User:Magnoverly/sandbox


Em 1929, o físico Oskar Klein[1] obteve um resultado surpreendente através da aplicação da equação de Dirac para o problema familiar de espalhamento de elétrons por uma barreira de potecial. Na mecânica quântica não-relativística, o tunelamento de elétrons em uma barreira é observado, com amortecimento exponencial. No entanto, o resultado de Klein mostrou que, se o potencial é da ordem da massa do elétron, , a barreira é quase transparente. Além disso, conforme o potencial se aproxima do infinito, a reflexão diminui e o elétron é sempre transmitido.

A aplicação imediata do paradoxo foi o modelo próton-elétron de Rutherford para partículas neutras dentro do núcleo, antes da descoberta do nêutron. O paradoxo apresentou uma objeção quântica com a noção de um elétron confinado dentro de um núcleo.[2] Este paradoxo claro e preciso sugeriu que um elétron não pode ser confinado dentro de um núcleo por qualquer poço de potencial. O significado desse paradoxo foi intensamente debatida na ocasião.[2]

Partículas sem massa

edit

Considere uma partícula sem massa relativistica se aproximando de um potencial degrau de altura   com energia   e momento  .

 

A função de onda da partícula,  , segue a equação de Dirac independente do tempo:

 

E   é a matriz de Pauli:

 
 
Fig. 1 Descrição da relação de dispersão, o eixo x representa o momento enquanto que o eixo y representa a energia.

Assumindo que a partícula está se propagando a partir da esquerda, obtemos duas soluções — um antes do degrau, na região (1) e um abaixo do potencial, na região (2):

 
 

Onde os coeficientes A, A′ e B são números complexos. Ambas as funções de onda incidente e transmitida estão associados com velocidade de grupo positiva (Linhas azuis na Fig.1), enquanto que a função de onda refletida é associado com velocidade de grupo negativa. (Linhas verdes na Fig.1)

Agora queremos calcular os coeficientes de transmissão e reflexão,   Eles são derivados da correntes de amplitude de probabilidade.

A definição da corrente de probabilidade associada com a equação de Dirac é:

 

Nesse caso:

 

Os coeficientes de transmissão e reflexão são:

 

A continuidade da função de onda em  , nos fornece:

 
 

E assim, o coeficiente de transmissão é 1 e não há reflexão.

Uma interpretação do paradoxo é de que um potencial degrau não pode inverter a direção da velocidade de grupo de uma partícula relativística sem massa. Esta explicação se adéqua melhor a solução de partícula única citada acima. Interpretações mais complexas são sugeridas na literatura, no contexto da teoria quântica de campos onde é mostrado que o tunelamento desenfreado ocorre devido à existência de pares de partículas-antipartícula no potencial.

Caso massivo

edit

Para o caso massivo, os cálculos são semelhantes ao descrito acima. Os resultados são tão surpreendente como no caso sem massa. O coeficiente de transmissão é sempre maior do que zero, e se aproxima de 1 conforme o potencial degrau tende a infinito.

A zona Klein

edit

Se a energia da partícula está na faixa  , então resultará em uma reflexo parcial ao invés de reflexão total.

Resoluções para o caso massivo

edit

Enquanto a resolução tradicional utiliza produção de pares partícula / antipartícula no contexto da teoria quântica de campos (Hansen 1981), existe uma resolução mais simples que substitui a produção de pares físicos por um espalhamento de soluções de energia negativa sob a barreira (Alhaidari 2009). Esta estratégia foi também aplicada para obter soluções analíticas para a equação de Dirac para um poço quadrado infinito.

Outros casos

edit

Estes resultados foram expandidos para dimensões maiores, e para outros tipos de potenciais, tais como um degrau linear, uma barreira quadrada, etc. Muitas experiências em transporte de elétrons no grafeno apoiam-se no paradoxo Klein para partículas sem massa.[3][4]

Referências

edit
  1. ^ Klein, O. (1929). "Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac". Zeitschrift für Physik. 53 (3–4): 157. Bibcode:1929ZPhy...53..157K. doi:10.1007/BF01339716.
  2. ^ a b Stuewer, Roger H. (1985). "Niels Bohr and Nuclear Physics". In French, A. P.; Kennedy, P. J. (eds.). Niels Bohr: A Centenary Volume. Harvard University Press. pp. 197–220. ISBN 0674624165.
  3. ^ Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K. (2006). "Chiral tunnelling and the Klein paradox in graphene". Nature Physics. 2 (9): 620. arXiv:cond-mat/0604323. Bibcode:2006NatPh...2..620K. doi:10.1038/nphys384.
  4. ^ Pendry, J. B. (2007). "PHYSICS: Negative Refraction for Electrons?". Science. 315 (5816): 1226–7. doi:10.1126/science.1140178. PMID 17332397.

Leituras adicionais

edit


Category:Physical paradoxes