User:Garamond Lethe/sandbox/Mesoscale Modeling Software

  • Mesoscopic: Pertaining to a size regime, intermediate between the microscopic and the macroscopic, that is characteristic of a region where a large number of particles can interact in a quantum-mechanically correlated fashion.[1]
  • Engineering of novel energetic materials requires a thorough understanding of the phenomena that control chemistry, processing, structure, and performance over multiple length and time scales. While atomistic methods are typically limited in time and length scale, and continuum approaches tend to break down at microstructural scales, mesoscale modeling approaches are critical in bridging the gap between the modeling scales. This document serves as an overview of the current state-of-the-art mesoscale modeling software for energetic materials research that is available through commercial or general public licensing.[2]
  • Soft materials, such as polymers, melts, blends, surfactants, complex fluids and biological material applications: It is important to understand the structure, molecular arrangement, self-assembly, rheology, phase morphology, and phase behavior of these materials. Some extensive reviews are available on multiscale modeling of soft materials (4[3],75[4]).[2]
  • Materials science applications: Materials properties can evolve over longer length and time scales. Software capabilities are desired for such features as materials microstructure, the long range effects of voids and defects, grain boundary migration, crack propagation, and dislocation dynamics. Some extensive reviews, lectures and workshops are available on multiscale modeling of materials applications (76-78[5][6][7]).[2]
  • Multi-phase mixtures of materials: Processing of materials requires an understanding of how polycrystalline materials interact with polymer binders. Mesoscale modeling capabilities are needed to handle mixed and multiphase solids.[2]

Big List O' Software=

edit

Commercial

edit

Accelrys

edit
  • Mesocite[2] (7-12)
  • MesoProp[2] (13-19)
  • Mesoteck[2] (20-21)
  • OCTA[2] (22)
  • ESPResSo[2] (23-24)
  • Q-DPD[2] (25-28)
  • Fluidix[2] (29-32)
  • LAMMPS[2] (33-41)
  • Digital Material Software[2] (42-49)
  • Quasicontinuum[2] (50-68)
  • ParaDiS[2] (69-70)
  • microMegas (mM)[2] (71)
  • PARANOID[2] (72)
  • Peierls-Nabarro Model[2]
  • MAAD[2]
  • CGMD (Rudd)[2]
  • Accelerated molecular dynamics techniques[2]
  • ADESH[2]
  • ParaDyn, Warp, GranFlow[2]
  • DPDmacs[2] (73)
  • Mesoscopic Modeling[2] (74)



References

edit
  1. ^ a b McGraw-Hill Dictionary of Scientific and Technical Terms, McGraw-Hill, 2003, p. 1318, ISBN 0-07-042313-X
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z Larentzos, James; Blaudeau, Jean; Rollett, Anthony D.; Chung, Peter W. (March 2010), An Overview of Mesoscale Modeling Software for Energetic Materials Research, ARL-MR-0737, Army Research Laboratory {{citation}}: External link in |title= (help)CS1 maint: date and year (link)
  3. ^ a b Zeng, Q. H.; Yu, A. B.; Lu, G. Q. (2008), "Multiscale modeling and simulation of polymer nanocomposites(subscription required)", Progress in Polymer Science, 33 (2): 191–269, doi:10.1016/j.progpolymsci.2007.09.002 {{citation}}: External link in |title= (help)
  4. ^ Nielsen, Steve O.; Lopez, Carlos F.; Srinivas, Goundla; Klein, Michael L., "Coarse grain models and the computer simulation of soft materials", Journal of Physics: Condensed Matter, 16 (15): R481–R512, doi:10.1088/0953-8984/16/15/R03 {{citation}}: External link in |title= (help)
  5. ^ Lu, Gang; Efthimios, Kaxiras, An Overview of Multiscale Simulations of Materials, 0401073v1, arXiv {{citation}}: External link in |publisher= and |title= (help)
  6. ^ Stoller, Roger E.; Zinkle, Steven J.; Nichols, Jeffry A.; Corwin, Willian R. (2004), Workshop on Advanced Computational Materials Science: Applicaiton to Fusion and Generation IV Fission Reactors, Technical Report ORNL/TM-2004/132, Oak Ridge National Laboratory {{citation}}: External link in |title= (help)
  7. ^ Buehler, Markus J. (2006), Concurrent scale coupling techniques: From nano to macro (Lecture 3), From nano to macro: Introduction to atomistic modeling techniques (Lecture series), Department of Civel and Environmental Engineering, Massachusetts Instutiute of Technology {{citation}}: External link in |title= (help)
  8. ^ Amorphus Cell Datasheet (PDF), Accelrys, retrieved October 5, 2012 {{citation}}: External link in |publisher= (help)
  9. ^ Theodorou, Doros N.; Suter, Ulrich W. (1984), "Detailed Molecular Structure of a Vinyl Polymer Glass", Macromolecules, 18: 1467–1478, doi:10.1021/ma00149a018 {{citation}}: External link in |title= (help)
  10. ^ Theodorou, Doros N.; Suter, Ulrich W. (1986), "Atomistic Modeling of Mechanical Properties of Polymeric Glasses", Macromolecules, 19: 139–154, doi:10.1021/ma00155a022 {{citation}}: External link in |title= (help)
  11. ^ Allen, M. P.; Tildesley, D. J. (1989), Computer Simulation of Liquids, OxfordUP, ISBN 978-0198556459
  12. ^ Wescott, James T.; Qi, Yue; Subramanian, Lalitha; Capehart, T. Weston (2006), "Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes(subscription required)", Journal of Chemical Physics, 124 (13): 134702, doi:10.1063/1.2177649, PMID 16613463 {{citation}}: External link in |title= (help)
  13. ^ Maiti, Amitesh; McGrother, Simon (2004), "Bead–bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension(subscription required)", Journal of Chemical Physics, 120 (3): 1594–2101, doi:10.1063/1.1630294, PMID 15268286 {{citation}}: External link in |title= (help)
  14. ^ Scocchi, Giulio; Posocco, Paola; Fermeglia, Maurizio; Pricl, Sabrina (2007), "Polymer−Clay Nanocomposites: A Multiscale Molecular Modeling Approach", Journal of Physical Chemistry B, 111 (9): 2143–2151, doi:10.1021/jp067649w, PMID 17291032 {{citation}}: External link in |title= (help)
  15. ^ Guo, Xin D.; Tan, Jeremy P. K.; Kim, Sung H.; Zhang, Li J.; Zhang, Ying; Hedrick, James L.; Yang, Yi Y.; Qian, Yu (2009), "Computational studies on self-assembled paclitaxel structures: Templates for hierarchical block copolymer assemblies and sustained drug release(subscription required)", Biomaterials, 30 (33): 6556–6563, doi:10.1016/j.biomaterials.2009.08.022, PMID 19717188 {{citation}}: External link in |title= (help)
  16. ^ Zhonglin, Luo; Jiang, Jianwen (2010), "Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene oxide)/poly(vinyl chloride) blends(subscription required)", Polymer, 51 (1): 291–299, doi:10.1016/j.polymer.2009.11.024 {{citation}}: External link in |title= (help)
  17. ^ Mesodyne datasheet (PDF), Accelrys, retrieved October 6, 2012 {{citation}}: External link in |publisher= (help)
  18. ^ Fraaije, J. G. E. M; van Vlimmeren, B. A. C.; Maurits, N. M.; Postma, M.; Evers, O. A.; Hoffman, C.; Altevogt, P.; Goldbeck-Wood, G. (1997), "The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts(subscription required)", Journal of Chemical Physics, 106 (10): 4260–4269, doi:10.1063/1.473129 {{citation}}: External link in |title= (help)
  19. ^ Maurits, N. M.; Zvelindovsky, A. V.; Sevink, G. J. A.; van Vlimmeren, B. A. C; Fraaije, J. G. E. M. (1998), "Hydrodynamic effects in 3d microphase separation of block copolymers: dynamic mean-field density functional approach", Journal of Chemical Physics, 108 (21): 9150–9154, doi:10.1063/1.476362 {{citation}}: External link in |title= (help)
  20. ^ Zvelindovsky, A. V.; Sevink, G. J. A.; Vlimmeren, B. A. C.; Maurits, N. M.; Fraaije, J. G. E. M. (1998), "Three dimensional mesoscale dynamics of block copolymers under shear: the dynamic density functional approach(subscription required)", Physical Review E, 57 (5): R48879–R48882, doi:10.1103/PhysRevE.57.R4879 {{citation}}: External link in |title= (help)
  21. ^ Horvat, A.; Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. (2004), "Phase behavior in thin films of cylinder-forming ABA block copolymers: Mesoscale modeling", Journal of Chemical Physics, 120 (2): 1117–1126, doi:10.1063/1.1627325, PMID 15267948 {{citation}}: External link in |title= (help); Unknown parameter |cites= ignored (help)
  22. ^ Ludwigs, Sabine; Böker, Alexander; Voronov, Andrej; Rehse, Nicolaus; Magerle, Robert; Krausch, Georg (2003), "Self-assembly of functional nanostructuresfrom ABC triblock copolymers", Nature Materials, 2 (11): 744–747, doi:10.1038/nmat997, PMID 14578880 {{citation}}: External link in |title= (help); Unknown parameter |cites= ignored (help)
  23. ^ Yuan, Shi-Ling; Cai, Zheng-Ting; Xu, Gui-Ying; Jiang, Yuan-Sheng (2002), "Mesoscopic simulation study on phase diagram of the system oil/water/aerosol OT", Chemical Physics Letters, 365 (3–4): 347–353, doi:10.1016/S0009-2614(02)01494-X {{citation}}: External link in |title= (help); Unknown parameter |cites= ignored (help)