Random Data
- This is where I keep random things I find, which I deem good enough to keep.
Pi.
- This is vandalism to the Wikipediholic Test. For a list of Pi to the 4,000,000th digit, go here.
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679 821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819 64428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273 7245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094 3305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912 9833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132 0005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235 4201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859 5024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303 5982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989 3809525720106548586327886593615338182796823030195203530185296899577362259941389124972177528347913151 5574857242454150695950829533116861727855889075098381754637464939319255060400927701671139009848824012 8583616035637076601047101819429555961989467678374494482553797747268471040475346462080466842590694912 9331367702898915210475216205696602405803815019351125338243003558764024749647326391419927260426992279 6782354781636009341721641219924586315030286182974555706749838505494588586926995690927210797509302955 3211653449872027559602364806654991198818347977535663698074265425278625518184175746728909777727938000 8164706001614524919217321721477235014144197356854816136115735255213347574184946843852332390739414333 4547762416862518983569485562099219222184272550254256887671790494601653466804988627232791786085784383 8279679766814541009538837863609506800642251252051173929848960841284886269456042419652850222106611863 0674427862203919494504712371378696095636437191728746776465757396241389086583264599581339047802759009 9465764078951269468398352595709825822620522489407726719478268482601476990902640136394437455305068203 4962524517493996514314298091906592509372216964615157098583874105978859597729754989301617539284681382 6868386894277415599185592524595395943104997252468084598727364469584865383673622262609912460805124388 4390451244136549762780797715691435997700129616089441694868555848406353422072225828488648158456028506 0168427394522674676788952521385225499546667278239864565961163548862305774564980355936345681743241125 1507606947945109659609402522887971089314566913686722874894056010150330861792868092087476091782493858 9009714909675985261365549781893129784821682998948722658804857564014270477555132379641451523746234364 5428584447952658678210511413547357395231134271661021359695362314429524849371871101457654035902799344 0374200731057853906219838744780847848968332144571386875194350643021845319104848100537061468067491927 8191197939952061419663428754440643745123718192179998391015919561814675142691239748940907186494231961 5679452080951465502252316038819301420937621378559566389377870830390697920773467221825625996615014215 0306803844773454920260541466592520149744285073251866600213243408819071048633173464965145390579626856 1005508106658796998163574736384052571459102897064140110971206280439039759515677157700420337869936007 2305587631763594218731251471205329281918261861258673215791984148488291644706095752706957220917567116 7229109816909152801735067127485832228718352093539657251210835791513698820914442100675103346711031412 6711136990865851639831501970165151168517143765761835155650884909989859982387345528331635507647918535 8932261854896321329330898570642046752590709154814165498594616371802709819943099244889575712828905923 2332609729971208443357326548938239119325974636673058360414281388303203824903758985243744170291327656 1809377344403070746921120191302033038019762110110044929321516084244485963766983895228684783123552658 2131449576857262433441893039686426243410773226978028073189154411010446823252716201052652272111660396 6655730925471105578537634668206531098965269186205647693125705863566201855810072936065987648611791045 3348850346113657686753249441668039626579787718556084552965412665408530614344431858676975145661406800 7002378776591344017127494704205622305389945613140711270004078547332699390814546646458807972708266830 6343285878569830523580893306575740679545716377525420211495576158140025012622859413021647155097925923 0990796547376125517656751357517829666454779174501129961489030463994713296210734043751895735961458901 9389713111790429782856475032031986915140287080859904801094121472213179476477726224142548545403321571 8530614228813758504306332175182979866223717215916077166925474873898665494945011465406284336639379003 9769265672146385306736096571209180763832716641627488880078692560290228472104031721186082041900042296 6171196377921337575114959501566049631862947265473642523081770367515906735023507283540567040386743513 6222247715891504953098444893330963408780769325993978054193414473774418426312986080998886874132604721 5695162396586457302163159819319516735381297416772947867242292465436680098067692823828068996400482435 4037014163149658979409243237896907069779422362508221688957383798623001593776471651228935786015881617 5578297352334460428151262720373431465319777741603199066554187639792933441952154134189948544473456738 3162499341913181480927777103863877343177207545654532207770921201905166096280490926360197598828161332 3166636528619326686336062735676303544776280350450777235547105859548702790814356240145171806246436267 9456127531813407833033625423278394497538243720583531147711992606381334677687969597030983391307710987 0408591337464144282277263465947047458784778720192771528073176790770715721344473060570073349243693113 8350493163128404251219256517980694113528013147013047816437885185290928545201165839341965621349143415 9562586586557055269049652098580338507224264829397285847831630577775606888764462482468579260395352773 4803048029005876075825104747091643961362676044925627420420832085661190625454337213153595845068772460 2901618766795240616342522577195429162991930645537799140373404328752628889639958794757291746426357455 2540790914513571113694109119393251910760208252026187985318877058429725916778131496990090192116971737 2784768472686084900337702424291651300500516832336435038951702989392233451722013812806965011784408745 1960121228599371623130171144484640903890644954440061986907548516026327505298349187407866808818338510 2283345085048608250393021332197155184306354550076682829493041377655279397517546139539846833936383047 4611996653858153842056853386218672523340283087112328278921250771262946322956398989893582116745627010 2183564622013496715188190973038119800497340723961036854066431939509790190699639552453005450580685501 9567302292191393391856803449039820595510022635353619204199474553859381023439554495977837790237421617 2711172364343543947822181852862408514006660443325888569867054315470696574745855033232334210730154594 0516553790686627333799585115625784322988273723198987571415957811196358330059408730681216028764962867 4460477464915995054973742562690104903778198683593814657412680492564879855614537234786733039046883834 3634655379498641927056387293174872332083760112302991136793862708943879936201629515413371424892830722 0126901475466847653576164773794675200490757155527819653621323926406160136358155907422020203187277605 2772190055614842555187925303435139844253223415762336106425063904975008656271095359194658975141310348 2276930624743536325691607815478181152843667957061108615331504452127473924544945423682886061340841486 3776700961207151249140430272538607648236341433462351897576645216413767969031495019108575984423919862 9164219399490723623464684411739403265918404437805133389452574239950829659122850855582157250310712570 1266830240292952522011872676756220415420516184163484756516999811614101002996078386909291603028840026 9104140792886215078424516709087000699282120660418371806535567252532567532861291042487761825829765157 9598470356222629348600341587229805349896502262917487882027342092222453398562647669149055628425039127 5771028402799806636582548892648802545661017296702664076559042909945681506526530537182941270336931378 5178609040708667114965583434347693385781711386455873678123014587687126603489139095620099393610310291 6161528813843790990423174733639480457593149314052976347574811935670911013775172100803155902485309066 9203767192203322909433467685142214477379393751703443661991040337511173547191855046449026365512816228 8244625759163330391072253837421821408835086573917715096828874782656995995744906617583441375223970968 3408005355984917541738188399944697486762655165827658483588453142775687900290951702835297163445621296 4043523117600665101241200659755851276178583829204197484423608007193045761893234922927965019875187212 7267507981255470958904556357921221033346697499235630254947802490114195212382815309114079073860251522 7429958180724716259166854513331239480494707911915326734302824418604142636395480004480026704962482017 9289647669758318327131425170296923488962766844032326092752496035799646925650493681836090032380929345 9588970695365349406034021665443755890045632882250545255640564482465151875471196218443965825337543885 6909411303150952617937800297412076651479394259029896959469955657612186561967337862362561252163208628 6922210327488921865436480229678070576561514463204692790682120738837781423356282360896320806822246801 2248261177185896381409183903673672220888321513755600372798394004152970028783076670944474560134556417 2543709069793961225714298946715435784687886144458123145935719849225284716050492212424701412147805734 5510500801908699603302763478708108175450119307141223390866393833952942578690507643100638351983438934 1596131854347546495569781038293097164651438407007073604112373599843452251610507027056235266012764848 3084076118301305279320542746286540360367453286510570658748822569815793678976697422057505968344086973 5020141020672358502007245225632651341055924019027421624843914035998953539459094407046912091409387001 2645600162374288021092764579310657922955249887275846101264836999892256959688159205600101655256375678 5667227966198857827948488558343975187445455129656344348039664205579829368043522027709842942325330225 7634180703947699415979159453006975214829336655566156787364005366656416547321704390352132954352916941 4599041608753201868379370234888689479151071637852902345292440773659495630510074210871426134974595615 1384987137570471017879573104229690666702144986374645952808243694457897723300487647652413390759204340 1963403911473202338071509522201068256342747164602433544005152126693249341967397704159568375355516673 0273900749729736354964533288869844061196496162773449518273695588220757355176651589855190986665393549 4810688732068599075407923424023009259007017319603622547564789406475483466477604114632339056513433068 4495397907090302346046147096169688688501408347040546074295869913829668246818571031887906528703665083 2431974404771855678934823089431068287027228097362480939962706074726455399253994428081137369433887294 0630792615959954626246297070625948455690347119729964090894180595343932512362355081349490043642785271 3831591256898929519642728757394691427253436694153236100453730488198551706594121735246258954873016760 0298865925786628561249665523533829428785425340483083307016537228563559152534784459818313411290019992 0598135220511733658564078264849427644113763938669248031183644536985891754426473998822846218449008777 6977631279572267265556259628254276531830013407092233436577916012809317940171859859993384923549564005 7099558561134980252499066984233017350358044081168552653117099570899427328709258487894436460050410892 2669178352587078595129834417295351953788553457374260859029081765155780390594640873506123226112009373 1080485485263572282576820341605048466277504500312620080079980492548534694146977516493270950493463938 2432227188515974054702148289711177792376122578873477188196825462981268685817050740272550263329044976 2778944236216741191862694396506715157795867564823993917604260176338704549901761436412046921823707648 8783419689686118155815873606293860381017121585527266830082383404656475880405138080163363887421637140 6435495561868964112282140753302655100424104896783528588290243670904887118190909494533144218287661810 3100735477054981596807720094746961343609286148494178501718077930681085469000944589952794243981392135 0558642219648349151263901280383200109773868066287792397180146134324457264009737425700735921003154150 8936793008169980536520276007277496745840028362405346037263416554259027601834840306811381855105979705 6640075094260878857357960373245141467867036880988060971642584975951380693094494015154222219432913021 7391253835591503100333032511174915696917450271494331515588540392216409722910112903552181576282328318 2342548326111912800928252561902052630163911477247331485739107775874425387611746578671169414776421441 1112635835538713610110232679877564102468240322648346417663698066378576813492045302240819727856471983 9630878154322116691224641591177673225326433568614618654522268126887268445968442416107854016768142080 8850280054143613146230821025941737562389942075713627516745731891894562835257044133543758575342698699 4725470316566139919996826282472706413362221789239031760854289437339356188916512504244040089527198378 7386480584726895462438823437517885201439560057104811949884239060613695734231559079670346149143447886 3604103182350736502778590897578272731305048893989009923913503373250855982655867089242612429473670193 9077271307068691709264625484232407485503660801360466895118400936686095463250021458529309500009071510 5823626729326453738210493872499669933942468551648326113414611068026744663733437534076429402668297386 5220935701626384648528514903629320199199688285171839536691345222444708045923966028171565515656661113 5982311225062890585491450971575539002439315351909021071194573002438801766150352708626025378817975194 7806101371500448991721002220133501310601639154158957803711779277522597874289191791552241718958536168 0594741234193398420218745649256443462392531953135103311476394911995072858430658361935369329699289837 9149419394060857248639688369032655643642166442576079147108699843157337496488352927693282207629472823 8153740996154559879825989109371712621828302584811238901196822142945766758071865380650648702613389282 2994972574530332838963818439447707794022843598834100358385423897354243956475556840952248445541392394 1000162076936368467764130178196593799715574685419463348937484391297423914336593604100352343777065888 6778113949861647874714079326385873862473288964564359877466763847946650407411182565837887845485814896 2961273998413442726086061872455452360643153710112746809778704464094758280348769758948328241239292960 5829486191966709189580898332012103184303401284951162035342801441276172858302435598300320420245120728 7253558119584014918096925339507577840006746552603144616705082768277222353419110263416315714740612385 0425845988419907611287258059113935689601431668283176323567325417073420817332230462987992804908514094 7903688786878949305469557030726190095020764334933591060245450864536289354568629585313153371838682656 1786227363716975774183023986006591481616404944965011732131389574706208847480236537103115089842799275 4426853277974311395143574172219759799359685252285745263796289612691572357986620573408375766873884266 4059909935050008133754324546359675048442352848747014435454195762584735642161981340734685411176688311 8654489377697956651727966232671481033864391375186594673002443450054499539974237232871249483470604406 3471606325830649829795510109541836235030309453097335834462839476304775645015008507578949548931393944 8992161255255977014368589435858775263796255970816776438001254365023714127834679261019955852247172201 7772370041780841942394872540680155603599839054898572354674564239058585021671903139526294455439131663 1345308939062046784387785054239390524731362012947691874975191011472315289326772533918146607300089027 7689631148109022097245207591672970078505807171863810549679731001678708506942070922329080703832634534 5203802786099055690013413718236837099194951648960075504934126787643674638490206396401976668559233565 4639138363185745698147196210841080961884605456039038455343729141446513474940784884423772175154334260 3066988317683310011331086904219390310801437843341513709243530136776310849135161564226984750743032971 6746964066653152703532546711266752246055119958183196376370761799191920357958200759560530234626775794 3936307463056901080114942714100939136913810725813781357894005599500183542511841721360557275221035268 0373572652792241737360575112788721819084490061780138897107708229310027976659358387589093956881485602 6322439372656247277603789081445883785501970284377936240782505270487581647032458129087839523245323789 6029841669225489649715606981192186584926770403956481278102179913217416305810554598801300484562997651 1212415363745150056350701278159267142413421033015661653560247338078430286552572227530499988370153487 9300806260180962381516136690334111138653851091936739383522934588832255088706450753947395204396807906 7086806445096986548801682874343786126453815834280753061845485903798217994599681154419742536344399602 9025100158882721647450068207041937615845471231834600726293395505482395571372568402322682130124767945 2264482091023564775272308208106351889915269288910845557112660396503439789627825001611015323516051965 5904211844949907789992007329476905868577878720982901352956613978884860509786085957017731298155314951 6814671769597609942100361835591387778176984587581044662839988060061622984861693533738657877359833616 1338413385368421197893890018529569196780455448285848370117096721253533875862158231013310387766827211 5726949518179589754693992642197915523385766231676275475703546994148929041301863861194391962838870543 6777432242768091323654494853667680000010652624854730558615989991401707698385483188750142938908995068 5453076511680333732226517566220752695179144225280816517166776672793035485154204023817460892328391703 2754257508676551178593950027933895920576682789677644531840404185540104351348389531201326378369283580 8271937831265496174599705674507183320650345566440344904536275600112501843356073612227659492783937064 7842645676338818807565612168960504161139039063960162022153684941092605387688714837989559999112099164 6464411918568277004574243434021672276445589330127781586869525069499364610175685060167145354315814801 0545886056455013320375864548584032402987170934809105562116715468484778039447569798042631809917564228 0987399876697323769573701580806822904599212366168902596273043067931653114940176473769387351409336183 3216142802149763399189835484875625298752423873077559555955465196394401821840998412489826236737714672 2606163364329640633572810707887581640438148501884114318859882769449011932129682715888413386943468285 9006664080631407775772570563072940049294030242049841656547973670548558044586572022763784046682337985 282710578431975354179501134727362577408021347682604502285157979579764746702284099956160156...
Quantum Santa.
QUANTUM MECHANICS SAVES SANTA
The analysis about the death of Santa Claus, based on classical physics, is seriously flawed owing to its neglect of quantum phenomena that become significant in his particular case. As it happens, the terminal velocity of a reindeer in dry December air over the Northern Hemisphere (for example) is known with tremendous precision. The mass of Santa and his sleigh (since the number of children and their gifts is also known precisely, ahead of time, and the reindeer must weigh in minutes before the flight) is also known with tremendous precision. His direction of flight is, as you say, essentially east to west.
All of that, when taken together, means that the momentum vector of Mr. Claus and his cargo is known with incredible precision. An elementary application of Heisenberg's uncertainty principle yields the result that Santa's location, at any given moment on Christmas Eve, is highly imprecise. In other words, he is "smeared out" over the surface of the earth, analogous to the manner in which an electron is "smeared out" within a certain distance from the nucleus in an atom. Thus he can, quite literally, be everywhere at any given moment.
In addition, the relativistic velocities which his reindeer can attain for brief moments make it possible for him, in certain cases, to arrive at some locations shortly before he left the North Pole. Santa, in other words, assumes for brief periods the characteristics of tachyons.
I will admit that tachyons remain hypothetical, but then so do black holes, and who really doubts their existence anymore?
--Justanother 20:16, 13 December 2006 (UTC)
A Politically Correct Holiday Greeting.
Please accept with no obligation, implied or implicit, this wish for an environmentally conscious, socially responsible, low stress, non-addictive, gender neutral, celebration of the winter/summer solstice holiday, practiced within the most enjoyable traditions of the religious persuasion of your choice, or secular practices of your choice, with respect for the religious/secular persuasions and/or traditions of others, or their choice not to practice religious or secular traditions at all - and a fiscally successful, personally fulfilling, and medically uncomplicated recognition of the onset of the generally accepted calendar year 2007, but not without due respect for the calendars of choice of other cultures, and without regard to the race, creed, color, age, physical ability, sexual preference, religious faith, or choice of computer platform of the wishee.
By accepting this greeting, you are accepting these terms: This greeting is subject to clarification or withdrawal. It is freely transferable with or without alteration to the original greeting. It implies no promise by the wisher to actually implement any of the wishes for her/himself or others, and is void where prohibited by law, and is revocable at the sole discretion of the wisher. This wish is warranted to perform as expected within the usual application of good tidings for a period of one year, or until the issuance of a subsequent holiday greeting, whichever comes first, and warranty is limited to replacement of this wish or issuance of a new wish at the sole discretion of the wisher.
--Janke | Talk 07:27, 24 December 2006 (UTC)
Cabal?
Example of a Level 1 WP:DEFCON situation.
The following scenario is an example of a level 1 Wdefcon:
- Some dedicated anti-Wikipedia computer geeks create multiple Wikipedia bots and uses multiple proxies for these bots, so that the proxies can't be blocked. Then, they hack into the Wikimedia servers and disable all editing and user rights and give them to the bots, and then block every Wikipedia user. Then, the bots would crawl into Wikipedia and do the following to all pages: blank, delete, protect, then add some crap like "Wikipedia sucks" or something like that. The Wikipedia editors, watching in horror, cannot counter-vandalise the bots, since editing capabilities were disable and they're blocked. The admins, desperately trying to save Wikipedia, will try to block these bots, but will fail...And every Wikipedia article, project page, portal, category, etc. will vanish...
- The previous scenario would be a level 1 Wdefcon, although users wouldn't be able to change the Wdefcon level anyway. :)
- *Ed clearly watches too many action movies* :) Ed ¿Cómo estás?Reviews? 01:22, 27 January 2007 (UTC)
The Chicken or the Egg?
In response to the question as to which came first, the chicken, or the egg:
As with so many of these old 'dilemmas' - they are easily solved if you define your terms accurately. If we define:
- "an egg" as Egg does: an ovum together with its shell or outer layer, internal membranes and nutrients for the embryo.
- "a chicken" (per Chicken) as an fully formed bird which is at least 99.9% genetically similar to a modern domesticated animal of the species G. gallus.
- "before" (in the context of chickens and eggs) as chicken comes before egg if said chicken lays said egg - egg comes before chicken if said chicken hatches from said egg.
...then there is no dilemma at all. Genetic studies show that the first ever G.Gallus was a mutated Asian Red Junglefowl - so it was hatched (as is the case with all birds) from a shell-encased ovum that (in this case) was laid by a bird of the species 'Asian Red Junglefowl' (which was not - per our previous definition - a "chicken"). That "egg" was clearly "before" the very first "chicken" - QED.
Sig copycatz. So i herd...
u dunt leik sig copycatz? ~ Spebi ⁂ 09:08, 16 November 2007 (UTC)
- They're alrite. Riana 09:13, 16 November 2007 (UTC)
- y r u lie?
Spebi09:15, 16 November 2007 (UTC)- In the mood for a suggestion? :) Daniel 08:27, 17 November 2007 (UTC)
- Was that a nudge for me to write an article? I got called rude names last times I tried that! :P ~ Riana ⁂ 08:48, 17 November 2007 (UTC)
- In the mood for a suggestion? :) Daniel 08:27, 17 November 2007 (UTC)
- y r u lie?
I really ❤ don't appreciate Sigcopycats at all They are becoming abundant in our wikienvironment And i do not // liek it // at all // i swer ♦ They are the ♦ "new sockpuppets"? in town (n they) shud b (indefinitely·blocked) and they should implement a new way øf prøtecting pages against sig cøpycatz!!!
so can i get a hell yehh?? 06:26, 20 November 2007 (UTC)
- Not only was that brilliant, but the mention of my signature made your efforts well worthwhile. the❤undertow 06:35, 20 November 2007
- sum1 plz blok dis sig copycat :) Spebi 06:40, 20 November 2007 (UTC)
- O rly? can it be I would jus unblk myself teim now, plz? the_undertow : Chat 06:46, 20 November 2007 (UTC)
y❤r u ppl loling : i find it Extremely Offensivethat u could be so (rude omg) Haven't u ppl herd of WP:CIVIL :( iem nöt Impressed (at all) I amgoingto to WP:ANI OR WP:PAIN w8 Didn't, :) Thatclose down OhWellz
i am running out ofsigs so bi now lol 08:10, 20 November 2007 (UTC)
- Hahaa. I don't even want to know how long that took! But that's too funny. Lara❤Love 18:05, 20 November 2007 (UTC)
DerHexer.
A tribute to one of our best vandal fighters:
Wikipedia image.
A bit exaggerated, but amusing.
Quotes
- "We used to have an infomercial on with some short oriental man on a yacht (with girls in bikinis) claiming, in bad English, that you too could have all this if you sent him your life savings." – StuRat