The interstitium is a contiguous fluid-filled space existing between a structural barrier, such as a cell membrane or the skin, and internal structures, such as organs, including muscles and the circulatory system. The fluid in this space is called interstitial fluid, comprises water and solutes, and drains into the lymph system. The interstitial compartment is composed of connective and supporting tissues within the body – called the extracellular matrix – that are situated outside the blood and lymphatic vessels and the parenchyma of organs. The role of the interstitium in varying solute concentration, protein transport and hydrostatic pressure impacts human pathology and physiological responses such as edema, inflammation and shock.[1]

Interstitium
Anatomical terminology

Structure[edit]

edit

The non-fluid parts of the interstitium are predominantly collagen types I, III, and V, elastin, and glycosaminoglycans, such as hyaluronan and proteoglycans that are cross-linked to form a three dimensional honeycomb-like reticulum. Collagen bundles of the extracellular matrix form scaffolding with a high tensile strength. Interstitial cells (e.g., fibroblasts, dendritic cells, adipocytes, interstitial cells of Cajal and inflammatory cells such as macrophages and mast cells) serve a variety of structural and immune functions. Fibroblasts synthesize the production of these structural molecules as well as enzymes that break down polymeric molecules. Such structural components exist both for the general interstitium of the body, and within individual organs, such as the myocardial interstitium of the heart, the renal interstitium of the kidney, and the pulmonary interstitium of the lung. The interstitium can make up a large proportion of organ volume, from 10-40% in the kidneys,

 
Three-dimensional structure of the interstitium. Schematic of the fluid-filled space supported by a network of collagen bundles lined on one side with cells. Illustration by Jill Gregory. Printed with permission from Mount Sinai Health System, licenced under CC-BY-ND. (https:// creat iveco mmons. org/ licen ses/ by-nd/4. 0/ legal code).

The interstitium in the submucosae of visceral organs, the dermis, superficial fascia, and perivascular adventitia are fluid-filled spaces supported by a collagen bundle lattice. Blind end, highly permeable, lymphatic capillaries which contain no lining smooth muscle or lymphatic channel structures extend into the interstitium between cells. Interstitial fluid entering the lymphatic system becomes lymph and is transported through lymphatic vessels until it empties into blood circulation and enters the vasculature.

Functions[edit]

edit

The interstitial fluid is a reservoir and transportation system for nutrients and solutes distributing among organs, cells, and capillaries, for signaling molecules communicating between cells to regulate tissue growth, and for guiding antigens and cytokines participating in immune regulation towards lymphatic vessels. The structure of the gel reticulum plays a role in the unequal distribution of solutes across the interstitium, as the microstructure of the extracellular matrix in some parts excludes larger molecules (exclusion volume). The density of the collagen matrix fluctuates with the fluid volume of the interstitium. Increasing fluid volume is associated with an decrease in matrix fiber density, and a lower exclusion volume.

The total fluid volume of the interstitium during health is about 20% of body weight, but this space is dynamic and may change in volume and composition during immune responses and in conditions such as cancer, and specifically within the interstitium of tumors.The amount of interstitial fluid varies from about 50% of the tissue weight in skin to about 10% in skeletal muscle. Interstitial fluid pressure if variable, ranging from -1 to -4 mmHg in tissues like the skin, intestine and lungs to 21 to 24 mmHg in the liver, kidney and myocardium. Generally, increasing interstitial volume is associated with increased interstitial pressure and microvascular filtration.

The renal interstitium facilitates solute and water transport between blood and urine in the vascular and tubular elements of the kidneys, and water reabsorption through changes in solute concentrations and hydrostatic gradients. The myocardial interstitium participates in ionic exchanges associated with the spread of electrical events. The pulmonary interstitium allows for fluctuations in lung volume between inspiration and expiration.

The composition and chemical properties of the interstitial fluid vary among organs and undergo changes in chemical composition during normal function, as well as during body growth, conditions of inflammation, and development of diseases, as in heart failure and chronic kidney disease.

Disease [edit]

edit

In people with lung diseases, heart disease, cancer, kidney disease, immune disorders, and periodontal disease, the interstitial fluid and lymph system are sites where disease mechanisms may develop. Interstitial fluid flow is associated with the migration of cancer cells to metastatic sites. The enhanced permeability and retention effects refers to increased interstitial flow causing a neutral or reversed pressure differential between blood vessels and healthy tissue, limiting the distribution of intravenous drugs to tumors, which under other circumstances display a high-pressure gradient at their periphery.

Changes in interstitial volume and pressure play critical roles in the onset of conditions like shock and inflammation. During hypovolemic shock, digestive enzymes and inflammatory agents diffuse to the interstitial space, then drain into the mesenteric lymphatic system and enter into circulation, contributing to systemic inflammation. Accumulating fluid in the interstitial space (interstitial edema) is caused by increased microvascular pressure and permeability, a positive feedback loop mechanism resulting in an associated in increasing the rate of microvascular filtration into the interstitial space. Decreased lymphatic drainage due to blockage can compound these effects. Interstitial edema can prevent oxygen diffusion across tissue and in the brain, kidney and intestines lead to the onset of compartment syndrome.

History [edit]

edit

Technological advances in live imaging of tissue though confocal laser endomicroscopy (pCLE) in 2018 allowed researchers at Beth Israel Medical Center to fully visualize the volumetric capacity and structural complexity of microscopic sub compartments of the interstitium that collapsed under traditional microscopy sample preparation methods. These findings have incited discussion and controversy over the definition of an organ and the applicability of the label to the interstitium.

  1. ^ Stewart, Randolph H. (2020-11-05). "A Modern View of the Interstitial Space in Health and Disease". Frontiers in Veterinary Science. 7. doi:10.3389/fvets.2020.609583. ISSN 2297-1769. PMC 7674635. PMID 33251275.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)