Synthesis

edit

The synthesis of porous ZIFs generally consists of combining a hydrated metal salt, ImH species (imidazole with acidic proton), an amide solvent, and heat.[1]  The heat degrades the amide solvent to generate an amine, which deprotonates the imidazole and allows it to participate as a structural ligand to the metal.  Common amide solvents include N,N-dimethylformamide, N,N-diethylformamide, and N-methylpyrrolidine.  Functionalized ImH linkers allow for control of ZIF topology.[2]  The addition of base such as pyridine,[3] TEA,[4] and NaOH[5] can also facilitate ZIF formation.  With the right heating conditions, molar ratios, and concentrations, this solvothermal process is ideal for generating monocrystalline materials for single-crystal X-ray diffraction.[6][7]   Methanol,[8][9] ethanol,[10] and isopropanol[11] have also been explored as alternative organic solvents for ZIF formation, while additives including sodium formate[12] and poly-(diallyldimethylammonium chloride)[13] allow control over size, yield, and speed of crystal formation.   Sonication, which leverages acoustic cavitation, has also been seen to improve crystal nucleation speed and homogeneity.[14][15]

Water has also been of great interest for ZIF synthesis, owing to its non-toxicity and non-flammability.  In its simplest incarnations, water-based synthesis of ZIFs involves mixing zinc nitrate solution with imidazole solution at room temperature, and collecting the products by centrifugation.[16][17][18][19]  As in the case of organic solvents, the addition of triethylamine[20] and ammonium hydroxide[21] as deprotonating agents can facilitate ZIF formation.  Water-soluble polymers such as poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO)[22] and polyvinylpyrrolidone (PVP)[23] can act as crystal dispersants, resulting in improved morphology outcomes in aqueous systems.  

Ionic liquids have also been explored for ZIF synthesis.  Ionic liquids can act as both solvents and templates, while being non-flammable, recyclable, and of low vapor pressure.  Two such ionic liquids include 1-ethyl-3-methylimidazolium bis[(triuoromethyl) sulfonyl]imide[24], and  1-butyl-3- methyl-imidazolium tetrauoroborate.[25]This article is very thorough, but gets bogged down in names of specific chemicals and substances that are being explored for ZIF applications. Providing examples is helpful, but consider significantly reducing the number of examples that are currently in your draft. user:Parkerjones3

  1. ^ Park, Kyo Sung; Ni, Zheng; Côté, Adrien P.; Choi, Jae Yong; Huang, Rudan; Uribe-Romo, Fernando J.; Chae, Hee K.; O’Keeffe, Michael; Yaghi, Omar M. (2006-07-05). "Exceptional chemical and thermal stability of zeolitic imidazolate frameworks". Proceedings of the National Academy of Sciences. 103 (27): 10186–10191. doi:10.1073/pnas.0602439103. ISSN 0027-8424. PMC 1502432. PMID 16798880.{{cite journal}}: CS1 maint: PMC format (link)
  2. ^ Hayashi, Hideki; Côté, Adrien P.; Furukawa, Hiroyasu; O’Keeffe, Michael; Yaghi, Omar M. (2007-07-01). "Zeolite A imidazolate frameworks". Nature Materials. 6 (7): 501–506. doi:10.1038/nmat1927. ISSN 1476-1122.
  3. ^ Yang, Tingxu; Chung, Tai-Shung (2013-04-23). "Room-temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation". Journal of Materials Chemistry A. 1 (19). doi:10.1039/C3TA10928C. ISSN 2050-7496.
  4. ^ "Solvothermal synthesis of mixed-ligand metal–organic framework ZIF-78 with controllable size and morphology". ResearchGate. Retrieved 2017-05-01.
  5. ^ Peralta, David; Chaplais, Gérald; Simon-Masseron, Angélique; Barthelet, Karin; Pirngruber, Gerhard D. (2012-05-01). "Synthesis and adsorption properties of ZIF-76 isomorphs". Microporous and Mesoporous Materials. 153: 1–7. doi:10.1016/j.micromeso.2011.12.009.
  6. ^ Banerjee, Rahul; Phan, Anh; Wang, Bo; Knobler, Carolyn; Furukawa, Hiroyasu; O'Keeffe, Michael; Yaghi, Omar M. (2008-02-15). "High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture". Science. 319 (5865): 939–943. doi:10.1126/science.1152516. ISSN 0036-8075. PMID 18276887.
  7. ^ Wang, Bo; Côté, Adrien P.; Furukawa, Hiroyasu; O’Keeffe, Michael; Yaghi, Omar M. (2008-05-08). "Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs". Nature. 453 (7192): 207–211. doi:10.1038/nature06900. ISSN 0028-0836.
  8. ^ Huang, Xiao-Chun; Lin, Yan-Yong; Zhang, Jie-Peng; Chen, Xiao-Ming (2006-02-27). "Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies". Angewandte Chemie International Edition. 45 (10): 1557–1559. doi:10.1002/anie.200503778. ISSN 1521-3773.
  9. ^ Cravillon, Janosch; Münzer, Simon; Lohmeier, Sven-Jare; Feldhoff, Armin; Huber, Klaus; Wiebcke, Michael (2009-04-28). "Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework". Chemistry of Materials. 21 (8): 1410–1412. doi:10.1021/cm900166h. ISSN 0897-4756.
  10. ^ He, Ming; Yao, Jianfeng; Li, Lunxi; Wang, Kun; Chen, Fanyan; Wang, Huanting (2013-10-01). "Synthesis of Zeolitic Imidazolate Framework-7 in a Water/Ethanol Mixture and Its Ethanol-Induced Reversible Phase Transition". ChemPlusChem. 78 (10): 1222–1225. doi:10.1002/cplu.201300193. ISSN 2192-6506.
  11. ^ Bennett, Thomas D.; Saines, Paul J.; Keen, David A.; Tan, Jin-Chong; Cheetham, Anthony K. (2013-05-27). "Ball-Milling-Induced Amorphization of Zeolitic Imidazolate Frameworks (ZIFs) for the Irreversible Trapping of Iodine". Chemistry – A European Journal. 19 (22): 7049–7055. doi:10.1002/chem.201300216. ISSN 1521-3765.
  12. ^ Cravillon, Janosch; Schröder, Christian A.; Bux, Helge; Rothkirch, André; Caro, Jürgen; Wiebcke, Michael (2011-12-12). "Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy". CrystEngComm. 14 (2). doi:10.1039/C1CE06002C. ISSN 1466-8033.
  13. ^ Nune, Satish K.; Thallapally, Praveen K.; Dohnalkova, Alice; Wang, Chongmin; Liu, Jun; Exarhos, Gregory J. (2010-06-29). "Synthesis and properties of nano zeolitic imidazolate frameworks". Chemical Communications. 46 (27). doi:10.1039/C002088E. ISSN 1364-548X.
  14. ^ Seoane, Beatriz; Zamaro, Juan M.; Tellez, Carlos; Coronas, Joaquin (2012-04-02). "Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20)". CrystEngComm. 14 (9). doi:10.1039/C2CE06382D. ISSN 1466-8033.
  15. ^ Cho, Hye-Young; Kim, Jun; Kim, Se-Na; Ahn, Wha-Seung (2013-03-15). "High yield 1-L scale synthesis of ZIF-8 via a sonochemical route". Microporous and Mesoporous Materials. 169: 180–184. doi:10.1016/j.micromeso.2012.11.012.
  16. ^ Pan, Yichang; Liu, Yunyang; Zeng, Gaofeng; Zhao, Lan; Lai, Zhiping (2011-02-01). "Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system". Chemical Communications. 47 (7). doi:10.1039/C0CC05002D. ISSN 1364-548X.
  17. ^ Tanaka, Shunsuke; Kida, Koji; Okita, Muneyuki; Ito, Yosuke; Miyake, Yoshikazu (2012-10-05). "Size-controlled Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) Crystals in an Aqueous System at Room Temperature". Chemistry Letters. 41 (10): 1337–1339. doi:10.1246/cl.2012.1337. ISSN 0366-7022.
  18. ^ Kida, Koji; Okita, Muneyuki; Fujita, Kosuke; Tanaka, Shunsuke; Miyake, Yoshikazu (2013-02-07). "Formation of high crystalline ZIF-8 in an aqueous solution". CrystEngComm. 15 (9). doi:10.1039/C2CE26847G. ISSN 1466-8033.
  19. ^ "Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals". ResearchGate. Retrieved 2017-05-01.
  20. ^ Gross, Adam F.; Sherman, Elena; Vajo, John J. (2012-04-10). "Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks". Dalton Transactions. 41 (18). doi:10.1039/C2DT30174A. ISSN 1477-9234.
  21. ^ Yao, Jianfeng; He, Ming; Wang, Kun; Chen, Rizhi; Zhong, Zhaoxiang; Wang, Huanting (2013-04-16). "High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature". CrystEngComm. 15 (18). doi:10.1039/C3CE27093A. ISSN 1466-8033.
  22. ^ Yao, Jianfeng; He, Ming; Wang, Kun; Chen, Rizhi; Zhong, Zhaoxiang; Wang, Huanting (2013-04-16). "High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature". CrystEngComm. 15 (18). doi:10.1039/C3CE27093A. ISSN 1466-8033.
  23. ^ Shieh, Fa-Kuen; Wang, Shao-Chun; Leo, Sin-Yen; Wu, Kevin C.-W. (2013-08-19). "Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size". Chemistry – A European Journal. 19 (34): 11139–11142. doi:10.1002/chem.201301560. ISSN 1521-3765.
  24. ^ Martins, Gesley A. V.; Byrne, Peter J.; Allan, Phoebe; Teat, Simon J.; Slawin, Alexandra M. Z.; Li, Yang; Morris, Russell E. (2010-02-02). "The use of ionic liquids in the synthesis of zinc imidazolate frameworks". Dalton Transactions. 39 (7). doi:10.1039/B917348J. ISSN 1477-9234.
  25. ^ Yang, Lisha; Lu, Huimin (2012-05-01). "Microwave-assisted Ionothermal Synthesis and Characterization of Zeolitic Imidazolate Framework-8". Chinese Journal of Chemistry. 30 (5): 1040–1044. doi:10.1002/cjoc.201100595. ISSN 1614-7065.