Preparation of poly(sulfur-random-1,3-diisopropylbenzene).


Inverse vulcanization is a solvent-free copolymerization process, firstly developed at the University of Arizona in 2013.[1] Because of the high global production of sulfur as a by-product from the crude oil and natural gas refining processes, new methodologies to exploit this resource are under investigation. The inverse vulcanization allows to synthetize a low cost and chemically stable sulfur-rich material, which has different applications such as lithium-sulfur batteries, mercury capture and infrared transmission.

Synthesis

edit

From a chemical point of view, this process is similar to the sulfur vulcanization of natural rubber. The main difference is the high content of sulfur linear chains, which are linked to each other by special organic molecules, acting as crosslinkers. The technological processing consists in the heating of elemental sulfur above its melting point (115.21°C), in order to favor the ring-opening polymerization process (ROP) of the S8 monomer, occurring at 159°C. As a result, the liquid sulfur is constituted by linear polysulfide chains with diradical ends, which can be easily bridged together with a modest amount of small dienes, such as 1,3-diisopropylbenzene(DIB),[1] 1,4-diphenylbutadiyne,[2] limonene,[3] divinylbenzene (DVB),[4] dicyclopentadiene,[5] styrene,[6] 4-vinylpyridine,[7] cycloalkene[8] and ethylidene norbornene,[9] or longer organic molecules as polybenzoxazines,[10] squalene[11] and triglyceride.[12] Chemically, the diene carbon-carbon double bond (C=C) of the substitutional group disappears, forming the carbon-sulfur single bond (C-S) which binds together the sulfur linear chains. For example, vibrational spectroscopy can be performed to evaluate the correct achievement of the amorphous copolymer, since the C-S bonds can be detected through Infrared or Raman spectroscopies.[13] Nuclear magnetic resonance (NMR) could be used to observe the reactivity grade of the reagents under different time and temperature conditions. The huge advantage of this technological process is the absence of a liquid solvent (solvent-free), which makes it highly scalable at the industrial scale. As evidence, the kilogram-scale synthesis of the poly(S-r-DIB) has been already correctly accomplished.[14]

 
Inverse vulcanization process of sulfur through 1,3-diisopropylbenzene.

Properties

edit
 
Physical appearance of poly(sulfur-random-1,3-diisopropylbenzene.

This free-radical copolymerization process (similar to the free-radical polymerization) is preferentially performed under controlled atmosphere, to avoid the oxygen-saturation of the diradicals, and it ends into a high molecular weight sulfur-rich copolymer, with different thermal, mechanical and optical properties with respect to elemental sulfur. As shown by the thermogravimetric analysis (TGA), the copolymer thermal stability increases with the amount of the added crosslinker; in any case, all the tested compositions degrade above 222°C.[2][4] Focusing on the mechanical features, the copolymer behavior, included the glass-transition temperature, depends upon composition and crosslinking species. However, there isn't a clear correlation between such parameters and the material mechanical properties, but only approxiamated estimations. For example, the poly(sulfur-random-divinylbenzene) behaves as a plastomer for a diene content between 15-25%wt, and as a viscous resin with the 30-35%wt of DVB. On the other hand, the poly(sulfur-random-1,3-diisopropylbenzene) acts as thermoplastic at 15-25%wt of DIB, while it becomes a thermoplastic-thermosetting polymer for a diene concentration of 30-35%wt.[15] The possibility to break and reform the chemical bonds along the polysulfides chains (S-S) allows to repair the copolymer by simply heating above 100°C. This feature increses the reforming and recyclability of the high molecular weight copolymer.[16] The high amount of S-S bonds makes the copolymer highly IR inactive in the near and mid-infrared spectrum. As a consequence, sulfur-rich materials made via inverse vulcanization are characterized by a high refractive index (n~1.8), whose value depends again upon the composition and crosslinking species.[17]

Applications

edit

The sulfur-rich copolymers made via inverse vulcanization can be applied in many technological fields, thanks to the simple synthesis process and their thermoplasticity.

Lithium-sulfur batteries

edit

This new way of sulfur processing has been exploited for the cathode preparation of long-cycling lithium-sulfur batteries. Such electrochemical systems are characterized by a greater energy density than commercial Li-ion batteries, but they are not stable for a long service life. Simmonds et al.[18] first demonstrated an improved capacity retention for over 500 cycles with an inverse vulcanization copolymer, suppressing the typical capacity fading of sulfur-polymer composites. Indeed, the poly(sulfur-random-1,3-diisopropenylbenzene), briefly defined as poly(S-r-DIB), showed a higher composition homogeneity compared with other cathodic materials, together with a greater sulfur retention and an enhanced adjustment of the polysulfides volume variations. These advantages made possible to assembly a stable and durable Li-S cell. After that, other copolymers via inverse vulcanization were synthetized and tested inside these electrochemical devices, again providing exceptional stability over cycles.

Battery performances
Cathode Date Source Specific Capacity after cycling
Poly(sulfur-random-1,3-diisopropylbenzene) 2014 University of Arizona[18] 1005 mA⋅h/g after 100 cycles (at 0.1 C)
Poly(sulfur-random-1,4-diphenylbutadiyne) 2015 University of Arizona[2] 800 mA⋅h/g after 300 cycles (at 0.2 C)
Poly(sulfur-random-divinylbenzene) 2016 University of the Basque Country[19] 700 mA⋅h/g after 500 cycles (at 0.25 C)
Poly(sulfur-random-diallyl disulfide) 2016 University of the Basque Country[20] 616 mA⋅h/g after 200cycles (at 0.2 C)
Poly(sulfur-random-bismaleimide-divinylbenzene) 2016 Istanbul Technical University[21] 400 mA⋅h/g after 50 cycles (at 0.1 C)
Poly(sulfur-random-styrene) 2017 University of Arizona[6] 485 mA⋅h/g after 1000 cycles (at 0.2 C)

In order to overcome the great disadvantage related to the material low electrical conductivity (1015–1016 Ω·cm),[15] researchers started to add special carbon-based particles, to increase the electron transport inside the copolymer. Furthermore, such carboneciuous additives improve the polysulfides retention at the cathode through the polysulfides-capturing effect, increasing the battery performances. Examples of employed nanostructures are long carbon nanotubes,[22] graphene[11] and carbon onions.[23]

Mercury capture

edit

Sulfur element is chemically compatible with many metallic cations, forming sulfides or sulfates species. This feature could be exploited to remove toxic metals from soil or water. However, pure sulfur cannot be employed to manufacture a functional filter, because of its low mechanical properties. Therefore, inverse vulcanization was investigated to produce porous materials, in particular for the mercury capturing process. The liquid metal binds together with the sulfur-rich copolymer, remaining mostly inside the filter. Mercury is dangerous for the environment and highly toxic for humans, making its removal fundamental.[24][25][26]

Infrared transmission

edit

Polymers are scantily used for IR optical applications because of their low refractive index (n~1.5-1.6); their poor transparency towards the infrared radiation limits their exploitation in this sector. On the other hand, inorganic materials (n~2-5) are characterized by high-cost and complex processability, detrimental factors for the large-scale production. Sulfur-rich copolymers, made via inverse vulcanization, represent a great alternative thanks to the simple manufacturing process, low cost reagents and high refractive index. As mentioned before, the latter depends upon the S-S bonds concentration, leading to the possibility of tuning the optical properties of the material by simply modifying the chemical formulation. Such possibility of changing the material refractive index to fullfil the specific application requirements, makes these copolymers applicable in the military, civil or medical fields.[27][28][29][30]

Others

edit

The inverse vulcanization process can also be employed for the synthesis of activated carbon with narrow pore-size distributions. The sulfur-rich copolymer acts here as a template where the carbons are produced. The final material is doped with sulfur and exhibits a micro-porous network and high gas selectivity. Therefore, inverse vulcanization could be also applied in the gas separation sector.[31]

See also

edit

References

edit
  1. ^ a b Chung, Woo Jin; Griebel, Jared J.; Kim, Eui Tae; Yoon, Hyunsik; Simmonds, Adam G.; Ji, Hyun Jun; Dirlam, Philip T.; Glass, Richard S.; Wie, Jeong Jae; Nguyen, Ngoc A.; Guralnick, Brett W.; Park, Jungjin; Somogyi, Árpád; Theato, Patrick; Mackay, Michael E.; Sung, Yung-Eun; Char, Kookheon; Pyun, Jeffrey (14 April 2013). "The use of elemental sulfur as an alternative feedstock for polymeric materials". Nature Chemistry. 5 (6): 518–524. doi:10.1038/NCHEM.1624.
  2. ^ a b c Dirlam, Philip T.; Simmonds, Adam G.; Kleine, Tristan S.; Nguyen, Ngoc A.; Anderson, Laura E.; Klever, Adam O.; Florian, Alexander; Costanzo, Philip J.; Theato, Patrick; Mackay, Michael E.; Glass, Richard S.; Char, Kookheon; Pyun, Jeffrey (2015). "Inverse vulcanization of elemental sulfur with 1,4-diphenylbutadiyne for cathode materials in Li–S batteries". RSC Advances. 5 (31): 24718–24722. doi:10.1039/c5ra01188d.
  3. ^ Crockett, Michael P.; Evans, Austin M.; Worthington, Max J. H.; Albuquerque, Inês S.; Slattery, Ashley D.; Gibson, Christopher T.; Campbell, Jonathan A.; Lewis, David A.; Bernardes, Gonçalo J. L.; Chalker, Justin M. (26 January 2016). "Sulfur-Limonene Polysulfide: A Material Synthesized Entirely from Industrial By-Products and Its Use in Removing Toxic Metals from Water and Soil". Angewandte Chemie International Edition. 55 (5): 1714–1718. doi:10.1002/anie.201508708.
  4. ^ a b Salman, Mohamed Khalifa; Karabay, Baris; Karabay, Lutfiye Canan; Cihaner, Atilla (20 July 2016). "Elemental sulfur-based polymeric materials: Synthesis and characterization". Journal of Applied Polymer Science. 133 (28). doi:10.1002/app.43655.
  5. ^ Parker, D. J.; Jones, H. A.; Petcher, S.; Cervini, L.; Griffin, J. M.; Akhtar, R.; Hasell, T. (2017). "Low cost and renewable sulfur-polymers by inverse vulcanisation, and their potential for mercury capture". Journal of Materials Chemistry A. 5 (23): 11682–11692. doi:10.1039/C6TA09862B.
  6. ^ a b Zhang, Yueyan; Griebel, Jared J.; Dirlam, Philip T.; Nguyen, Ngoc A.; Glass, Richard S.; Mackay, Michael E.; Char, Kookheon; Pyun, Jeffrey (1 January 2017). "Inverse vulcanization of elemental sulfur and styrene for polymeric cathodes in Li-S batteries". Journal of Polymer Science Part A: Polymer Chemistry. 55 (1): 107–116. doi:10.1002/pola.28266.
  7. ^ Berk, Hasan; Balci, Burcu; Ertan, Salih; Kaya, Murat; Cihaner, Atilla (June 2019). "Functionalized polysulfide copolymers with 4-vinylpyridine via inverse vulcanization". Materials Today Communications. 19: 336–341. doi:10.1016/j.mtcomm.2019.02.014.
  8. ^ Omeir, Meera Y.; Wadi, Vijay S.; Alhassan, Saeed M. (January 2020). "Inverse vulcanized sulfur–cycloalkene copolymers: Effect of ring size and unsaturation on thermal properties". Materials Letters. 259: 126887. doi:10.1016/j.matlet.2019.126887.
  9. ^ Smith, Jessica A.; Wu, Xiaofeng; Berry, Neil G.; Hasell, Tom (15 August 2018). "High sulfur content polymers: The effect of crosslinker structure on inverse vulcanization". Journal of Polymer Science Part A: Polymer Chemistry. 56 (16): 1777–1781. doi:10.1002/pola.29067.
  10. ^ Arslan, Mustafa; Kiskan, Baris; Yagci, Yusuf (22 January 2016). "Combining Elemental Sulfur with Polybenzoxazines via Inverse Vulcanization". Macromolecules. 49 (3): 767–773. doi:10.1021/acs.macromol.5b02791.
  11. ^ a b Sahu, Tuhin Subhra; Choi, Sinho; Jaumaux, Pauline; Zhang, Jinqiang; Wang, Chengyin; Zhou, Dong; Wang, Guoxiu (April 2019). "Squalene-derived sulfur-rich copolymer@ 3D graphene-carbon nanotube network cathode for high-performance lithium-sulfur batteries". Polyhedron. 162: 147–154. doi:10.1016/j.poly.2019.01.068.
  12. ^ Tikoalu, Alfrets D.; Lundquist, Nicholas A.; Chalker, Justin M. (13 February 2020). "Mercury Sorbents Made By Inverse Vulcanization of Sustainable Triglycerides: The Plant Oil Structure Influences the Rate of Mercury Removal from Water". Advanced Sustainable Systems. 4 (3): 1900111. doi:10.1002/adsu.201900111.
  13. ^ Bastian, Ernest J.; Martin, R. Bruce (April 1973). "Disulfide vibrational spectra in the sulfur-sulfur and carbon-sulfur stretching region". The Journal of Physical Chemistry. 77 (9): 1129–1133. doi:10.1021/j100628a010.
  14. ^ Griebel, Jared J.; Li, Guoxing; Glass, Richard S.; Char, Kookheon; Pyun, Jeffrey (15 January 2015). "Kilogram scale inverse vulcanization of elemental sulfur to prepare high capacity polymer electrodes for Li-S batteries". Journal of Polymer Science Part A: Polymer Chemistry. 53 (2): 173–177. doi:10.1002/pola.27314.
  15. ^ a b Diez, Sergej; Hoefling, Alexander; Theato, Patrick; Pauer, Werner (15 February 2017). "Mechanical and Electrical Properties of Sulfur-Containing Polymeric Materials Prepared via Inverse Vulcanization". Polymers. 9 (12): 59. doi:10.3390/polym9020059.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  16. ^ Chalker, Justin M.; Worthington, Max J. H.; Lundquist, Nicholas A.; Esdaile, Louisa J. (20 May 2019). "Synthesis and Applications of Polymers Made by Inverse Vulcanization". Topics in Current Chemistry. 377 (3). doi:10.1007/s41061-019-0242-7.
  17. ^ Griebel, Jared J.; Namnabat, Soha; Kim, Eui Tae; Himmelhuber, Roland; Moronta, Dominic H.; Chung, Woo Jin; Simmonds, Adam G.; Kim, Kyung-Jo; van der Laan, John; Nguyen, Ngoc A.; Dereniak, Eustace L.; Mackay, Michael E.; Char, Kookheon; Glass, Richard S.; Norwood, Robert A.; Pyun, Jeffrey (May 2014). "New Infrared Transmitting Material via Inverse Vulcanization of Elemental Sulfur to Prepare High Refractive Index Polymers". Advanced Materials. 26 (19): 3014–3018. doi:10.1002/adma.201305607.
  18. ^ a b Simmonds, Adam G.; Griebel, Jared J.; Park, Jungjin; Kim, Kwi Ryong; Chung, Woo Jin; Oleshko, Vladimir P.; Kim, Jenny; Kim, Eui Tae; Glass, Richard S.; Soles, Christopher L.; Sung, Yung-Eun; Char, Kookheon; Pyun, Jeffrey (20 February 2014). "Inverse Vulcanization of Elemental Sulfur to Prepare Polymeric Electrode Materials for Li–S Batteries". ACS Macro Letters. 3 (3): 229–232. doi:10.1021/mz400649w.
  19. ^ Gomez, Iñaki; Mecerreyes, David; Blazquez, J. Alberto; Leonet, Olatz; Ben Youcef, Hicham; Li, Chunmei; Gómez-Cámer, Juan Luis; Bondarchuk, Oleksandr; Rodriguez-Martinez, Lide (October 2016). "Inverse vulcanization of sulfur with divinylbenzene: Stable and easy processable cathode material for lithium-sulfur batteries". Journal of Power Sources. 329: 72–78. doi:10.1016/j.jpowsour.2016.08.046.
  20. ^ Gomez, Iñaki; Leonet, Olatz; Blazquez, J. Alberto; Mecerreyes, David (20 December 2016). "Inverse Vulcanization of Sulfur using Natural Dienes as Sustainable Materials for Lithium-Sulfur Batteries". ChemSusChem. 9 (24): 3419–3425. doi:10.1002/cssc.201601474.
  21. ^ Arslan, Mustafa; Kiskan, Baris; Cengiz, Elif Ceylan; Demir-Cakan, Rezan; Yagci, Yusuf (July 2016). "Inverse vulcanization of bismaleimide and divinylbenzene by elemental sulfur for lithium sulfur batteries". European Polymer Journal. 80: 70–77. doi:10.1016/j.eurpolymj.2016.05.007.
  22. ^ Tiwari, Vimal K.; Song, Hyeonjun; Oh, Yeonjae; Jeong, Youngjin (March 2020). "Synthesis of sulfur-co-polymer/porous long carbon nanotubes composite cathode by chemical and physical binding for high performance lithium-sulfur batteries". Energy. 195: 117034. doi:10.1016/j.energy.2020.117034.
  23. ^ Choudhury, Soumyadip; Srimuk, Pattarachai; Raju, Kumar; Tolosa, Aura; Fleischmann, Simon; Zeiger, Marco; Ozoemena, Kenneth I.; Borchardt, Lars; Presser, Volker (2018). "Carbon onion/sulfur hybrid cathodes inverse vulcanization for lithium–sulfur batteries". Sustainable Energy & Fuels. 2 (1): 133–146. doi:10.1039/c7se00452d.
  24. ^ Crockett, Michael P.; Evans, Austin M.; Worthington, Max J. H.; Albuquerque, Inês S.; Slattery, Ashley D.; Gibson, Christopher T.; Campbell, Jonathan A.; Lewis, David A.; Bernardes, Gonçalo J. L.; Chalker, Justin M. (26 January 2016). "Sulfur-Limonene Polysulfide: A Material Synthesized Entirely from Industrial By-Products and Its Use in Removing Toxic Metals from Water and Soil". Angewandte Chemie International Edition. 55 (5): 1714–1718. doi:10.1002/anie.201508708.
  25. ^ Hasell, T.; Parker, D. J.; Jones, H. A.; McAllister, T.; Howdle, S. M. (2016). "Porous inverse vulcanised polymers for mercury capture". Chemical Communications. 52 (31): 5383–5386. doi:10.1039/c6cc00938g.
  26. ^ Parker, D. J.; Jones, H. A.; Petcher, S.; Cervini, L.; Griffin, J. M.; Akhtar, R.; Hasell, T. (2017). "Low cost and renewable sulfur-polymers by inverse vulcanisation, and their potential for mercury capture". Journal of Materials Chemistry A. 5 (23): 11682–11692. doi:10.1039/c6ta09862b.
  27. ^ Baumgartner, Thomas; Jäkle, Frieder (19 December 2017). Main group strategies towards functional hybrid materials. Wiley. ISBN 9781119235972.
  28. ^ Griebel, Jared J.; Namnabat, Soha; Kim, Eui Tae; Himmelhuber, Roland; Moronta, Dominic H.; Chung, Woo Jin; Simmonds, Adam G.; Kim, Kyung-Jo; van der Laan, John; Nguyen, Ngoc A.; Dereniak, Eustace L.; Mackay, Michael E.; Char, Kookheon; Glass, Richard S.; Norwood, Robert A.; Pyun, Jeffrey (May 2014). "New Infrared Transmitting Material via Inverse Vulcanization of Elemental Sulfur to Prepare High Refractive Index Polymers". Advanced Materials. 26 (19): 3014–3018. doi:10.1002/adma.201305607.
  29. ^ Griebel, Jared J.; Nguyen, Ngoc A.; Namnabat, Soha; Anderson, Laura E.; Glass, Richard S.; Norwood, Robert A.; Mackay, Michael E.; Char, Kookheon; Pyun, Jeffrey (16 August 2015). "Dynamic Covalent Polymers via Inverse Vulcanization of Elemental Sulfur for Healable Infrared Optical Materials". ACS Macro Letters. 4 (9): 862–866. doi:10.1021/acsmacrolett.5b00502.
  30. ^ Kleine, Tristan S.; Nguyen, Ngoc A.; Anderson, Laura E.; Namnabat, Soha; LaVilla, Edward A.; Showghi, Sasaan A.; Dirlam, Philip T.; Arrington, Clay B.; Manchester, Michael S.; Schwiegerling, Jim; Glass, Richard S.; Char, Kookheon; Norwood, Robert A.; Mackay, Michael E.; Pyun, Jeffrey (23 September 2016). "High Refractive Index Copolymers with Improved Thermomechanical Properties via the Inverse Vulcanization of Sulfur and 1,3,5-Triisopropenylbenzene". ACS Macro Letters. 5 (10): 1152–1156. doi:10.1021/acsmacrolett.6b00602.
  31. ^ Bear, Joseph C.; McGettrick, James D.; Parkin, Ivan P.; Dunnill, Charles W.; Hasell, Tom (September 2016). "Porous carbons from inverse vulcanised polymers". Microporous and Mesoporous Materials. 232: 189–195. doi:10.1016/j.micromeso.2016.06.021.
edit


Category:Chemical processes Category:Reaction mechanisms Category:Polymerization reactions