User:Tomruen/Uniform honeycombs Johnson

Original copy [1], without wikilinks and formatting.

Uniform honeycombs in three-space edit

by Norman Johnson, 2003

Besides the generic term polytope, we have the more specific terms polygon, polyhedron, and polychoron for polytopes of two, three, and four dimensions. Likewise, honeycomb is the generic term for a polytopal covering of n-space, but one can speak more specifically of a partition of a line, a tessellation of a plane, or a cellulation of 3-space.

There is a standard name, a little simpler than George Olshevsky's panoploid honeycomb, for a honeycomb that fills n-space without gaps or overlaps, namely, a tiling. A tiling is convex if all the tiles are convex.

A number of uniform tilings of Euclidean 3-space were described by Alfredo Andreini (1905). Others were discovered by J. C. P. Miller and H. S. M. Coxeter (see Coxeter 1932, 1940, 1985). In 1959 I found another one (No. 23 in George's list), which I described in my 1966 Ph.D. thesis. So far as I know, the first appearance in the literature of the presumably complete list of 28 uniform tilings was a note by Branko Grunbaum (1994).

To my knowledge, there is as yet no proof that there are exactly 28 uniform tilings of Euclidean 3-space, but it seems highly likely that this is the case. All of these tilings have counterparts in higher-dimensional space.

Most of the uniform tilings of 3-space can be derived by Wythoff's construction either from the regular tiling of cubes or from the eleven uniform tilings of the plane, but there are also a few anomalous ones.

Here I describe each of the twenty-eight, giving an extended Schlafli symbol, the name I use, the number of cell polyhedra of each type at a vertex, and a cross reference to the list recently by George. Two tilings with alternative derivations are listed twice.

Cells edit

The thirteen uniform solids listed below occur as cell polyhedra of uniform tilings of 3-space. Some of these may occur with less than their full symmetry and are given in alternative forms.

{3,3} = T (tetrahedron,      ,  ) or
{3,4} = O (octahedron,      ,  ) or
{4,3} = C (cube,        ) or

t{3,3} = tT (truncated tetrahedron,      ),  
t{3,4} = tO (truncated octahedron,      ),  
t{4,3} = tC (truncated cube,      ),  
r{3,4} = CO (cuboctahedron,      ),  
rr{3,4} = rCO (rhombicuboctahedron,      ),  
tr{3,4} = tCO (truncated cuboctahedron,      ),  
{3}×{} = 3P (triangular prism,      ,  ), or
  • v{1}×{} = v1P or
  • u{1}×{} = u1P or
  • w{2, 1} = 2W (fastigium,  )
{6}×{} = 6P (hexagonal prism,      ,  ) or
t{4}×{} = t4P (ditetragonal prism,      ,  )
t{6}×{} = t6P (dihexagonal prism,      ,  )

Generalized truncations edit

Index Name
Symbols
Cells Subtilings Image
[1] Cubic cellulation
{4,3,4},        
8 C  
     
Q  
     
 
[2] Rectified cubic cellulation
r{4,3,4},        
2 O  
     
4 CO  
     
rQ  
     
DH  
     
 
[3] Truncated cubic cellulation
t{4,3,4},        
1 O  
     
4 tC  
     
tQ  
     
 
[4] Cantellated cubic cellulation
e2{4,3,4},        
1 CO  
     
2 rCO  
     
2 4P  
     
 
[1]
REPEAT
Runcinated cubic cellulation
e3{4,3,4},        
2 C  
     
6 4P  
     
rrQ  
     
 
[5] Bitruncated cubic cellulation
2t{4,3,4},        
4 tO  
     
 
[6] Cantitruncated cubic cellulation
e2t{4,3,4},        
1 tO  
     
2 tCO  
     
1 4P  
     
 
[7] Runcitruncated cubic cellulation
e3t{4,3,4},        
1 tC  
     
1 rCO  
     
1 4P  
     
4 t4P  
     
tQ  
     
 
[8] Omnitruncated cubic cellulation
e2,3t{4,3,4},        
2 tCO  
     
2 t4P  
     
 

Alternated tilings edit

Index Name
Symbols
Cells Subtilings Image
[11] Half cubic cellulation
h{4,3,4},         =      
8 T  
      =    
6 O  
     
D  
   
 
[12] Runcic cubic cellulation
h3{4,3,4},         =      
1 T  
      =    
3 rCO  
     
1 C  
     
 
[13] Cantic cubic cellulation
h2{4,3,4},         =      
2 tT  
      =    
2 tO  
     
1 CO  
     
 
[14] Runcicantic cubic cellulation
h2,3{4,3,4},         =      
1 tT  
      =    
2 tCO  
     
1 tC  
     
 
[15] Quarter cubic cellulation
q{4,3,4},         =    
2 T  
      =    
6 tT  
   
DH  
   
 

Prismatic tilings edit

Index Name
Symbols
Cells Subtilings Image
[9] Tomo-square prismatic cellulation
t{4,4}×{∞},          
2 4P  
     
4 t4P  
     
tQ  
     
 
[10] Simo-square prismatic cellulation
s{4,4}×{∞}
          or          
4 4P  
     
6 v1P   sQ  
     
 
[16] Hexagonal prismatic cellulation
{6,3}×{∞},          
6 6P  
     
H  
     
 
[17] Trihexagonal prismatic cellulation
r{3,6}×{∞},          
4 3P  
     
4 6P  
     
DH  
     
rQ    
[18] Triangular prismatic cellulation
{3,6}×{∞},          
12 3P  
     
D  
     
Q    
[19] Tomo-hexagonal prismatic cellulation
t{6,3}×{∞},          
2 4P  
     
2 6P  
     
2 t6P  
     
tH  
     
 
[20] Rhombitrihexagonal prismatic cellulation
rr{3,6}×{∞},          
2 3P  
     
2 6P  
     
4 t2P  
     
rDH  
     
 
[21] Tomo-trihexagonal prismatic cellulation
tr{3,6}×{∞},          
2 t3P   2 t6P  
     
2 t2P  
     
tDH  
     
 
[22] Simo-trihexagonal prismatic cellulation
sr{3,6}×{∞},          
2 3P  
     
2 6P  
     
6 u1P  
     
sDH  
     
 

Antiprismatic tilings edit

Index Name
Symbols
Cells Subtilings Image
[11]
REPEAT
Tetragonal disphenoidal cellulation
h{4,4}h{∞},          
8 2Q  
     
6 4X   rQ  
     
hH  
     
 
[26] Triangular antiprismatic cellulation
h{6,3}h{∞},          
6 3Q  
     
8 3V   hH  
     
 

Elongated tilings edit

Index Name
Symbols
Cells Subtilings Image
[24] Elongated antiprismatic prismatic cellulation
s{∞}h1{∞}×{∞}
            or            
6 2W   4 4P   Q  
     
D:e  
       
 
[28] Elongated triangular antiprismatic cellulation
{3,6}h1{∞},          
4 3V   3 3Q   6 3P   D    

Anomalous tilings edit

Index Name
Symbols
Cells Subtilings Image
[23] Parasquare fastigial cellulation
{4,4}f{∞}
12 2W   Q    
[25] Elongated parasquare fastigial cellulation
{4,4}f1{∞}
6 2W   4 4P   Q    
[27] Elongated triangular gyroprismatic cellulation
{3,6}g1{∞}
4 3V   3 3Q   6 3P   D    

References edit

  • A. Andreini 1905 "Sulle reti di poliedri regolari e semiregolari," Mem. Soc. Ital. Sci. (3) 14, 75-129.
  • H. S. M. Coxeter
    • 1932 "The polytopes with regular-prismatic vertex figures, II," Proc. London Math. Soc. (2) 34, 126-189.
    • 1940 "Regular and semi-regular polytopes, I," Math. Z. 46, 380-407.
    • 1985 "Regular and semi-regular polytopes, II," Math. Z. 188, 559-591.
  • Norman Johnson The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966[2]
  • B. Grunbaum 1994 "Uniform tilings of 3-space," Geombinatorics 4, 49-56.