operational installationsEdit

Country/territory Railway Route length Notes
Argentina San Martín Railway operating
Argentina Sarmiento Railway operating
Argentina Mitre Railway except Tren de la Costa in standard gauge; operating
Argentina Roca Railway except La Trochita, Central Chubut Railway and Ramal Ferro Industrial Río Turbio [es] in 750 mm (2 ft 5 1⁄2 in) gauge; operating
Bangladesh Bangladesh Railway 682 km (424 mi) operating
Chile *Empresa de los Ferrocarriles del Estado operating
India Indian Railways 67,368 km (41,861 mi) operating
India Delhi Metro 65 km (40 mi) Phase-1 lines only; operating
India Kolkata Metro 27.22 km (16.91 mi) Line 1 only; operating
Iran Zahedan to border with Pakistan operating
Nepal Nepal Railways 59 km (37 mi) operating
Pakistan Pakistan Railways 7,791 km (4,841 mi) operating
Sri Lanka Sri Lanka Railways 1,508 km (937 mi) operating
United States Bay Area Rapid Transit (BART) San Francisco Bay Area 109 mi (175 km) operating

Discontinued installationsEdit

Country/territory Railway Route/length Notes
Canada Grand Trunk Railway converted to 4 ft 8 12 in (1,435 mm) standard gauge in 1873
Canada St. Lawrence and Atlantic Railroad converted to 4 ft 8 12 in (1,435 mm) standard gauge in 1873
Canada Grand Trunk Railway of Canada converted to 4 ft 8 12 in (1,435 mm) standard gauge
Canada Intercolonial Railway of Canada converted to 4 ft 8 12 in (1,435 mm) standard gauge in 1875
Paraguay Paraguayan railway From Asunción to Encarnación was originally laid in this gauge in the hope that the connecting line from Posadas to Buenos Aires would be built to the same gauge; that line was laid to standard gauge, and when the FCPCAL reached Encarnación in 1912 the whole line had to be re-gauged to standard gauge to allow through-working.
United Kingdom Arbroath and Forfar Railway see Scotch gauge, converted to standard gauge
United Kingdom Dundee and Arbroath Railway 16 34 mi (27.0 km) see Scotch gauge, converted to standard gauge
United States Maine Central Railroad converted to standard gauge in 1871

See alsoEdit

ReferencesEdit

  1. ^ Indian Railways: Some Fascinating Facts, "Train Atlas", Train Atlas, Indian Railways, 2003
  2. ^ "Kolkata Metro", Wikipedia, 2019-06-30, retrieved 2019-07-04
  3. ^ a b Omer Lavallee, "The Rise and Fall of the Provincial Gauge", Canadian Rail, February 1963, pp. 22-37
  4. ^ Gafni, Matthias (March 25, 2016). "Has BART's cutting-edge 1972 technology design come back to haunt it?". San Jose Mercury News. Retrieved March 28, 2016.
  5. ^ [1]
  6. ^ [2]
  7. ^ Holt, Jeff (1985). The Grand Trunk in New England. Railfare. p. 78. ISBN 0-919130-43-7.