Open main menu

Yttrium-90, 90
, is a medically significant isotope of yttrium.[2] Yttrium-90 has a wide and valuable use in radiation therapy to treat cancer.[3]

Yttrium-90,  90Y
Name, symbolYttrium-90,90Y
Nuclide data
Half-life64.60 h ± 0.43 h [1]
Isotopes of yttrium
Complete table of nuclides



undergoes β decay to zirconium-90 with a half-life of 64.1 hours[4] and a decay energy of 2.28 MeV.[5] It also produces 0.01% 1.7 MeV[6] photons along the way. Interaction of the emitted electrons with matter can lead to Bremsstrahlung radiation.


Yttrium-90 is a decay product of strontium-90 which makes up about 5% of the nuclear daughter isotopes when uranium is fissioned.[7][not in citation given] Yttrium-90 is produced by chemical high-purity separation from strontium-90, a fission product of uranium in nuclear reactors.[8]

Medical applicationEdit

90Y plays a significant role in the treatment of hepatocellular carcinoma (HCC) and other liver cancers. Trans-arterial radioembolization is a procedure performed by interventional radiologists in which microspheres are impregnated with 90Y and injected into the arteries supplying the tumor.[9] Radioembolization with 90Y significantly prolongs time-to-progression (TTP) of HCC,[10] has a tolerable adverse event profile, and improves patient quality of life more than do similar therapies.[11]

See alsoEdit


  1. ^ Chetham-Strode, A.; Kinderman, E. M. (February 1, 1954). "The Half-Life of Yttrium-90". Physical Review. 93 (5): 1029. doi:10.1103/physrev.93.1029. ISSN 0031-899X.
  2. ^ Vincent T. DeVita; Theodore S. Lawrence; Steven A. Rosenberg; Robert A. Weinberg; Ronald A. DePinho (1 April 2008). DeVita, Hellman, and Rosenberg's cancer: principles & practice of oncology. Lippincott Williams & Wilkins. p. 2507. ISBN 978-0-7817-7207-5. Retrieved 9 June 2011.
  3. ^ Arkadiy Kheyfits (October 2010). "Yttrium-90 Radioembolization". Radiology Today. Retrieved 2012-10-23.
  4. ^ "Y-90 Handling Precautions" (PDF). Retrieved 2015-07-15.
  5. ^ "Table of Isotopes decay data". The Lund/LBNL Nuclear Data Search. February 1999. Retrieved 2012-10-23.
  6. ^ Rault, E.; Vandenberghe, S.; Staelens, S.; Lemahieu, I. (2009). Optimization of Yttrium-90 Bremsstrahlung Imaging with Monte Carlo Simulations. 4th European Conference of the International Federation for Medical and Biological Engineering. 22. pp. 500–504. Retrieved 21 October 2013.
  7. ^ "Strontium | Radiation Protection | US EPA". EPA. 24 April 2012. Retrieved 2012-10-23.
  8. ^ "PNNL: Isotope Sciences Program - Yttrium-90 Production". PNNL. February 2012. Retrieved 2012-10-23.
  9. ^ Kallini, Joseph Ralph; Gabr, Ahmed; Salem, Riad; Lewandowski, Robert J. (April 2, 2016). "Transarterial Radioembolization with Yttrium-90 for the Treatment of Hepatocellular Carcinoma". Advances in Therapy. 33 (5): 699–714. doi:10.1007/s12325-016-0324-7. ISSN 0741-238X. PMC 4882351. PMID 27039186.
  10. ^ Salem, Riad; Gordon, Andrew C.; Mouli, Samdeep; Hickey, Ryan; et al. (2016). "Y90 Radioembolization Significantly Prolongs Time to Progression Compared With Chemoembolization in Patients With Hepatocellular Carcinoma". Gastroenterology. 151 (6): 1155–1163.e2. doi:10.1053/j.gastro.2016.08.029. ISSN 0016-5085. PMC 5124387. PMID 27575820.
  11. ^ Salem, Riad; Gilbertsen, Margaret; Butt, Zeeshan; Memon, Khairuddin; et al. (2013). "Increased Quality of Life Among Hepatocellular Carcinoma Patients Treated With Radioembolization, Compared With Chemoembolization". Clinical Gastroenterology and Hepatology. 11 (10): 1358–1365.e1. doi:10.1016/j.cgh.2013.04.028. ISSN 1542-3565. PMID 23644386.

External linksEdit