Uncharacterized Protein C15orf32 is a protein which in humans is encoded by the C15orf32 gene and is located on chromosome 15, location 15q26.1.[3] Variants of C15orf32 have been linked to bipolar disorder,[4][5] alcohol use disorder,[6] and acute myeloid leukemia.[7]
C15orf32 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | C15orf32, chromosome 15 open reading frame 32, chromosome 15 putative open reading frame 32 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | HomoloGene: 89189; GeneCards: C15orf32; OMA:C15orf32 - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Gene
editC15orf32, which stands for chromosome 15 open reading frame 32, is a gene on the plus strand of chromosome 15, on the cytogenetic band 15q26.1. C15orf32 is 29,464 bases long; on Genome Reference Consortium Human Build 38, it spans bases 92,471,654-92,501,117. It contains 3 exons.[3]
Transcripts
editTwo isoforms of C15orf32 exist. The longer transcript, known as transcript variant 2 on NCBI, is 1,764 bases long.[8] The other is transcript 1 and is 1,726 bases long.[9]
Proteins
editThe transcript variant 2 of the C15orf32 gene encodes a 178 amino acid protein and has a molecular mass of 20,262 Da. Its basal isoelectric point is 9.34.[11] Transcript variant 1 is missing amino acids 166–178.[3] There is significantly large spacing between the glutamic acid residues at locations 12 and 23.[12]
Structure
editA transmembrane segment is predicted between amino acids 51 and 71 by Phobius[14] and amino acids 57 and 71 by SAPS.[12] The N-terminus is predicted to be outside of the cytoplasm, and the C-terminus within the cytoplasm.[14] The Chou–Fasman algorithm predicts a beta sheet in this region, as well as much of region between amino acids 114 and 147.[10] I-TASSER was used to predict the tertiary structure.[13] The top model predicted eight alpha helices, including one between amino acids 51 and 71 concurrent with the transmembrane segment predicted earlier, although this structure had low confidence.
Regulation
editGene level
editThe promoter region of C15orf32 is predicted to span base pairs 92,470,677-92,471,777 according to Gene2Promoter tool by Genomatix.[15] The most commonly predicted transcription factor families by the MatInspector tool from Genomatix within this promoter region were SOX, nuclear receptor subfamily 2, and retinoid X receptor.[15] Transcription factor binding sites that have been determined experimentally include STAT1, MAFK, and JUND and are located within the second intron.[16] C15orf32 is expressed most notably in testes, brain, heart, and early in the development of fetuses, although expression is very low.[17] Exposure to some compounds such as bromelain, Bortezomib, estrogen, and 4-hydroxytamoxifen lead to increase in C15orf32 expression in breast cancer cells.[18][19][20]
Transcript level
editPossible secondary structures of the 5' and 3' untranslated region in C15orf32 mRNA is given to the left and was predicted by mfold.[21] It is mostly linear, with a number of small stem-loops. According to TargetScan, sites targeted by miRNA families miR-193a-5p and miR-365-3p within the 3' UTR are broadly conserved among vertebrates.[22]
Protein level
editImmunohistochemical staining shows that C15orf32 is localized within cells to the cytoplasm and membranes, including the nucleus.[23] Both PSORTII and DeepLoc strongly predict localization to the nucleus.[24][25] Thr41 has been shown to be phosphorylated post-translation[11] 26 other potential phosphorylation sites were predicted using NetPhos, with the most likely phosphorylation sites being 6S by PKC, 32T by PKG, 83T by PKC, 89S by PKC, and 162S by PKA.[26] A sumoylation site is predicted at amino acids 107–110.[27] 11 mucin type GalNAc O-glycosylation were predicted using NetOGlyc, 9 of which occurred in the first 50 base pairs.[28]
Interactions
editExperimental evidence shows potential interaction between C15orf32 and PKD2, ALG9, DISP1, NPC1, FZD2, FAM69A, ATP6V1G2, ASIC1, DPY19L4, SPPL2B, and HGSNAT.[29]
Clinical significance
editVariants of C15orf32 has been linked to several traits through genome wide association studies. The rs8040009 SNP in the 3’ UTR had a strong association with bipolar I disorder in a population of Han Chinese.[4] Three SNPs within C15orf32, including rs1455773 in exon 1 which causes a missense mutation from alanine to threonine at position 17,[30] were also associated with bipolar disorder in an Australian cohort.[5] This SNP was also linked to alcohol use disorder and heaviness of drinking.[6] The rs1455774 SNP, located in the 5’ UTR, is located within the target sites of miRNA has-miR-539 and has-let-7i* which affects the expression of these miRNAs, which may increase breast cancer susceptibility.[31] The rs11635085 SNP was linked to increased antibody IgG levels after exposure to casein, a dietary antigen, in Mexican Americans.[32] The rs1455782 SNP was linked to decreased forced vital capacity, which is a measure of pulmonary function.[33] The rs12148722 SNP was mildly associated with velopharyngeal dysfunction.[34] A haplotype block within C15orf32 was associated with acute myeloid leukemia.[7] A deletion in 15q26.1 including genes ST8SIA2, C15orf32, and FAM174B was found in a patient with epilepsy and autism spectrum disorder.[35]
Homology
editHomologs of C15orf32 have been described in 39 other mammals.[36] No known orthologs exist outside of mammals.
Scientific name | Common name | Order | Date of divergence (MYA, estimated) | Sequence ID | Length | % Identity | % Similarity |
---|---|---|---|---|---|---|---|
Pan paniscus | Bonobo | Primates | 6.7 | XP_003816836.1 | 178 | 100.00 | 100 |
Colobus angolensis palliatus | Tanzanian black-and-white colobus | Primates | 29.44 | XP_011802791.1 | 165 | 81.21 | 83.03 |
Cebus capucinus imitator | Panamanian white-faced capuchin | Primates | 43.2 | XP_017372471.1 | 158 | 63.92 | 72.78 |
Marmota flaviventris | Yellow-bellied marmot | Rodentia | 90 | XP_027811208.1 | 171 | 53.80 | 61.99 |
Cavia porcellus | Guinea pig | Rodentia | 90 | XP_005008701.1 | 91 | 50.55 | 63.74 |
Urocitellus parryii | Arctic ground squirrel | Rodentia | 90 | XP_026249828.1 | 169 | 49.70 | 59.76 |
Heterocephalus glaber | Naked mole-rat | Rodentia | 90 | XP_021120379.1 | 157 | 47.77 | 56.69 |
Octodon degus | Common degu | Rodentia | 90 | XP_012369204.1 | 113 | 38.94 | 54.87 |
Ceratotherium simum simum | Southern white rhinoceros | Perissodactyla | 96 | XP_014644154.1 | 101 | 57.43 | 72.28 |
Tursiops truncatus | Common bottlenose dolphin | Artiodactyla | 96 | XP_019801175.1 | 120 | 53.33 | 67.5 |
Sus scrofa | Wild boar | Artiodactyla | 96 | XP_020955730.1 | 121 | 52.07 | 65.29 |
Balaenoptera acutorostrata scammoni | North Pacific Minke whale | Artiodactyla | 96 | XP_028020695.1 | 161 | 50.93 | 62.73 |
Equus caballus | Horse | Perissodactyla | 96 | XP_023505656.1 | 172 | 50.00 | 61.63 |
Felis catus | Cat | Carnivora | 96 | XP_006944424.1 | 89 | 49.44 | 58.43 |
Odobenus rosmarus divergens | Pacific walrus | Carnivora | 96 | XP_012420660.1 | 77 | 46.75 | 58.44 |
Lagenorhynchus obliquidens | Pacific white-sided dolphin | Artiodactyla | 96 | XP_026938944.1 | 180 | 44.44 | 55.56 |
Lipotes vexillifer | Baiji | Artiodactyla | 96 | XP_007472421.1 | 165 | 43.64 | 54.55 |
Panthera pardus | Leopard | Carnivora | 96 | XP_019315554.1 | 99 | 43.43 | 50.51 |
Orcinus orca | Killer whale | Artiodactyla | 96 | XP_012389158.1 | 162 | 43.21 | 53.7 |
Canis lupus dingo | Dingo | Carnivora | 96 | XP_025294087.1 | 149 | 36.24 | 44.3 |
References
edit- ^ a b c GRCh38: Ensembl release 89: ENSG00000183643 – Ensembl, May 2017
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ a b c d "C15orf32 Gene - GeneCards | C15orf32 RNA Gene". www.genecards.org. Retrieved 2020-03-02.
- ^ a b Lee MT, Chen CH, Lee CS, Chen CC, Chong MY, Ouyang WC, et al. (May 2011). "Genome-wide association study of bipolar I disorder in the Han Chinese population". Molecular Psychiatry. 16 (5): 548–56. doi:10.1038/mp.2010.43. PMID 20386566.
- ^ a b McAuley EZ, Scimone A, Tiwari Y, Agahi G, Mowry BJ, Holliday EG, et al. (2012-05-31). "Identification of sialyltransferase 8B as a generalized susceptibility gene for psychotic and mood disorders on chromosome 15q25-26". PLOS ONE. 7 (5): e38172. Bibcode:2012PLoSO...738172M. doi:10.1371/journal.pone.0038172. PMC 3364966. PMID 22693595.
- ^ a b Heath AC, Whitfield JB, Martin NG, Pergadia ML, Goate AM, Lind PA, et al. (September 2011). "A quantitative-trait genome-wide association study of alcoholism risk in the community: findings and implications". Biological Psychiatry. 70 (6): 513–8. doi:10.1016/j.biopsych.2011.02.028. PMC 3210694. PMID 21529783.
- ^ a b Lv H, Zhang M, Shang Z, Li J, Zhang S, Lian D, Zhang R (January 2017). "Genome-wide haplotype association study identify the FGFR2 gene as a risk gene for acute myeloid leukemia". Oncotarget. 8 (5): 7891–7899. doi:10.18632/oncotarget.13631. PMC 5352368. PMID 27903959.
- ^ "Homo sapiens chromosome 15 putative open reading frame 32 (C15orf32), transcript variant 2, long non-coding RNA". 2019-10-06.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ "Homo sapiens chromosome 15 putative open reading frame 32 (C15orf32), transcript variant 1, long non-coding RNA". 2019-10-06.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ a b "CFSSP: Chou & Fasman Secondary Structure Prediction Server". www.biogem.org. Retrieved 2020-05-03.
- ^ a b "C15orf32 (human)". www.phosphosite.org. Retrieved 2020-03-02.
- ^ a b "SAPS < Sequence Statistics < EMBL-EBI". www.ebi.ac.uk. Retrieved 2020-05-03.
- ^ a b "I-TASSER server for protein structure and function prediction". zhanglab.ccmb.med.umich.edu. Retrieved 2020-05-03.
- ^ a b "Phobius". phobius.sbc.su.se. Retrieved 2020-05-03.
- ^ a b "Genomatix - NGS Data Analysis & Personalized Medicine". www.genomatix.de. Archived from the original on 2001-02-24. Retrieved 2020-05-03.
- ^ "ORegAnno Temporary Homepage". www.oreganno.org. Archived from the original on 2021-03-21. Retrieved 2020-05-03.
- ^ "C15orf32 Gene Expression - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2020-05-03.
- ^ Fouz N, Amid A, Hashim YZ (August 2014). "Gene expression analysis in MCF-7 breast cancer cells treated with recombinant bromelain". Applied Biochemistry and Biotechnology. 173 (7): 1618–39. doi:10.1007/s12010-014-0947-6. PMID 24928548. S2CID 207356247.
- ^ "GDS4089 / ILMN_1773848". www.ncbi.nlm.nih.gov. Retrieved 2020-05-03.
- ^ "GDS4065 / 1553482_at". www.ncbi.nlm.nih.gov. Retrieved 2020-05-03.
- ^ a b "RNA Folding Form | mfold.rit.albany.edu". unafold.rna.albany.edu. Retrieved 2020-05-03.
- ^ "TargetScanHuman 7.2". www.targetscan.org. Retrieved 2020-05-03.
- ^ "Anti-C15orf32 antibody produced in rabbit HPA041883". Immunohistochemistry. Retrieved 2020-05-03.
- ^ "PSORT II server - GenScript". www.genscript.com. Retrieved 2020-05-03.
- ^ "DeepLoc - 1.0". DTU Health Tech.
- ^ "NetPhos 3.1: Generic phosphorylation sites in eukaryotic proteins". healthtech.dtu.dk. Retrieved 2020-05-03.
- ^ "SUMOplot™ Analysis Program | Abcepta". www.abcepta.com. Retrieved 2020-05-03.
- ^ "NetOGlyc - 4.0". DTU Health Tech.
- ^ "C15orf32 Result Summary | BioGRID". thebiogrid.org. Retrieved 2020-05-03.
- ^ "UniProtKB/SwissProt variant VAR_050884". web.expasy.org. Retrieved 2020-03-02.
- ^ Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, et al. (April 2010). "Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility". Cancer Research. 70 (7): 2789–98. doi:10.1158/0008-5472.CAN-09-3541. PMC 2853025. PMID 20332227.
- ^ Rubicz R, Yolken R, Alaedini A, Drigalenko E, Charlesworth JC, Carless MA, et al. (July 2014). "Genome-wide genetic and transcriptomic investigation of variation in antibody response to dietary antigens". Genetic Epidemiology. 38 (5): 439–46. doi:10.1002/gepi.21817. PMC 4171053. PMID 24962563.
- ^ Wilk JB, Walter RE, Laramie JM, Gottlieb DJ, O'Connor GT (September 2007). "Framingham Heart Study genome-wide association: results for pulmonary function measures". BMC Medical Genetics. 8 Suppl 1 (1): S8. doi:10.1186/1471-2350-8-S1-S8. PMC 1995616. PMID 17903307.
- ^ Chernus J, Roosenboom J, Ford M, Lee MK, Emanuele B, Anderton J, et al. (May 2018). "GWAS reveals loci associated with velopharyngeal dysfunction". Scientific Reports. 8 (1): 8470. Bibcode:2018NatSR...8.8470C. doi:10.1038/s41598-018-26880-w. PMC 5981322. PMID 29855589.
- ^ Kamien B, Harraway J, Lundie B, Smallhorne L, Gibbs V, Heath A, Fullerton JM (March 2014). "Characterization of a 520 kb deletion on chromosome 15q26.1 including ST8SIA2 in a patient with behavioral disturbance, autism spectrum disorder, and epilepsy". American Journal of Medical Genetics. Part A. 164A (3): 782–8. doi:10.1002/ajmg.a.36345. PMID 24357335. S2CID 27921887.
- ^ "HomoloGene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2020-03-02.