Review of the article Climate change

While I think that overall the article is well-written, I do think that there is room for improvement. For example, although almost all of the facts in the article had references attributed to them, some of these references carry more weight than others and one improvement would be to have more sources from primary literature rather than, for example, newspaper articles. While most of the references that I spot-checked to ensure that they were reliable articles worked fine, one (reference 87) did not work. Additionally, the section titled "Temperature Measurements and Proxies" did not have any references listed outside of links to other topics on Wikipedia, so this could be improved.

Additionally, although I think that everything in the article is relevant to the topic, some subjects had much more detailed descriptions than others, and so elaboration on some of these shorter sections, such as the 2-3 lined paragraphs about various types of physical evidence, could be expanded upon to provide further information or detail. I did not perceive any bias in the article, rather it simply presents the facts as we know them. I think that maintaining this article's neutrality is one of the main reasons that it is a semi-protected article: climate change can be a very incendiary topic for those who strongly support implementing changes to halt it, and for those who do not think that it is happening (or that it is not anthropogenic). In my opinion, this is a good thing because by presenting unbiased facts we can better interpret the data.

______________________________________________________________________________________________________________________________________________________________________

Editing of the article Survivorship curve

A survivorship curve is a graph showing the number or proportion of individuals surviving to each age for a given species or group (e.g. males or females). Survivorship curves can be constructed for a given cohort (a group of individuals of roughly the same age) based on a life table.

There are three generalized types of survivorship curves: [1]

  • Type I or convex curves are characterized by high age-specific survival probability in early and middle life, followed by a rapid decline in survival in later life. They are typical of species that produce few offspring but care for them well, including humans and many other large mammals.
  • Type II or diagonal curves are an intermediate between Types I and III, where roughly constant mortality rate/survival probability is experienced regardless of age. Some birds and some lizards follow this pattern.
  • Type III or concave curves have the greatest mortality (lowest age-specific survival) early in life, with relatively low rates of death (high probability of survival) for those surviving this bottleneck. This type of curve is characteristic of species that produce a large number of offspring (see r/K selection theory). This includes most marine invertebrates. For example, oysters produce millions of eggs, but most larvae die from predation or other causes; those that survive long enough to produce a hard shell live relatively long.

The number or proportion of organisms surviving to any age is plotted on the y-axis (generally with a logarithmic scale starting with 1000 individuals), while their age (often as a proportion of maximum life span) is plotted on the x-axis.

In mathematical statistics, the survival function is one specific form of survivorship curve and plays a basic part in survival analysis.

There are various reasons that a species exhibits their particular survivorship curve, but one contributor can be environmental factors that decrease survival. For example, an outside element that is nondiscriminatory in the ages that it affects (of a particular species) is likely to yield a Type II survivorship curve, in which the young and old are equally likely to be affected. On the other hand, an outside element that preferentially reduces the survival of young individuals is likely to yield a Type III curve. Finally, if an outside element only reduces the survival of organisms later in life, this is likely to yield a Type I curve. [2]

See also

edit

References

edit
  1. ^ B., Reece, Jane (2011-01-01). Campbell biology. Pearson Australia. ISBN 9781442531765. OCLC 712136178.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. ^ Demetrius, Lloyd (1978-09-21). "Adaptive value, entropy and survivorship curves". Nature. 275 (5677): 213–214. doi:10.1038/275213a0.